Bioinformatics Toolbox™ 3 Reference

MATLAB®

How to Contact The MathWorks

(a)

www.mathworks.comWebcomp.soft-sys.matlabNewsgroupwww.mathworks.com/contact_TS.htmlTechnical Support

suggest@mathworks.com bugs@mathworks.com doc@mathworks.com service@mathworks.com info@mathworks.com Product enhancement suggestions Bug reports Documentation error reports Order status, license renewals, passcodes Sales, pricing, and general information

508-647-7000 (Phone) 508-647-7001 (Fax)

The MathWorks, Inc. 3 Apple Hill Drive Natick. MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Bioinformatics Toolbox[™] Reference

© COPYRIGHT 2003–2008 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

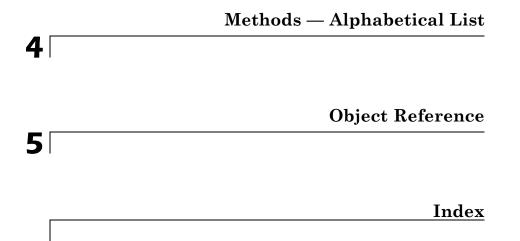
May 2005	Online only	New for Version 2.1 (Release 14SP2+)
September 2005	Online only	Revised for Version 2.1.1 (Release 14SP3)
November 2005	Online only	Revised for Version 2.2 (Release 14SP3+)
March 2006	Online only	Revised for Version 2.2.1 (Release 2006a)
May 2006	Online only	Revised for Version 2.3 (Release 2006a+)
September 2006	Online only	Revised for Version 2.4 (Release 2006b)
March 2007	Online only	Revised for Version 2.5 (Release 2007a)
April 2007	Online only	Revised for Version 2.6 (Release 2007a+)
September 2007	Online only	Revised for Version 3.0 (Release 2007b)
March 2008	Online only	Revised for Version 3.1 (Release 2008a)
October 2008	Online only	Revised for Version 3.2 (Release 2008b)

Contents

Function Reference

1		
	Constructor	1-3
	Data Formats and Databases	1-4
	Trace Tools	1-6
	Sequence Conversion	1-7
	Sequence Utilities	1-8
	Sequence Statistics	1-9
	Sequence Visualization	1-10
	Pairwise Sequence Alignment	1-11
	Multiple Sequence Alignment	1-11
	Scoring Matrices	1-12
	Phylogenetic Tree Tools	1-12
	Graph Theory	1-13
	Gene Ontology	1-14
	Protein Analysis	1-14
	Profile Hidden Markov Models	1-15

Microarray File Formats	1-16
Microarray Utilities	1-17
Microarray Data Analysis and Visualization	1-18
Microarray Normalization and Filtering	1-19
Statistical Learning	1-21
Mass Spectrometry	1-21


${\bf Functions-Alphabetical\ List}$

Method Reference

Phylogenetic Tree	3-1
Graph Visualization	3-2
Gene Ontology	3-3
Clustergram	3-4
DataMatrix	3-4

2

3

Function Reference

Constructor (p. 1-3)	Create objects.
Data Formats and Databases (p. 1-4)	Read data into the MATLAB [®] software from Web databases; read and write to files using specific sequence data formats
Trace Tools (p. 1-6)	Read data from SCF file and draw nucleotide trace plots
Sequence Conversion (p. 1-7)	Convert nucleotide and amino acid sequences between character and integer formats, reverse and complement order of nucleotide bases, and translate nucleotides codons to amino acids
Sequence Utilities (p. 1-8)	Calculate consensus sequence from set of multiply aligned sequences, run BLAST search from MATLAB environment, and search sequences using regular expressions
Sequence Statistics (p. 1-9)	Determine base counts, nucleotide density, codon bias, and CpG islands; search for words and identify open reading frames (ORFs)
Sequence Visualization (p. 1-10)	Visualize sequence data
Pairwise Sequence Alignment (p. 1-11)	Compare nucleotide or amino acid sequences using pairwise sequence alignment functions

Multiple Sequence Alignment (p. 1-11)	Compare sets of nucleotide or amino acid sequences; progressively align sequences using phylogenetic tree for guidance
Scoring Matrices (p. 1-12)	Standard scoring matrices such as PAM and BLOSUM families of matrices that alignment functions use
Phylogenetic Tree Tools (p. 1-12)	Read phylogenetic tree files, calculate pairwise distances between sequences, and build a phylogenetic tree
Graph Theory (p. 1-13)	Apply basic graph theory algorithms to sparse matrices
Gene Ontology (p. 1-14)	Read Gene Ontology formatted files
Protein Analysis (p. 1-14)	Determine protein characteristics and simulate enzyme cleavage reactions
Profile Hidden Markov Models (p. 1-15)	Get profile hidden Markov model data from the PFAM database or create your own profiles from set of sequences
Microarray File Formats (p. 1-16)	Read data from common microarray file formats including Affymetrix [®] GeneChip [®] , ImaGene [®] results, and SPOT files; read GenePix [®] GPR and GAL files
Microarray Utilities (p. 1-17)	Using Affymetrix and GeneChip data sets, get library information for probe, gene information from probe set, and probe set values from CEL and CDF information; show probe set information from the NetAffx TM Web site and plot probe set values

Microarray Data Analysis and Visualization (p. 1-18)	Analyze and visualize microarray data with t tests, spatial plots, box plots, loglog plots, and intensity-ratio plots
Microarray Normalization and Filtering (p. 1-19)	Normalize microarray data with lowess and mean normalization functions; filter raw data for cleanup before analysis
Statistical Learning (p. 1-21)	Classify and identify features in data sets, set up cross-validation experiments, and compare different classification methods
Mass Spectrometry (p. 1-21)	Read data from common mass spectrometry file formats, preprocess raw mass spectrometry data from instruments, and analyze spectra to identify patterns and compounds

Constructor

biograph	Create biograph object
clustergram	Compute hierarchical clustering, display dendrogram and heat map, and create clustergram object
DataMatrix	Create DataMatrix object
geneont	Create geneont object
phytree	Create phytree object

Data Formats and Databases

affygcrma	Perform GC Robust Multi-array Average (GCRMA) procedure on Affymetrix microarray probe-level data
affyprobeseqread	Read data file containing probe sequence information for Affymetrix GeneChip array
affyread	Read microarray data from Affymetrix GeneChip file
affyrma	Perform Robust Multi-array Average (RMA) procedure on Affymetrix microarray probe-level data
affysnpannotread	Read Affymetrix Mapping DNA array data from CSV-format annotation file
agferead	Read Agilent [®] Feature Extraction Software file
blastformat	Create local BLAST database
blastread	Read data from NCBI BLAST report file
blastreadlocal	Read data from local BLAST report
celintensityread	Read probe intensities from Affymetrix CEL files
cytobandread	Read cytogenetic banding information
emblread	Read data from EMBL file
fastaread	Read data from FASTA file
fastawrite	Write to file using FASTA format
galread	Read microarray data from GenePix array list file

genbankread	Read data from GenBank® file
genpeptread	Read data from GenPept file
geoseriesread	Read Gene Expression Omnibus (GEO) Series (GSE) format data
geosoftread	Read Gene Expression Omnibus (GEO) SOFT format data
getblast	Retrieve BLAST report from NCBI Web site
getembl	Retrieve sequence information from EMBL database
getgenbank	Retrieve sequence information from GenBank database
getgenpept	Retrieve sequence information from GenPept database
getgeodata	Retrieve Gene Expression Omnibus (GEO) format data
gethmmalignment	Retrieve multiple sequence alignment associated with hidden Markov model (HMM) profile from PFAM database
gethmmprof	Retrieve hidden Markov model (HMM) profile from PFAM database
gethmmtree	Retrieve phylogenetic tree data from PFAM database
getpdb	Retrieve protein structure data from Protein Data Bank (PDB) database
goannotread	Read annotations from Gene Ontology annotated file
gprread	Read microarray data from GenePix Results (GPR) file
ilmnbsread	Read gene expression data exported from Illumina [®] BeadStudio [™] software

imageneread	Read microarray data from ImaGene Results file
jcampread	Read JCAMP-DX-formatted files
multialignread	Read multiple sequence alignment file
multialignwrite	Write multiple alignment to file using ClustalW ALN format
mzcdfread	Read mass spectrometry data from netCDF file
mzxmlread	Read data from mzXML file
pdbread	Read data from Protein Data Bank (PDB) file
pdbwrite	Write to file using Protein Data Bank (PDB) format
pfamhmmread	Read data from PFAM HMM-formatted file
phytreeread	Read phylogenetic tree file
phytreewrite	Write phylogenetic tree object to Newick-formatted file
scfread	Read trace data from SCF file
sptread	Read data from SPOT file

Trace Tools

scfread	Read trace data from SCF file
traceplot	Draw nucleotide trace plots

Sequence Conversion

aa2int	Convert amino acid sequence from letter to integer representation
aa2nt	Convert amino acid sequence to nucleotide sequence
aminolookup	Find amino acid codes, integers, abbreviations, names, and codons
baselookup	Find nucleotide codes, integers, names, and complements
dna2rna	Convert DNA sequence to RNA sequence
int2aa	Convert amino acid sequence from integer to letter representation
int2nt	Convert nucleotide sequence from integer to letter representation
nt2aa	Convert nucleotide sequence to amino acid sequence
nt2int	Convert nucleotide sequence from letter to integer representation
rna2dna	Convert RNA sequence of nucleotides to DNA sequence
rnaconvert	Convert secondary structure of RNA sequence between bracket and matrix notations
seq2regexp	Convert sequence with ambiguous characters to regular expression
seqcomplement	Calculate complementary strand of nucleotide sequence
seqrcomplement	Calculate reverse complement of nucleotide sequence
seqreverse	Reverse letters or numbers in nucleotide sequence

Sequence Utilities

aminolookup	Find amino acid codes, integers, abbreviations, names, and codons
baselookup	Find nucleotide codes, integers, names, and complements
blastlocal	Perform search on local BLAST database to create BLAST report
blastncbi	Create remote NCBI BLAST report request ID or link to NCBI BLAST report
cleave	Cleave amino acid sequence with enzyme
cleavelookup	Find cleavage rule for enzyme or compound
featuresparse	Parse features from GenBank, GenPept, or EMBL data
geneticcode	Return nucleotide codon to amino acid mapping for genetic code
joinseq	Join two sequences to produce shortest supersequence
oligoprop	Calculate sequence properties of DNA oligonucleotide
palindromes	Find palindromes in sequence
pdbdistplot	Visualize intermolecular distances in Protein Data Bank (PDB) file
proteinplot	Characteristics for amino acid sequences
proteinpropplot	Plot properties of amino acid sequence
ramachandran	Draw Ramachandran plot for Protein Data Bank (PDB) data

randseq	Generate random sequence from finite alphabet
rebasecuts	Find restriction enzymes that cut nucleotide sequence
restrict	Split nucleotide sequence at restriction site
revgeneticcode	Return reverse mapping (amino acid to nucleotide codon) for genetic code
rnafold	Predict minimum free-energy secondary structure of RNA sequence
seqconsensus	Calculate consensus sequence
seqdisp	Format long sequence output for easy viewing
seqinsertgaps	Insert gaps into nucleotide or amino acid sequence
seqlogo	Display sequence logo for nucleotide or amino acid sequences
seqmatch	Find matches for every string in library
seqprofile	Calculate sequence profile from set of multiply aligned sequences
seqshoworfs	Display open reading frames in sequence

Sequence Statistics

aacount	Count amino acids in sequence
aminolookup	Find amino acid codes, integers, abbreviations, names, and codons
basecount	Count nucleotides in sequence

baselookup	Find nucleotide codes, integers, names, and complements
codonbias	Calculate codon frequency for each amino acid coded for in nucleotide sequence
codoncount	Count codons in nucleotide sequence
cpgisland	$Locate\ CpG\ islands\ in\ DNA\ sequence$
dimercount	Count dimers in nucleotide sequence
isoelectric	Estimate isoelectric point for amino acid sequence
molweight	Calculate molecular weight of amino acid sequence
nmercount	Count n-mers in nucleotide or amino acid sequence
ntdensity	Plot density of nucleotides along sequence
seqshowwords	Graphically display words in sequence
seqwordcount	Count number of occurrences of word in sequence

Sequence Visualization

featuresmap	Draw linear or circular map of features from GenBank structure
rnaplot	Draw secondary structure of RNA sequence
seqtool	Open tool to interactively explore biological sequences

Pairwise Sequence Alignment

fastaread	Read data from FASTA file
nwalign	Globally align two sequences using Needleman-Wunsch algorithm
seqdotplot	Create dot plot of two sequences
showalignment	Display color-coded sequence alignment
swalign	Locally align two sequences using Smith-Waterman algorithm

Multiple Sequence Alignment

fastaread	Read data from FASTA file
multialign	Align multiple sequences using progressive method
multialignread	Read multiple sequence alignment file
multialignviewer	Open viewer for multiple sequence alignments
multialignwrite	Write multiple alignment to file using ClustalW ALN format
profalign	Align two profiles using Needleman-Wunsch global alignment
seqpdist	Calculate pairwise distance between sequences
showalignment	Display color-coded sequence alignment

1

Scoring Matrices

blosum	Return BLOSUM scoring matrix
dayhoff	Return Dayhoff scoring matrix
gonnet	Return Gonnet scoring matrix
nuc44	Return NUC44 scoring matrix for nucleotide sequences
pam	Return PAM scoring matrix

Phylogenetic Tree Tools

dnds	Estimate synonymous and nonsynonymous substitution rates
dndsml	Estimate synonymous and nonsynonymous substitution rates using maximum likelihood method
gethmmtree	Retrieve phylogenetic tree data from PFAM database
phytreeread	Read phylogenetic tree file
phytreetool	View, edit, and explore phylogenetic tree data
phytreewrite	Write phylogenetic tree object to Newick-formatted file
seqinsertgaps	Insert gaps into nucleotide or amino acid sequence
seqlinkage	Construct phylogenetic tree from pairwise distances

	phylogenetic tree reconstruction
seqpdist	Calculate pairwise distance between sequences
ory	
graphallshortestpaths	Find all shortest paths in graph
graphconncomp	Find strongly or weakly connected components in graph
graphisdag	Test for cycles in directed graph
graphisomorphism	Find isomorphism between two graphs
graphisspantree	Determine if tree is spanning tree
graphmaxflow	Calculate maximum flow in directed graph
graphminspantree	Find minimal spanning tree in graph
graphpred2path	Convert predecessor indices to paths
graphshortestpath	Solve shortest path problem in graph
graphtopoorder	Perform topological sort of directed acyclic graph
graphtraverse	Traverse graph by following adjacent nodes

Neighbor-joining method for

Graph Theory

seqneighjoin

Gene Ontology

goannotread	Read annotations from Gene Ontology annotated file
num2goid	Convert numbers to Gene Ontology IDs

Protein Analysis

aacount	Count amino acids in sequence
aminolookup	Find amino acid codes, integers, abbreviations, names, and codons
atomiccomp	Calculate atomic composition of protein
cleave	Cleave amino acid sequence with enzyme
cleavelookup	Find cleavage rule for enzyme or compound
evalrasmolscript	Send RasMol script commands to Molecule Viewer window
isoelectric	Estimate isoelectric point for amino acid sequence
molviewer	Display and manipulate 3-D molecule structure
molweight	Calculate molecular weight of amino acid sequence
pdbdistplot	Visualize intermolecular distances in Protein Data Bank (PDB) file
pdbsuperpose	Superpose 3-D structures of two proteins

pdbtransform	Apply linear transformation to 3-D structure of molecule
proteinplot	Characteristics for amino acid sequences
proteinpropplot	Plot properties of amino acid sequence
ramachandran	Draw Ramachandran plot for Protein Data Bank (PDB) data

Profile Hidden Markov Models

gethmmalignment	Retrieve multiple sequence alignment associated with hidden Markov model (HMM) profile from PFAM database
gethmmprof	Retrieve hidden Markov model (HMM) profile from PFAM database
gethmmtree	Retrieve phylogenetic tree data from PFAM database
hmmprofalign	Align query sequence to profile using hidden Markov model alignment
hmmprofestimate	Estimate profile hidden Markov model (HMM) parameters using pseudocounts
hmmprofgenerate	Generate random sequence drawn from profile hidden Markov model (HMM)
hmmprofmerge	Concatenate prealigned strings of several sequences to profile hidden Markov model (HMM)
hmmprofstruct	Create or edit hidden Markov model (HMM) profile structure

nfamhmmread

T

	HMM-formatted file
showhmmprof	Plot hidden Markov model (HMM) profile
Microarray File Formats	
affygcrma	Perform GC Robust Multi-array Average (GCRMA) procedure on Affymetrix microarray probe-level data
affyprobeseqread	Read data file containing probe sequence information for Affymetri GeneChip array
affyprobeseqread	data Read data file containing prol sequence information for Affy.

Road data from PFAM

x affyread Read microarray data from Affymetrix GeneChip file affyrma Perform Robust Multi-array Average (RMA) procedure on Affymetrix microarray probe-level data affysnpannotread Read Affymetrix Mapping DNA array data from CSV-format annotation file agferead **Read Agilent Feature Extraction** Software file celintensityread Read probe intensities from Affymetrix CEL files Read microarray data from GenePix galread array list file geoseriesread **Read Gene Expression Omnibus** (GEO) Series (GSE) format data geosoftread **Read Gene Expression Omnibus** (GEO) SOFT format data

getgeodata	Retrieve Gene Expression Omnibus (GEO) format data
gprread	Read microarray data from GenePix Results (GPR) file
ilmnbsread	Read gene expression data exported from Illumina BeadStudio software
imageneread	Read microarray data from ImaGene Results file
sptread	Read data from SPOT file

Microarray Utilities

affysnpintensitysplit	Split Affymetrix SNP probe intensity information for alleles A and B
affysnpquartets	Create table of SNP probe quartet results for Affymetrix probe set
ilmnbslookup	Look up Illumina BeadStudio target (probe) sequence and annotation information
magetfield	Extract data from microarray structure
probelibraryinfo	Create table of probe set library information
probesetlink	Display probe set information on NetAffx Web site
probesetlookup	Look up information for Affymetrix probe set
probesetplot	Plot Affymetrix probe set intensity values
probesetvalues	Create table of Affymetrix probe set intensity values

1

Microarray Data Analysis and Visualization

cghcbs	Perform circular binary segmentation (CBS) on array-based comparative genomic hybridization (aCGH) data
cghfreqplot	Display frequency of DNA copy number alterations across multiple samples
chromosomeplot	Plot chromosome ideogram with G-banding pattern
clustergram	Compute hierarchical clustering, display dendrogram and heat map, and create clustergram object
maboxplot	Create box plot for microarray data
mafdr	Estimate false discovery rate (FDR) of differentially expressed genes from two experimental conditions or phenotypes
maimage	Spatial image for microarray data
mairplot	Create intensity versus ratio scatter plot of microarray data
maloglog	Create loglog plot of microarray data
mapcaplot	Create Principal Component Analysis (PCA) plot of microarray data
mattest	Perform two-sample t-test to evaluate differential expression of genes from two experimental conditions or phenotypes
mavolcanoplot	Create significance versus gene expression ratio (fold change) scatter plot of microarray data

redbluecmap

redgreencmap

Create red and blue colormap Create red and green colormap

Microarray Normalization and Filtering

affygcrma	Perform GC Robust Multi-array Average (GCRMA) procedure on Affymetrix microarray probe-level data
affyinvarsetnorm	Perform rank invariant set normalization on probe intensities from multiple Affymetrix CEL or DAT files
affyprobeaffinities	Compute Affymetrix probe affinities from their sequences and MM probe intensities
affyrma	Perform Robust Multi-array Average (RMA) procedure on Affymetrix microarray probe-level data
exprprofrange	Calculate range of gene expression profiles
exprprofvar	Calculate variance of gene expression profiles
gcrma	Perform GC Robust Multi-array Average (GCRMA) background adjustment, quantile normalization, and median-polish summarization on Affymetrix microarray probe-level data

gcrmabackadj	Perform GC Robust Multi-array Average (GCRMA) background adjustment on Affymetrix microarray probe-level data using sequence information
geneentropyfilter	Remove genes with low entropy expression values
genelowvalfilter	Remove gene profiles with low absolute values
generangefilter	Remove gene profiles with small profile ranges
genevarfilter	Filter genes with small profile variance
mainvarsetnorm	Perform rank invariant set normalization on gene expression values from two experimental conditions or phenotypes
malowess	Smooth microarray data using Lowess method
manorm	Normalize microarray data
quantilenorm	Quantile normalization over multiple arrays
rmabackadj	Perform background adjustment on Affymetrix microarray probe-level data using Robust Multi-array Average (RMA) procedure
rmasummary	Calculate gene expression values from Affymetrix microarray probe-level data using Robust Multi-array Average (RMA) procedure
zonebackadj	Perform background adjustment on Affymetrix microarray probe-level data using zone-based method

Statistical Learning

classperf	Evaluate performance of classifier
crossvalind	Generate cross-validation indices
knnclassify	Classify data using nearest neighbor method
knnimpute	Impute missing data using nearest-neighbor method
optimalleaforder	Determine optimal leaf ordering for hierarchical binary cluster tree
randfeatures	Generate randomized subset of features
rankfeatures	Rank key features by class separability criteria
samplealign	Align two data sets containing sequential observations by introducing gaps
svmclassify	Classify data using support vector machine
svmsmoset	Create or edit Sequential Minimal Optimization (SMO) options structure
svmtrain	Train support vector machine classifier

Mass Spectrometry

jcampread	Read JCAMP-DX-formatted files
msalign	Align peaks in mass spectrum to reference peaks
msbackadj	Correct baseline of mass spectrum

msdotplot	Plot set of peak lists from LC/MS or GC/MS data set
msheatmap	Create pseudocolor image of set of mass spectra
mslowess	Smooth mass spectrum using nonparametric method
msnorm	Normalize set of mass spectra
mspalign	Align mass spectra from multiple peak lists from LC/MS or GC/MS data set
mspeaks	Convert raw mass spectrometry data to peak list (centroided data)
msppresample	Resample mass spectrometry signal while preserving peaks
msresample	Resample mass spectrometry signal
mssgolay	Smooth mass spectrum with least-squares polynomial
msviewer	Explore mass spectrum or set of mass spectra
mzcdf2peaks	Convert mzCDF structure to peak list
mzcdfinfo	Return information about netCDF file containing mass spectrometry data
mzcdfread	Read mass spectrometry data from netCDF file
mzxml2peaks	Convert mzXML structure to peak list
mzxmlinfo	Return information about mzXML file

mzxmlread samplealign Read data from mzXML file Align two data sets containing sequential observations by introducing gaps

Functions — Alphabetical List

aa2int

Purpose	Convert amino acid sequence from letter to integer representation				
Syntax	<pre>SeqInt = aa2int(SeqChar)</pre>				
Arguments	SeqChar	One of the following:			
		• String of single-letter sequence. For valid le Amino Acid Letter Co Unknown characters arbitrarily assigned t	etter codes, see th odes to Integers o are mapped to 0.	e table Mapping n page 2-2. Integers are	
		 MATLAB structure contains an amino ac by fastaread, getgen pdbread. 	id sequence, such	as returned	
Return Values	SeqInt	Amino acid sequence sp	ecified by a row v	ector of integers.	
Description	SeqInt = aa2int(SeqChar) converts SeqChar, a character string of single-letter codes specifying an amino acid sequence, to SeqInt, a row vector of integers specifying the same amino acid sequence. For valid letter codes, see the table Mapping Amino Acid Letter Codes to Integers on page 2-2.				
	Mapping Amino Acid Letter Codes to Integers				
	Amino Ac	id	Code	Integer	

Amino Acid	Code	Integer
Alanine	А	1
Arginine	R	2
Asparagine	N	3

Amino Acid	Code	Integer
Aspartic acid (Aspartate)	D	4
Cysteine	C	5
Glutamine	Q	6
Glutamic acid (Glutamate)	E	7
Glycine	G	8
Histidine	н	9
Isoleucine	I	10
Leucine	L	11
Lysine	к	12
Methionine	М	13
Phenylalanine	F	14
Proline	Р	15
Serine	S	16
Threonine	Т	17
Tryptophan	W	18
Tyrosine	Y	19
Valine	V	20
Asparagine or Aspartic acid (Aspartate)	В	21
Glutamine or Glutamic acid (Glutamate)	Z	22
Unknown amino acid (any amino acid)	X	23
Translation stop	*	24

Mapping Amino Acid Letter Codes to Integers (Continued)

Mapping Amino Acid Letter Codes to Integers (Continued)

Amino Acid	Code	Integer
Gap of indeterminate length	-	25
Unknown character (any character or symbol not in table)	?	0

Examples Converting a Simple Sequence

Convert the sequence of letters MATLAB to integers.

```
SeqInt = aa2int('MATLAB')
```

SeqInt =

13 1 17 11 1 21

Converting a Random Sequence

1 Create a random string to represent an amino acid sequence.

```
SeqChar = randseq(20, 'alphabet', 'amino')
```

SeqChar =

dwcztecakfuecvifchds

2 Convert the amino acid sequence from letter to integer representation.

20 10 14 5 9 4 16

See Also Bioinformatics Toolbox[™] functions: aminolookup, int2aa, int2nt, nt2int

Purpose	Convert amino acid sequence to nucleotide sequence
Syntax	SeqNT = aa2nt(SeqAA) SeqNT = aa2nt(SeqAA,'GeneticCode', GeneticCodeValue,) SeqNT = aa2nt(SeqAA,'Alphabet' AlphabetValue,)

Arguments	SeqAA	One of the following:
		• String of single-letter codes specifying an amino acid sequence. For valid letter codes, see the table Mapping Amino Acid Letter Codes to Integers on page 2-2. Unknown characters are mapped to 0.
		• Row vector of integers specifying an amino acid sequence. For valid integers, see the table Mapping Amino Acid Integers to Letter Codes on page 2-558.
		• MATLAB structure containing a Sequence field that contains an amino acid sequence, such as returned by fastaread, getgenpept, genpeptread, getpdb, or pdbread.
		Examples: 'ARN' or [1 2 3]
	GeneticCodeValue	Integer or string specifying a genetic code number or code name from the table Genetic Code on page 2-9. Default is 1 or 'Standard'.
		Tip If you use a code name, you can truncate the name to the first two letters of the name.
	AlphabetValue	 String specifying a nucleotide alphabet. Choices are: 'DNA' (default) — Uses the symbols A, C, G, and T.
		• 'RNA' — Uses the symbols A, C, G, and U.

aa2nt

Return Values	SeqNT	Nucleotide sequence specified by a character string of letter codes.	
Description		(AA) converts an amino acid sequence, specified by de sequence, returned in <i>SeqNT</i> , using the standard	
	In general, the mapping from an amino acid to a nucleotide codon is not a one-to-one mapping. For amino acids with multiple possible nucleotide codons, this function randomly selects a codon corresponding to that particular amino acid. For the ambiguous characters B and Z, one of the amino acids corresponding to the letter is selected randomly, and then a codon sequence is selected randomly. For the ambiguous character X, a codon sequence is selected randomly from all possibilities.		
	calls aa2nt with opt value pairs. You can PropertyName must	AA,'PropertyName', PropertyValue,) ional properties that use property name/property a specify one or more properties in any order. Each be enclosed in single quotation marks and is case roperty name/property value pairs are as follows:	
) specifies a gen sequence to a nucle integer or string spe Genetic Code on pag to nucleotide codon	AA,'GeneticCode', GeneticCodeValue, netic code to use when converting an amino acid obtide sequence. GeneticCodeValue can be an ecifying a code number or code name from the table ge 2-9. Default is 1 or 'Standard'. The amino acid mapping for the Standard genetic code is shown in Genetic Code on page 2-10.	
	Tip If you use a cod	e name, you can truncate the name to the first two	

letters of the name.

SeqNT = aa2nt(SeqAA, ...'Alphabet' AlphabetValue, ...)
specifies a nucleotide alphabet. AlphabetValue can be 'DNA', which

uses the symbols $A,\,C,\,G,\,and\,T,\,or$ 'RNA', which uses the symbols $A,\,C,\,G,\,and\,U.$ Default is 'DNA'.

Genetic Code

Code Number	Code Name
1	Standard
2	Vertebrate Mitochondrial
3	Yeast Mitochondrial
4	Mold, Protozoan, Coelenterate Mitochondrial, and Mycoplasma/Spiroplasma
5	Invertebrate Mitochondrial
6	Ciliate, Dasycladacean, and Hexamita Nuclear
9	Echinoderm Mitochondrial
10	Euplotid Nuclear
11	Bacterial and Plant Plastid
12	Alternative Yeast Nuclear
13	Ascidian Mitochondrial
14	Flatworm Mitochondrial
15	Blepharisma Nuclear
16	Chlorophycean Mitochondrial
21	Trematode Mitochondrial
22	Scenedesmus Obliquus Mitochondrial
23	Thraustochytrium Mitochondrial

Standard Genetic Code

Amino Acid Name	Amino Acid Code	Nucleotide Codon
Alanine	A	GCT GCC GCA GCG
Arginine	R	CGT CGC CGA CGG AGA AGG
Asparagine	N	ATT AAC
Aspartic acid (Aspartate)	D	GAT GAC
Cysteine	С	TGT TGC
Glutamine	Q	CAA CAG
Glutamic acid (Glutamate)	E	GAA GAG
Glycine	G	GGT GGC GGA GGG
Histidine	н	CAT CAC
Isoleucine	I	ATT ATC ATA
Leucine	L	TTA TTG CTT CTC CTA CTG
Lysine	К	AAA AAG
Methionine	М	ATG
Phenylalanine	F	TTT TTC
Proline	Р	CCT CCC CCA CCG
Serine	S	TCT TCC TCA TCG AGT AGC
Threonine	т	ACT ACC ACA ACG
Tryptophan	W	TGG
Tyrosine	Y	TAT, TAC
Valine	V	GTT GTC GTA GTG

Amino Acid Name	Amino Acid Code	Nucleotide Codon
Asparagine or Aspartic acid (Aspartate)	В	Random codon from D and N
Glutamine or Glutamic acid (Glutamate)	Z	Random codon from E and Q
Unknown amino acid (any amino acid)	Х	Random codon
Translation stop	*	TAA TAG TGA
Gap of indeterminate length	-	
Unknown character (any character or symbol not in table)	?	???

Standard Genetic Code (Continued)

Examples • Convert an amino acid sequence to a nucleotide sequence using the standard genetic code.

aa2nt('MATLAP')

ans =

ATGGCGACGTTAGCGCCG

• Convert an amino acid sequence to a nucleotide sequence using the Vertebrate Mitochondrial genetic code.

```
aa2nt('MATLAP', 'GeneticCode', 2)
                       ans =
                       ATGGCAACTCTAGCGCCT
                  • Convert an amino acid sequence to a nucleotide sequence using the
                     Echinoderm Mitochondrial genetic code and the RNA alphabet.
                       aa2nt('MATLAP','GeneticCode','ec','Alphabet','RNA')
                       ans =
                       AUGGCCACAUUGGCACCU
                  • Convert an amino acid sequence with the ambiguous character B.
                       aa2nt('abcd')
                       Warning: The sequence contains ambiguous characters.
                       ans =
                       GCCACATGCGAC
See Also
                  Bioinformatics Toolbox functions: aminolookup, baselookup,
                  geneticcode, nt2aa, revgeneticcode, seqtool
```

MATLAB function: rand

Purpose	Count amino acids in sequence	
Syntax	AAStruct = aacou	nt(SeqAA) nt(SeqAA,'Chart', ChartValue,) nt(SeqAA,'Others', OthersValue,) nt(SeqAA,'Structure', StructureValue,
Arguments	SeqAA	One of the following:
		 String of single-letter codes specifying an amino acid sequence. For valid letter codes, see the table Mapping Amino Acid Letter Codes to Integers on page 2-2. Unknown characters are mapped to 0. Bow water of integers energifying on amino
		• Row vector of integers specifying an amino acid sequence. For valid integers, see the table Mapping Amino Acid Integers to Letter Codes on page 2-558.
		• MATLAB structure containing a Sequence field that contains an amino acid sequence, such as returned by fastaread, getgenpept, genpeptread, getpdb, or pdbread.
		Examples: 'ARN' or [1 2 3]
	ChartValue	String specifying a chart type. Choices are 'pie' or 'bar'.

	OthersValue	String specifying how to count ambiguous characters (B, Z, X), the stop character (*), and gaps indicated by a hyphen (-). Choices are 'full' (lists the ambiguous characters in separate fields) or 'bundle' (lists the ambiguous characters together in the field Others). Default is 'bundle'.	
	StructureValue	Suppresses the unknown characters warning when set to 'full'.	
Return Values	AAStruct	1-by-1 MATLAB structure containing fields for the standard 20 amino acids (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, and V).	
Description	AAStruct = aacount(SeqAA) counts the number of each type of amino acid in SeqAA, an amino acid sequence, and returns the counts in AAStruct, a 1-by-1 MATLAB structure containing fields for the standard 20 amino acids (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, and V).		
	• If a sequence contains ambiguous characters (B, Z, or X), the stop character (*), or gaps indicated with a hyphen (-), then these characters are counted in the field Others and the following warning message appears:		
	Warning: Ambigu	uous symbols appear in the sequence. These will be in Others	
	acids, ambiguou	ntains characters other than the 20 standard amino s, stop, and gap characters, then these characters ne field Others, and the following warning message	
	Warning: Unknow	vn symbols appear in the sequence. These will be in Others.	

• If the property 'Others' is set to 'full', ambiguous characters are listed separately in the fields B, Z, X, Stop, and Gap.

AAStruct = aacount(SeqAA, ...'PropertyName', PropertyValue, ...) calls aacount with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

AAStruct = aacount(SeqAA, ...'Chart', ChartValue, ...) creates a chart showing the relative proportions of the amino acids. ChartValue can be 'pie' or 'bar'.

AAStruct = aacount(SeqAA, ...'Others', OthersValue, ...) specifies how to count ambiguous characters (B, Z, or X), the stop character (*), and gaps indicated by a hyphen (-). Choices are 'full' (lists the ambiguous characters in separate fields) or 'bundle' (lists the ambiguous characters together in the field Others). Default is 'bundle'.

AAStruct = aacount(SeqAA, ...'Structure', StructureValue, ...) suppresses the unknown characters warning when StructureValue is set to 'full'.

- aacount(SeqAA) Displays fields for 20 amino acids, and, if there are ambiguous or unknown characters, adds an Others field with the ambiguous and unknown character counts.
- aacount(SeqAA, 'Others', 'full') Displays fields for 20 amino acids, 3 ambiguous amino acids, stops, gaps, and, if there are unknown characters, adds an Others field with the unknown counts.
- aacount(SeqAA, 'Structure', 'full') Displays fields for 20 amino acids and an Others field. If there are ambiguous or unknown characters, adds the counts to the Others field; otherwise displays 0 in the Others field.
- aacount(SeqAA, 'Others', 'full', 'Structure', 'full') Displays fields for 20 amino acids, 3 ambiguous amino acids, stops,

aacount

gaps, and an Others field. If there are unknown characters, add the counts to the Others field; otherwise displays 0 in the Others field.

Examples 1 Create an amino acid sequence.

```
Seq = 'MATLAB';
```

2 Count the amino acids in the sequence and return the results in a structure.

AA = aacount(Seq)

Warning: Ambiguous symbols 'B' appear in the sequence. These will be in Others.

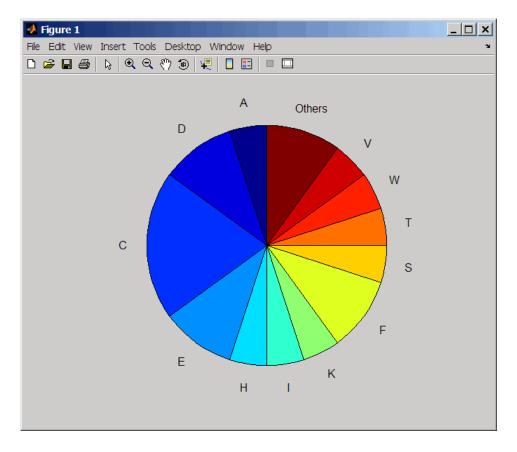
AA =

A: 2 R: 0 N: 0 D: 0 C: 0 Q: 0 E: 0 G: 0 H: 0 I: 0 L: 1 K: 0 M: 1 F: 0 P: 0 S: 0 T: 1 W: 0 Y: 0 V: 0 Others: 1

2-16

3 Get the count for alanine (A) residues.

```
AA.A
ans =
2
```


4 Create a random character string to represent an amino acid sequence.

```
Seq = randseq(20, 'alphabet', 'amino')
Seq =
   dwcztecakfuecvifchds
```

5 Count the amino acids in the sequence, return the results in a structure, and display the results in a pie chart.

```
AA = aacount(Seq, 'chart', 'pie');
```

aacount

See Also Bioinformatics Toolbox functions: aminolookup, atomiccomp, basecount, codoncount, dimercount, isoelectric, molweight, proteinplot, proteinpropplot, seqtool

```
Purpose
                 Perform GC Robust Multi-array Average (GCRMA) procedure on
                 Affymetrix microarray probe-level data
Syntax
                 Expression = affygcrma(CELFiles, CDFFile, SegFile)
                 Expression = affygcrma(ProbeStructure, SegFile)
                 Expression = affygcrma(CELFiles, CDFFile, SeqFile,
                  ... 'CELPath', CELPathValue, ...)
                 Expression = affygcrma(CELFiles, CDFFile, SegFile,
                     ... 'CDFPath', CDFPathValue, ...)
                 Expression = affygcrma(CELFiles, CDFFile, SegFile,
                     ... 'SeqPath', SeqPathValue, ...)
                 Expression = affygcrma(..., 'ChipIndex',
                 ChipIndexValue, ...)
                 Expression = affygcrma(..., 'OpticalCorr',
                 OpticalCorrValue,
                     ...)
                 Expression = affygcrma(..., 'CorrConst',
                 CorrConstValue, ...)
                 Expression = affygcrma(..., 'Method', MethodValue, ...)
                 Expression = affygcrma(..., 'TuningParam',
                 TuningParamValue,
                     ...)
                 Expression = affygcrma(..., 'GSBCorr', GSBCorrValue, ...)
                 Expression = affygcrma(..., 'Median', MedianValue, ...)
                 Expression = affygcrma(..., 'Output', OutputValue, ...)
                 Expression = affygcrma(..., 'Showplot', ShowplotValue, ...)
                 Expression = affygcrma(..., 'Verbose', VerboseValue, ...)
```

affygcrma

Arguments

CELFiles	Any of the following:
	• String specifying a single CEL file name.
	• '*', which reads all CEL files in the current directory.
	 ', which opens the Select CEL Files dialog box from which you select the CEL files. From this dialog box, you can press and hold Ctrl or Shift while clicking to select multiple CEL files.
	• Cell array of CEL file names.
CDFFile	Either of the following:
	• String specifying a CDF file name.

• ' ', which opens the Select CDF File dialog box from which you select the CDF file.

SeqFile	Either of the following:
	• String specifying a file name of a sequence file (tab-separated or FASTA) that contains the following information for a specific type of Affymetrix GeneChip array:
	 Probe set IDs
	 Probe <i>x</i>-coordinates
	 Probe <i>y</i>-coordinates
	 Probe sequences in each probe set
	 Affymetrix GeneChip array type (FASTA file only)
	The sequence file (tab-separated or FASTA) must be on the MATLAB search path or in the Current Directory (unless you use the SeqPath property). In a tab-separated file, each row represents a probe; in a FASTA file, each header represents a probe.
	• An <i>N</i> -by-25 matrix of sequence information, such as returned by affyprobeseqread.
ProbeStructure	MATLAB structure containing information from the CEL files, including probe intensities, probe indices, and probe set IDs, returned by the celintensityread function.
CELPathValue	String specifying the path and directory where the files specified in <i>CELFiles</i> are stored.
CDFPathValue	String specifying the path and directory where the file specified in <i>CDFFile</i> is stored.
SeqPathValue	String specifying a directory or path and directory where <i>SeqFile</i> is stored.

ChipIndexValue	Positive integer specifying a chip. This chip's sequence information and mismatch probe intensity data is used to compute probe affinities. Default is 1.
<i>OpticalCorrValue</i>	Controls the use of optical background correction on the input probe intensity values. Choices are true (default) or false.
CorrConstValue	Value that specifies the correlation constant, rho, for log background intensity for each PM/MM probe pair. Choices are any value ≥ 0 and ≤ 1 . Default is 0.7.
MethodValue	String that specifies the method to estimate the signal. Choices are 'MLE', a faster, ad hoc Maximum Likelihood Estimate method, or 'EB', a slower, more formal, empirical Bayes method. Default is 'MLE'.
TuningParamValue	Value that specifies the tuning parameter used by the estimate method. This tuning parameter sets the lower bound of signal values with positive probability. Choices are a positive value. Default is 5 (MLE) or 0.5 (EB).
	Tip For information on determining a setting for this parameter, see Wu et al., 2004.
GSBCorrValue	Specifies whether to perform gene-specific binding (GSB) correction using probe affinity data. Choices are true (default) or false. If there is no probe affinity information, this property is ignored.
MedianValue	Specifies the use of the median of the ranked values instead of the mean for normalization. Choices are true or false (default).

OutputValue	Specifies the scale of the returned gene expression values. Choices are:	
	• 'log'	
	• 'log2'	
	• 'log10'	
	• 'natural'	
	• @functionname	
	In the last instance, the data is transformed as defined by the function <i>functionname</i> . Default is 'log2'.	
ShowplotValue	Controls the display of a plot showing the \log_2 of mismatch (MM) probe intensity values from a specified chip (CEL file), versus that chip's MM probe affinities. The plot also shows the LOWESS fit for computing NSB data of the specified chip. Choices are true, false, or <i>I</i> , an integer specifying a chip. If set to true, the first chip is plotted. Default is:	
	• false — When return values are specified.	
	• true — When return values are not specified.	
VerboseValue	Controls the display of the status of the reading of files and GCRMA processing. Choices are true (default) or false.	

affygcrma

Return Values	Expression	DataMatrix object containing the log ₂ gene expression values that have been background adjusted, normalized, and summarized using the GC Robust Multi-array Average (GCRMA) procedure.
		Each row in <i>Expression</i> corresponds to a gene (probe set), and each column corresponds to an Affymetrix CEL file.
D · · ·		

Description

Note This function does not work on the Solaris[™] platform.

Expression = affygcrma(*CELFiles*, *CDFFile*, *SeqFile*) reads the specified Affymetrix CEL files, the associated CDF library file (created from Affymetrix GeneChip arrays for expression or genotyping assays), and the associated sequence file. It then processes the probe intensity values using GCRMA background adjustment, quantile normalization, and median-polish summarization procedures, then returns *Expression*, a DataMatrix object containing the log₂ based gene expression values in a matrix, the probe set IDs as row names, and the CEL file names as column names. Note that each row in *Expression* corresponds to a gene (probe set), and each column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.)

CELFiles is a string or cell array of CEL file names. *CDFFile* is a string specifying a CDF file name. If you set *CELFiles* to '*', then it reads all CEL files in the current directory. If you set *CELFiles* to ' ', then it opens the Select CEL Files dialog box from which you select the CEL files. *SeqFile* is a file or matrix containing sequence information for probes on a specific type of Affymetrix GeneChip array.

Note For details on the reading of files and GCRMA processing, see celintensityread, affyprobeseqread, affyprobeaffinities, gcrma, gcrmabackadj, quantilenorm, and rmasummary.

Expression = affygcrma(*ProbeStructure*, *SeqFile*) uses GCRMA background adjustment, quantile normalization, and median-polish summarization procedures to process the probe intensity values in *ProbeStructure*. *ProbeStructure* is a MATLAB structure containing information from the CEL files, including probe intensities, probe indices, and probe set IDs, returned by the celintensityread function.

Expression = affygcrma(..., 'PropertyName', PropertyValue, ...) calls affygcrma with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

```
Expression = affygcrma(CELFiles, CDFFile, SeqFile,
...'CELPath', CELPathValue, ...) specifies a path and directory
where the files specified by CELFiles are stored.
```

```
Expression = affygcrma(CELFiles, CDFFile, SeqFile,
...'CDFPath', CDFPathValue, ...) specifies a path and directory
where the file specified by CDFFile is stored.
```

```
Expression = affygcrma(CELFiles, CDFFile, SeqFile,
...'SeqPath', SeqPathValue, ...) specifies a path and directory
where the file specified by SeqFile is stored.
```

Expression = affygcrma(..., 'ChipIndex', *ChipIndexValue*, ...) computes probe affinities from MM probe intensity data using sequence information and mismatch probe intensity values from the chip specified by *ChipIndexValue*. Default *ChipIndexValue* is 1.

Expression = affygcrma(..., 'OpticalCorr',
OpticalCorrValue, ...) controls the use of optical background

correction on the input probe intensity values. Choices are true (default) or false.

Expression = affygcrma(..., 'CorrConst', *CorrConstValue*, ...) specifies the correlation constant, rho, for background intensity for each PM/MM probe pair. Choices are any value \geq 0 and \leq 1. Default is 0.7.

Expression = affygcrma(..., 'Method', MethodValue, ...)
specifies the method to estimate the signal. Choices are 'MLE', a faster,
ad hoc Maximum Likelihood Estimate method, or 'EB', a slower, more
formal, empirical Bayes method. Default is 'MLE'.

Expression = affygcrma(..., 'TuningParam', TuningParamValue, ...) specifies the tuning parameter used by the estimate method. This tuning parameter sets the lower bound of signal values with positive probability. Choices are a positive value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this parameter, see Wu et al., 2004.

```
Expression = affygcrma(..., 'GSBCorr', GSBCorrValue, ...)
specifies whether to perform gene-specific binding (GSB) correction
using probe affinity data. Choices are true (default) or false. If there
is no probe affinity information, this property is ignored.
```

Expression = affygcrma(..., 'Median', *MedianValue*, ...) specifies the use of the median of the ranked values instead of the mean for normalization. Choices are true or false (default).

Expression = affygcrma(..., 'Output', OutputValue, ...)
specifies the scale of the returned gene expression values. OutputValue
can be:

- 'log'
- 'log2'

- 'log10'
- 'natural'
- @functionname

In the last instance, the data is transformed as defined by the function *functionname*. Default is 'log2'.

Expression = affygcrma(..., 'Showplot', *ShowplotValue*, ...) controls the display of a plot showing the log_2 of mismatch (MM) probe intensity values from a specified chip (CEL file), versus that chip's MM probe affinities. The plot also shows the LOWESS fit for computing NSB data of the specified chip. Choices are true, false, or *I*, an integer specifying a chip. If set to true, the first chip is plotted. Default is:

- false When return values are specified.
- true When return values are not specified.

Expression = affygcrma(..., 'Verbose', VerboseValue, ...)controls the display of the status of the reading of files and GCRMA processing. Choices are true (default) or false.

Examples

The following example assumes that you have the HG_U95Av2.CDF library file stored at D:\Affymetrix\LibFiles\HGGenome, and that your current directory points to a location containing CEL files and a sequence file associated with this CDF library file. In this example, the affygcrma function reads all the CEL files and the sequence file in the current directory and a CDF file in a specified directory. It also performs GCRMA background adjustment, quantile normalization, and summarization procedures on the PM probe intensity values, and returns a DataMatrix object, containing the metadata and processed data.

Expression = affygcrma('*', 'HG_U95Av2.CDF','HG-U95Av2_probe_tab',... 'CDFPath', 'D:\Affymetrix\LibFiles\HGGenome');

References [1] Naef, F., and Magnasco, M.O. (2003). Solving the Riddle of the Bright Mismatches: Labeling and Effective Binding in Oligonucleotide Arrays. Physical Review E *68*, 011906.

[2] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M., and Spencer, F. (2004). A Model Based Background Adjustment for Oligonucleotide Expression Arrays. Journal of the American Statistical Association *99*(*468*), 909–917.

[3] Wu, Z., and Irizarry, R.A. (2005). Stochastic Models Inspired by Hybridization Theory for Short Oligonucleotide Arrays. Proceedings of RECOMB 2004. J Comput Biol. *12(6)*, 882–93.

[4] Wu, Z., and Irizarry, R.A. (2005). A Statistical Framework for the Analysis of Microarray Probe-Level Data. Johns Hopkins University, Biostatistics Working Papers 73.

 [5] Wu, Z., and Irizarry, R.A. (2003). A Model Based Background Adjustment for Oligonucleotide Expression
 Arrays. RSS Workshop on Gene Expression, Wye, England, http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf.

[6] Speed, T. (2006). Background models and GCRMA. Lecture 10, Statistics 246, University of California Berkeley. http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/-Week10/Week10L1.pdf.

[7] Abd Rabbo, N.A., and Barakat, H.M. (1979). Estimation Problems in Bivariate Lognormal Distribution. Indian J. Pure Appl. Math 10(7), 815–825.

[8] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate

	cancer after androgen ablation therapy. Clinical Cancer Research 11, 6823–6834.
	[9] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics. <i>4</i> , 249–264.
	[10] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression (Reading, Massachusetts: Addison-Wesley Publishing Company), pp. 165–202.
See Also	Bioinformatics Toolbox functions: affyprobeaffinities, affyprobeseqread, affyrma, celintensityread, gcrma, gcrmabackadj, mafdr, mattest, quantilenorm, rmasummary

affyinvarsetnorm

Purpose	Perform rank invariant set normalization on probe intensities from multiple Affymetrix CEL or DAT files	
Syntax	<pre>NormData = affyinvarsetnorm(Data) [NormData, MedStructure] = affyinvarsetnorm(Data) affyinvarsetnorm(, 'Baseline', BaselineValue,) affyinvarsetnorm(, 'Thresholds', ThresholdsValue,) affyinvarsetnorm(, 'StopPercentile', StopPercentileValue,) affyinvarsetnorm(, 'RayPercentile', RayPercentileValue,) affyinvarsetnorm(, 'Method', MethodValue,) affyinvarsetnorm(, 'Showplot', ShowplotValue,)</pre>	
Arguments	Data	Matrix of intensity values where each row corresponds to a perfect match (PM) probe and each column corresponds to an Affymetrix CEL or DAT file. (Each CEL or DAT file is generated from a separate chip. All chips should be of the same type.)
	MedStructure	Structure of each column's intensity median before and after normalization, and the index of the column chosen as the baseline.
	BaselineValue	Property to control the selection of the column index N from <i>Data</i> to be used as the baseline column. Default is the column index whose median intensity is the median of all the columns.

	Property to set the thresholds for the lowest average rank and the highest average rank, which are used to determine the invariant set. The rank invariant set is a set of data points whose proportional rank difference is smaller than a given threshold. The threshold for each data point is determined by interpolating between the threshold for the lowest average rank and the threshold for the highest average rank. Select these two thresholds empirically to limit the spread of the invariant set, but allow enough data points to determine the normalization relationship.
	ThresholdsValue is a 1-by-2 vector [LT, HT] where LT is the threshold for the lowest average rank and HT is threshold for the highest average rank. Values must be between 0 and 1. Default is [0.05, 0.005].
	Property to stop the iteration process when the number of data points in the invariant set reaches N percent of the total number of data points. Default is 1.
	Note If you do not use this property, the iteration process continues until no more data points are eliminated.
	Property to select the <i>N</i> percentage of the highest ranked invariant set of data points to fit a straight line through, while the remaining data points are fitted to a running median curve. The final running median curve is a piecewise linear curve. Default is 1.5.

	MethodValue	Property to select the smoothing method used to normalize the data. Enter 'lowess' or 'runmedian'. Default is 'lowess'.
	ShowplotValue	Property to control the plotting of two pairs of scatter plots (before and after normalization). The first pair plots baseline data versus data from a specified column (chip) from the matrix <i>Data</i> . The second is a pair of M-A scatter plots, which plots M (ratio between baseline and sample) versus A (the average of the baseline and sample). Enter either 'all' (plot a pair of scatter plots for each column or chip) or specify a subset of columns (chips) by entering the column number(s) or a range of numbers.
		For example:
		•, 'Showplot', 3,) plots data from column 3.
		 , 'Showplot', [3,5,7],) plots data from columns 3, 5, and 7.
		•, 'Showplot', 3:9,) plots data from columns 3 to 9.
Description	column (chip) of probe	arsetnorm(Data) normalizes the values in each e intensities in Data to a baseline reference, using hod. NormData is a matrix of normalized probe
	Specifically, affyinva	arsetnorm:
	• Selects a baseline is the median of all	ndex, typically the column whose median intensity l the columns.

• For each column, determines the proportional rank difference (*prd*) for each pair of ranks, *RankX* and *RankY*, from the sample column and the baseline reference.

prd = abs(RankX - RankY)

• For each column, determines the invariant set of data points by selecting data points whose proportional rank differences (*prd*) are below *threshold*, which is a predetermined threshold for a given data point (defined by the *ThresholdsValue* property). It repeats the process until either no more data points are eliminated, or a predetermined percentage of data points is reached.

The invariant set is data points with a *prd* < *threshold*.

• For each column, uses the invariant set of data points to calculate the lowess or running median smoothing curve, which is used to normalize the data in that column.

[NormData, MedStructure] = affyinvarsetnorm(Data) also returns a structure of the index of the column chosen as the baseline and each column's intensity median before and after normalization.

Note If *Data* contains NaN values, then *NormData* will also contain NaN values at the corresponding positions.

... affyinvarsetnorm(..., 'PropertyName', PropertyValue, ...) calls affyinvarsetnorm with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... affyinvarsetnorm(..., 'Baseline', BaselineValue, ...) lets you select the column index N from Data to be the baseline column. Default is the index of the column whose median intensity is the median of all the columns.

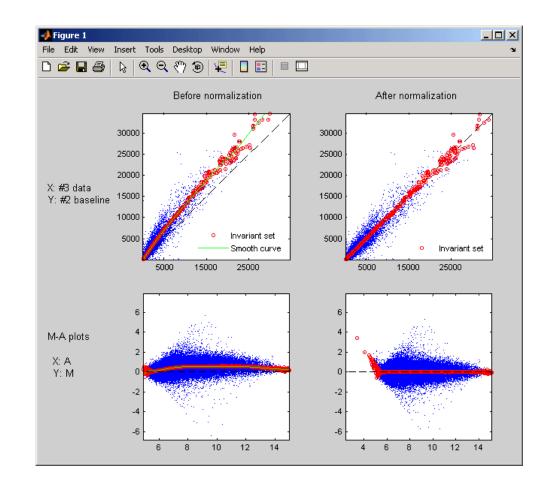
... affyinvarsetnorm(..., 'Thresholds', *ThresholdsValue*, ...) sets the thresholds for the lowest average rank and the highest average rank, which are used to determine the invariant set. The rank invariant set is a set of data points whose proportional rank difference is smaller than a given threshold. The threshold for each data point is determined by interpolating between the threshold for the lowest average rank and the threshold for the highest average rank. Select these two thresholds empirically to limit the spread of the invariant set, but allow enough data points to determine the normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT, HT], where LT is the threshold for the lowest average rank and HT is threshold for the highest average rank. Values must be between 0 and 1. Default is [0.05, 0.005].

```
... affyinvarsetnorm(..., 'StopPercentile',
StopPercentileValue, ...) stops the iteration process
when the number of data points in the invariant set reaches N percent
of the total number of data points. Default is 1.
```

Note If you do not use this property, the iteration process continues until no more data points are eliminated.

... affyinvarsetnorm(..., 'RayPercentile', *RayPercentileValue*, ...) selects the *N* percentage of the highest ranked invariant set of data points to fit a straight line through, while the remaining data points are fitted to a running median curve. The final running median curve is a piecewise linear curve. Default is 1.5.


... affyinvarsetnorm(..., 'Method', *MethodValue*, ...) selects the smoothing method for normalizing the data. When *MethodValue* is 'lowess', affyinvarsetnorm uses the lowess method.

When *MethodValue* is 'runmedian', affyinvarsetnorm uses the running median method. Default is 'lowess'.

... affyinvarsetnorm(..., 'Showplot', ShowplotValue, ...) plots two pairs of scatter plots (before and after normalization). The first pair plots baseline data versus data from a specified column (chip) from the matrix Data. The second is a pair of M-A scatter plots, which plots M (ratio between baseline and sample) versus A (the average of the baseline and sample). When ShowplotValue is 'all', affyinvarsetnorm plots a pair of scatter plots for each column or chip. When ShowplotValue is a number(s) or range of numbers, affyinvarsetnorm plots a pair of scatter plots for the indicated column numbers (chips).

For example:

- ..., 'Showplot', 3) plots the data from column 3 of Data.
- ..., 'Showplot', [3,5,7]) plots the data from columns 3, 5, and 7 of Data.
- ..., 'Showplot', 3:9) plots the data from columns 3 to 9 of Data.

Examples 1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains Affymetrix data variables, including pmMatrix, a matrix of PM probe intensity values from multiple CEL files.

load prostatecancerrawdata

2 Normalize the data in pmMatrix, using the affyinvarsetnorm function.

	NormMatrix = affyinvarsetnorm(pmMatrix); The prostatecancerrawdata.mat file used in the previous example contains data from Best et al., 2005.	
References	[1] Li, C., and Wong, W.H. (2001). Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biology <i>2(8)</i> : research0032.1-0032.11.	
	<pre>[2] http://biosun1.harvard.edu/complab/dchip/- normalizing%20arrays.htm#isn</pre>	
	[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research <i>11</i> , 6823–6834.	
See Also	Bioinformatics Toolbox functions: affyread, celintensityread, mainvarsetnorm, malowess, manorm, quantilenorm, rmabackadj, rmasummary	

affyprobeaffinities

Purpose	Compute Affymetrix probe affinities from their sequences and MM probe intensities
Syntax	<pre>[AffinPM, AffinMM] = affyprobeaffinities(SequenceMatrix,</pre>

Arguments

SequenceMatrix

An N-by-25 matrix of sequence information for the perfect match (PM) probes on an Affymetrix GeneChip array, where N is the number of probes on the array. Each row corresponds to a probe, and each column corresponds to one of the 25 sequence positions. Nucleotides in the sequences are represented by one of the following integers:

- 0 None
- 1 A
- 2 C
- 3 G
- 4 T

Tip You can use the affyprobeseqread function to generate this matrix. If you have this sequence information in letter representation, you can convert it to integer representation using the nt2int function.

MMIntensityColumn vector containing mismatch (MM)
probe intensities from a CEL file, generated
from a single Affymetrix GeneChip array. Each
row corresponds to a probe.

Tip You can extract this column vector from the MMIntensities matrix returned by the celintensityread function.

	ProbeIndicesValue	Column vector containing probe indexing information. Probes within a probe set are numbered 0 through $N \cdot 1$, where N is the number of probes in the probe set.
		Tip You can use the affyprobeseqread function to generate this column vector.
	ShowplotValue	Controls the display of a plot showing the affinity values of each of the four bases (A, C, G, and T) for each of the 25 sequence positions, for all probes on the Affymetrix GeneChip array. Choices are true or false (default).
Return Values	AffinPM	Column vector of PM probe affinities, computed from their probe sequences and MM probe intensities.
	AffinMM	Column vector of MM probe affinities, computed from their probe sequences and MM probe intensities.

BaseProf	4-by-4 matrix containing the four parameters for a polynomial of degree 3, for each base, A, C, G, and T. Each row corresponds to a base, and each column corresponds to a parameter. These values are estimated from the probe sequences and intensities, and represent all probes on an Affymetrix GeneChip array.
Stats	Row vector containing four statistics in the following order: • R-square statistic
	• F statistic
	• p-value
	• Error variance

Description [AffinPM, AffinMM] = affyprobeaffinities(SequenceMatrix, MMIntensity) returns a column vector of PM probe affinities and a column vector of MM probe affinities, computed from their probe sequences and MM probe intensities. Each row in AffinPM and AffinMM corresponds to a probe. NaN is returned for probes with no sequence information. Each probe affinity is the sum of position-dependent base affinities. For a given base type, the positional effect is modeled as a polynomial of degree 3.

[AffinPM, AffinMM, BaseProf] =

affyprobeaffinities (SequenceMatrix, MMIntensity) also estimates affinity coefficients using multiple linear regression. It returns BaseProf, a 4-by-4 matrix containing the four parameters for a polynomial of degree 3, for each base, A, C, G, and T. Each row corresponds to a base, and each column corresponds to a parameter. These values are estimated from the probe sequences and intensities, and represent all probes on an Affymetrix GeneChip array.

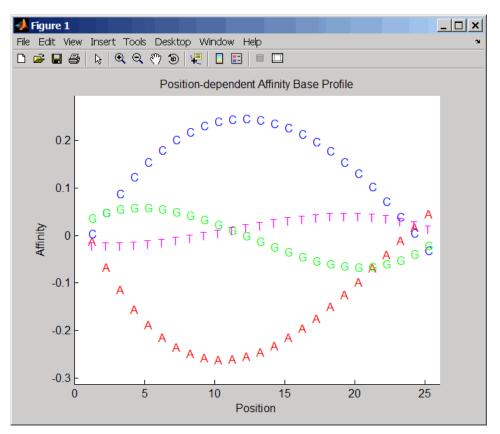
[AffinPM, AffinMM, BaseProf, Stats] =

affyprobeaffinities(SequenceMatrix, MMIntensity) also returns Stats, a row vector containing four statistics in the following order:

- R-square statistic
- F statistic
- p-value
- Error variance

... = affyprobeaffinities (SequenceMatrix, MMIntensity, ... 'PropertyName', PropertyValue, ...) calls affyprobeaffinities with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = affyprobeaffinities (SequenceMatrix, MMIntensity, ...'ProbeIndices', ProbeIndicesValue, ...) uses probe indices to normalize the probe intensities with the median of their probe set intensities.


Tip Use of the ProbeIndices property is recommended only if your *MMIntensity* data are not from a nonspecific binding experiment.

... = affyprobeaffinities(SequenceMatrix, MMIntensity, ...'Showplot', ShowplotValue, ...) controls the display of a plot of the probe affinity base profile. Choices are true or false (default).

Examples Load the MAT-file, included with the Bioinformatics Toolbox software, that contains Affymetrix data from a prostate cancer study. The variables in the MAT-file include seqMatrix, a matrix containing sequence information for PM probes, mmMatrix, a matrix containing MM probe intensity values, and probeIndices, a column vector containing probe indexing information.

load prostatecancerrawdata

2 Compute the Affymetrix PM and MM probe affinities from their sequences and MM probe intensities, and also plot the affinity values of each of the four bases (A, C, G, and T) for each of the 25 sequence positions, for all probes on the Affymetrix GeneChip array.

The prostatecancerrawdata.mat file used in this example contains data from Best et al., 2005.

References	[1] Naef, F., and Magnasco, M.O. (2003). Solving the Riddle of the Bright Mismatches: Labeling and Effective Binding in Oligonucleotide Arrays. Physical Review E <i>68</i> , 011906.		
	[2] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M. and Spencer, F. (2004). A Model Based Background Adjustment for Oligonucleotide Expression Arrays. Journal of the American Statistical Association <i>99(468)</i> , 909–917.		
	[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research 11, 6823–6834.		
See Also	Bioinformatics Toolbox functions: affygcrma, affyprobeseqread, affyread, celintensityread, probelibraryinfo		

Purpose	Read data file containing probe sequence information for Affymetrix GeneChip array	
Syntax	<pre>Struct = affyprobeseqread(SeqFile, CDFFile) Struct = affyprobeseqread(SeqFile, CDFFile,'SeqPath', SeqPathValue,) Struct = affyprobeseqread(SeqFile, CDFFile,'CDFPath', CDFPathValue,) Struct = affyprobeseqread(SeqFile, CDFFile,'SeqOnly', SeqOnlyValue,)</pre>	

affyprobeseqread

Arguments	SeqFile	String specifying a file name of a sequence file (tab-separated or FASTA) that contains the following information for a specific type of Affymetrix GeneChip array:
		• Probe set IDs
		• Probe <i>x</i> -coordinates
		• Probe <i>y</i> -coordinates
		• Probe sequences in each probe set
		• Affymetrix GeneChip array type (FASTA file only)
		The sequence file (tab-separated or FASTA) must be on the MATLAB search path or in the Current Directory (unless you use the SeqPath property). In a tab-separated file, each row represents a probe; in a FASTA file, each header represents a probe.
	CDFFile	Either of the following:
		• String specifying a file name of an Affymetrix CDF library file, which contains information that specifies which probe set each probe belongs to on a specific type of Affymetrix GeneChip array. The CDF library file must be on the MATLAB search path or in the MATLAB Current Directory (unless you use the CDFPath property).
		• CDF structure, such as returned by the affyread function, which contains information that specifies which probe set each probe belongs to on a specific type of Affymetrix GeneChip array.
		Caution Make sure that <i>SeqFile</i> and <i>CDFFile</i> contain information for the same type of Affymetrix GeneChip array.

	SeqPathValue	String specifying a directory or path and directory where <i>SeqFile</i> is stored.	
	CDFPathValue	String specifying a directory or path and directory where <i>CDFFile</i> is stored.	
	SeqOnlyValue	Controls the return of a structure, <i>Struct</i> , with only one field, SequenceMatrix. Choices are true or false (default).	
Return Values	Struct	MATLAB structure containing the following fields: ProbeSetIDs 	
		• ProbeIndices	
		• SequenceMatrix	
Description	Struct = affyprobeseqread(SeqFile, CDFFile) reads the data from files SeqFile and CDFFile, and stores the data in the MATLAB structure Struct, which contains the following fields.		
	Field	Description	
	ProbeSetIDs	Cell array containing the probe set IDs from the Affymetrix CDF library file.	

Field	Description
ProbeIndices	Column vector containing probe indexing information. Probes within a probe set are numbered 0 through $N - 1$, where N is the number of probes in the probe set.
SequenceMatrix	An <i>N</i> -by-25 matrix of sequence information for the perfect match (PM) probes on the Affymetrix GeneChip array, where <i>N</i> is the number of probes on the array. Each row corresponds to a probe, and each column corresponds to one of the 25 sequence positions. Nucleotides in the sequences are represented by one of the following integers: • 0 — None • 1 — A • 2 — C • 3 — G • 4 — T
	Note Probes without sequence information are represented in SequenceMatrix as a row containing all 0s. Tip You can use the int2nt function to convert the nucleotide sequences in SequenceMatrix to letter representation.

Struct = affyprobeseqread(SeqFile, CDFFile,

...'*PropertyName*', *PropertyValue*, ...) calls affyprobeseqread with optional properties that use property name/property value

pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqPath', SeqPathValue, ...) lets you specify a path and directory where SeqFile is stored.

Struct = affyprobeseqread(SeqFile, CDFFile, ...'CDFPath', CDFPathValue, ...) lets you specify a path directory where CDFFile is stored.

Struct = affyprobeseqread(SeqFile, CDFFile, ...'SeqOnly', SeqOnlyValue, ...) controls the return of a structure, Struct, with only one field, SequenceMatrix. Choices are true or false (default).

Examples 1 Read the data from a FASTA file and associated CDF library file, assuming both are located on the MATLAB search path or in the Current Directory.

S1 = affyprobeseqread('HG-U95A_probe_fasta', 'HG_U95A.CDF');

2 Read the data from a tab-separated file and associated CDF structure, assuming the tab-separated file is located in the specified directory and the CDF structure is in your MATLAB Workspace.

S2 = affyprobeseqread('HG-U95A_probe_tab',hgu95aCDFStruct,... 'seqpath','C:\Affymetrix\SequenceFiles\HGGenome');

3 Access the nucleotide sequences of the first probe set (rows 1 through 20) in the SequenceMatrix field of the S2 structure.

seq = int2nt(S2.SequenceMatrix(1:20,:))

See Also Bioinformatics Toolbox functions: affygcrma, affyinvarsetnorm, affyread, celintensityread, int2nt, probelibraryinfo, probesetlink, probesetlookup, probesetplot, probesetvalues

Purpose	Read microarray data from Affymetrix GeneChip file		
Syntax	AffyStruct = affyread(File) AffyStruct = affyread(File, LibraryPath)		

Arguments	File	String specifying a file name or a path and file name of one of the following Affymetrix file types:
		• EXP — Data file containing information about experimental conditions and protocols.
		• DAT — Data file containing raw image data (pixel intensity values).
		• CEL — Data file containing information about the intensity values of the individual probes.
		• CHP — Data file containing summary information of the probe sets, including intensity values.
		• CDF — Library file containing information about which probes belong to which probe set.
		• GIN — Library file containing information about the probe sets, such as the gene name with which the probe set is associated.
		If you specify only a file name, that file must be on the MATLAB search path or in the current directory. If you specify only a file name of a CDF or GIN library file, you can specify the path and directory in the <i>LibraryPath</i> input argument.
	LibraryPath	String specifying the path and directory of a:
		• CDF library file associated with <i>File</i> when <i>File</i> is a CHP file.
		• CDF library file when <i>File</i> is a CDF file.
		• GIN library file when <i>File</i> is a GIN file.
		Note If you do not specify <i>LibraryPath</i> when reading a CHP file, affyread looks in the current directory for the CDF file. If it does not find the CDF file, it still reads the CHP file, but the probe set names and types

will be omitted from the return value, AffyStruct.

Return Values	AffyStruct MATLAB structure containing information from an Affymetrix data or library file, for expression, genotyping (SNP), or resequencing assay types.
Description	Note This function does not work on the Solaris platform.
	AffyStruct = affyread(File) reads File, an Affymetrix file, and creates AffyStruct, a MATLAB structure. The affyread function can read Affymetrix EXP, DAT, CEL, CHP, CDF, and GIN files created from Affymetrix GeneChip arrays for expression, genotyping (SNP), or resequencing assays.
	AffyStruct = affyread(File, LibraryPath) specifies the path and directory of a:
	• CDF library file associated with <i>File</i> when <i>File</i> is a CHP file
	• CDF library file when <i>File</i> is a CDF file
	• GIN library file when <i>File</i> is a GIN file
	Note If you do not specify <i>LibraryPath</i> when reading a CHP file, affyread looks in the current directory for the CDF file. If it does not find the CDF file, it still reads the CHP file, but the probe set names and types will be omitted from the return value, <i>AffyStruct</i> .
	You can learn more about the Affymetrix GeneChip files and download sample files from:
	http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

Note Some Affymetrix sample data files (DAT, EXP, CEL, and CHP) are combined in a DTT or CAB file. You must download and use the Affymetrix Data Transfer Tool to extract these files from the DTT or CAB file. You can download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

You will have to register and log in at the Affymetrix Web site to download the Affymetrix Data Transfer Tool.

The following tables describe the fields in *AffyStruct* for the different Affymetrix file types.

Field	Description
Name	File name.
DataPath	Path and directory of the file.
LibPath	Path and directory of the CDF and GIN library files associated with the file being read.
FullPathName	Path and directory of the file.
ChipType	Name of the Affymetrix GeneChip array (for example, DrosGenome1 or HG-Focus).
Date	Date the file was created.

File Types EXP, DAT, CEL, CHP, CDF, and GIN

EXP File

Field	Description
ChipLot	Information about experimental conditions and
Operator	protocols captured by the Affymetrix software.
SampleType	
SampleDesc	
Project	
Comments	
Reagents	
ReagentLot	
Protocol	
Station	
Module	
HydridizeDate	
ScanPixelSize	
ScanFilter	
ScanDate	
ScannerID	
NumberOfScans	
ScannerType	
NumProtocolSteps	
ProtocolSteps	

DAT File

Field	Description
NumPixelsPerRow	Number of pixels per row in the image created from the GeneChip array (number of columns).
NumRows	Number of rows in the image created from the GeneChip array.
MinData	Minimum intensity value in the image created from the GeneChip array.

DAT File (Continued)

Field	Description		
MaxData	Maximum intensity value in the image created from the GeneChip array.		
PixelSize	Size of one pixel in the image created from the GeneChip array.		
CellMargin	Size of gaps between cells in the image created from the GeneChip array.		
ScanSpeed	Speed of the scanner used to create the image.		
ScanDate	Date the scan was performed.		
ScannerID	Name of the scanning device used.		
UpperLeftX UpperRightX UpperRightY LowerLeftX LowerLeftY LowerRightX LowerRightY	Pixel coordinates of the scanned image.		
ServerName	Not used.		
Image	A NumRows-by-NumPixelsPerRow image of the scanned GeneChip array.		

CEL File

Field	Description	
FileVersion	Version of the CEL file format.	
Algorithm	Algorithm used in the image processing step that converts from DAT format to CEL format.	

CEL File (Continued)

Field	Description		
AlgParams	String containing parameters used by the algorithm in the image processing step.		
NumAlgParams	Number of parameters in AlgParams.		
CellMargin	Size of gaps between cells in the image created from the GeneChip array, used for computing the intensity values of the cells.		
Rows	Number of rows of probes.		
Cols	Number of columns of probes.		
NumMasked	Number of probes that are masked and not used in subsequent processing.		
NumOutliers	Number of cells identified as outliers (very high or very low intensity) by the image processing step.		
NumProbes	Number of probes (Rows * Cols) on the GeneChip array.		
UpperLeftX UpperLeftY UpperRightX UpperRightY LowerLeftX LowerLeftY LowerRightX LowerRightY	Pixel coordinates of the scanned image.		

CEL File (Continued)

Field	Description	
ProbeColumnNames	Cell array containing the eight column names in the Probes field:	
	• PosX — <i>x</i> -coordinate of the cell	
	• Posy — <i>y</i> -coordinate of the cell	
	• Intensity — Intensity value of the cell	
	 StdDev — Standard deviation of intensity value 	
	• Pixels — Number of pixels in the cell	
	 Outlier — True/false flag indicating if the cell was marked as an outlier 	
	• Masked — True/false flag indicating if the cell was masked	
	 ProbeType — Integer indicating the probe type (for example, 1 = expression) 	
Probes	NumProbes-by-8 array of information about the individual probes, including intensity values. The columns of this array are contained in the ProbeColumnNames field.	

CHP File

Field	Description	
AssayType	Type of assay that the GeneChip array contained (for example, Expression, Genotyping, or Resequencing).	
CellFile	File name of the CEL file from which the CHP file was created.	
Algorithm	Algorithm used to convert from CEL format to CHP format.	

CHP File (Continued)

Field	Description	
AlgVersion	Version of the algorithm used to create the CHP file.	
NumAlgParams	Number of parameters in AlgParams.	
AlgParams	String containing parameters used in steps needed to create the CHP file (for example, background correction).	
NumChipSummary	Number of entries in ChipSummary.	
ChipSummary	Summary information for the GeneChip array, including background average, standard deviation, max, and min.	
BackgroundZones	Structure containing information about the zones used in the background adjustment step.	
Rows	Number of rows of probes.	
Cols	Number of columns of probes.	
NumProbeSets	Number of probe sets on the GeneChip array.	
NumQCProbeSets	Number of QC probe sets on the GeneChip array.	

CHP File (Continued)

Field	Description		
ProbeSets (Expression GeneChip	A NumProbeSets-by-1 structure array containing information for each expression probe set, including the following fields:		
array)	• Name — Name of the probe set.		
	• ProbeSetType — Type of the probe set.		
	• CompDataExists — True/false flag indicating if the probe set has additional computed information.		
	• NumPairs — Number of probe pairs in the probe set.		
	• NumPairsUsed — Number of probe pairs in the probe set used for calculating the probe set signal (not masked).		
	• Signal — Summary intensity value for the probe set.		
	• Detection — Indicator of statistically significant difference between the intensity value of the PM probes and the intensity value of the MM probes in a single probe set (Present, Absent, or Marginal).		
	• DetectionPValue — P value for the Detection indicator.		
	• CommonPairs — When CompDataExists is true, contains the number of common pairs between the experiment and the baseline after outliers and masked probes have been removed.		
	• SignalLogRatio — When CompDataExists is true, contains the change in signal between the experiment and baseline.		
	• SignalLogRatioLow — When CompDataExists is true, contains the lowest ratios of probes between the experiment and the baseline.		
	• SignalLogRatioHigh — When CompDataExists is true, contains the highest ratios of probes between the experiment and the baseline.		
	• Change — When CompDataExists is true, describes how the probe is changed versus a baseline experiment. Choices are Increase, Marginal Increase, No Change, Decrease, or Marginal Decrease.		
	• ChangePValue — When CompDataExists is true, contains the p-value associated with Change.		

CHP File (Continued)

Field	Description	
ProbeSets (Genotyping GeneChip	A NumProbeSets-by-1 structure array containing information for each genotyping probe set, including the following fields:	
array)	• Name — Name of the probe set.	
	• AlleleCall — Allele that is present for the probe set. Possibilities are AA (homozygous for the major allele), AB (heterozygous for the major and minor allele), BB (homozygous for the minor allele), or NoCall (unable to determine allele).	
	• Confidence — A measure of the accuracy of the allele call.	
	• RAS1 — Relative Allele Signal 1 for the SNP site, which is calculated using sense probes.	
	• RAS2— Relative Allele Signal 2 for the SNP site, which is calculated using antisense probes.	
	• PValueAA — p-value for an AA call.	
	• PValueAB — p-value for an AB call.	
	• PValueBB — p-value for a BB call.	
	• PValueNoCall — p-value for a NoCall call.	
ProbeSets	A NumProbeSets-by-1 structure array containing information for	
(Resequencing GeneChip array)	each resequencing probe set, including the following fields:	
	• CalledBases — A 1-by-NumProbeSets character array containing the bases called by the resequencing algorithm. Possible values are a, c, g, t, and n.	
	• Scores — A 1-by-NumProbeSets array containing the score associated with each base call.	

CDF File

Field	Description	
Rows	Number of rows of probes.	
Cols	Number of columns of probes.	
NumProbeSets	Number of probe sets on the GeneChip array.	
NumQCProbeSets	Number of QC probe sets on the GeneChip array.	

CDF File (Continued)

Field	Description	
ProbeSetColumnNames	Cell array containing the six column names in the ProbePairs field in the ProbeSets array:	
	• GroupNumber — Number identifying the group to which the probe pair belongs. For expression arrays, this is always 1. For genotyping arrays, this is typically 1 (allele A, sense), 2 (allele B, sense), 3 (allele A, antisense), or 4 (allele B, antisense).	
	• Direction — Number identifying the direction of the probe pair. 1 = sense and 2 = antisense.	
	• PMPosX — <i>x</i> -coordinate of the perfect match probe.	
	• PMPosy — <i>y</i> -coordinate of the perfect match probe.	
	• MMPosX — <i>x</i> -coordinate of the mismatch probe.	
	• MMPosY — <i>y</i> -coordinate of the mismatch probe.	
ProbeSets	A NumProbeSets-by-1 structure array containing information for each probe set, including the following fields:	
	• Name — Name of the probe set.	
	• ProbeSetType — Type of the probe set.	
	• CompDataExists — True/false flag indicating if the probe set has additional computed information.	
	• NumPairs — Number of probe pairs in the probe set.	
	• NumQCProbes — Number of QC probes in the probe set.	
	• QCType — Type of QC probes.	
	• GroupNames — Name of the group to which the probe set belongs. For expression arrays, this is the name of the probe set. For genotyping arrays, this is the name of the alleles, for example { 'A' 'C' 'A' 'C' }'.	
	• ProbePairs — NumPairs-by-6 array of information about the probe pairs. The column names of this array are contained in the ProbeSetColumnNames field.	

GIN File

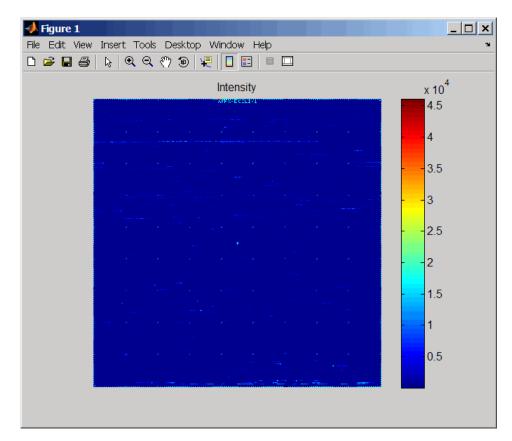
Field	Description	
Version	GIN file format version.	
ProbeSetName	Probe set ID/name.	
ID	Identifier for the probe set (gene ID).	
Description	Description of the probe set.	
SourceNames	Source(s) of the probe sets.	
SourceURL	Source URL(s) for the probe sets.	
SourceID	Vector of numbers specifying which SourceNames or SourceURL each probe set is associated with.	

Examples The following example uses the demo data and CDF library file from the *E. coli* Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

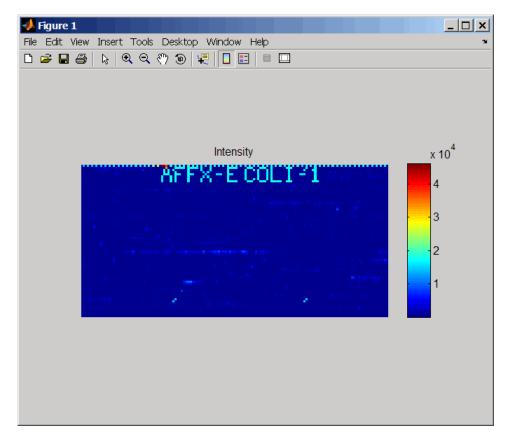
After you download the demo data, you will need the Affymetrix Data Transfer Tool to extract the CEL, DAT, and CHP files from a DTT file. You can download the Affymetrix Data Transfer Tool from:

```
http://www.affymetrix.com/products/software/specific/dtt.affx
```

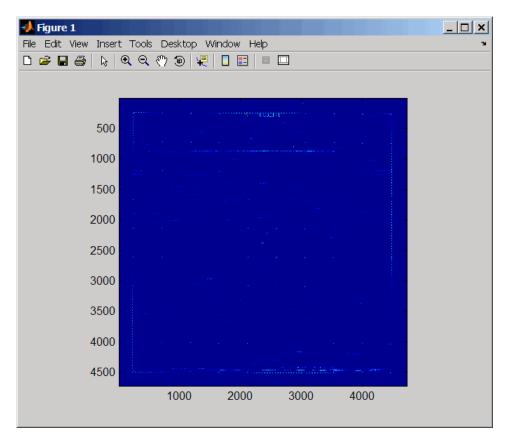

The following example assumes that files Ecoli-antisense-121502.CEL, Ecoli-antisense-121502.dat, and Ecoli-antisense-121502.chp are stored on the MATLAB search path or in the current directory. It also assumes that the associated CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

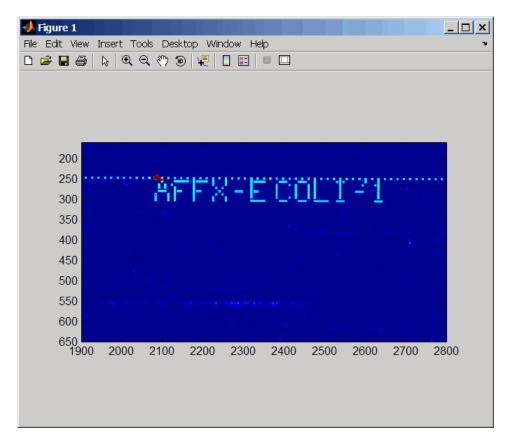
```
celStruct = affyread('Ecoli-antisense-121502.CEL');
```


2 Display a spatial plot of the probe intensities.

maimage(celStruct, 'Intensity')


3 Zoom in on a specific region of the plot.

axis([200 340 0 70])


4 Read the contents of a DAT file into a MATLAB structure, display the raw image data, and then use the axis image function to set the correct aspect ratio.

```
datStruct = affyread('Ecoli-antisense-121502.dat');
imagesc(datStruct.Image)
axis image
```


5 Zoom in on a specific region of the plot.

axis([1900 2800 160 650])

6 Read the contents of a CHP file into a MATLAB structure, specifying the location of the associated CDF library file. Then extract information for probe set **3315278**.

Identifier: '3315278' ProbeSetName: 'argG_b3172_at' CDFIndex: 5213 GINIndex: 3074 Description: [1x82 char] Source: 'NCBI EColi Genome' SourceURL: [1x74 char]

See Also Bioinformatics Toolbox functions: affysnpannotread, affysnpintensitysplit, agferead, celintensityread, geoseriesread, gprread, ilmnbsread, probelibraryinfo, probesetlink, probesetlookup, probesetplot, probesetvalues, sptread

Purpose	Perform Robust Multi-array Average (RMA) procedure on Affymetrix microarray probe-level data	
Syntax (1997)	Expression = affy Expression = affy CELPathValue,	<pre>vrma(CELFiles, CDFFile,'CDFPath',) vrma(, 'Method', MethodValue,) vrma(, 'Truncate', TruncateValue,) vrma(, 'Median', MedianValue,) vrma(, 'Output', OutputValue,) vrma(, 'Showplot', ShowplotValue,)</pre>
Arguments	CELFiles	Any of the following:
		• String specifying a single CEL file name.
		• '*', which reads all CEL files in the current directory.
		• ' ', which opens the Select CEL Files dialog box from which you select the CEL files. From this dialog box, you can press and hold Ctrl or Shift while clicking to select multiple CEL files.
		• Cell array of CEL file names.
	CDFFile	Either of the following:
		• String specifying a CDF file name.
		• ' ', which opens the Select CDF File dialog box from which you select the CDF file.

affyrma

ProbeStructure	MATLAB structure containing information from the CEL files, including probe intensities, probe indices, and probe set IDs, returned by the celintensityread function.
CELPathValue	String specifying the path and directory where the files specified in <i>CELFiles</i> are stored.
CDFPathValue	String specifying the path and directory where the file specified in <i>CDFFile</i> is stored.
<i>MethodValue</i>	Specifies the estimation method for the background adjustment model parameters. Choices are 'RMA' (to use estimation method described by Bolstad, 2005) or 'MLE' (to estimate the parameters using maximum likelihood). Default is 'RMA'.
TruncateValue	Specifies the background noise model. Choices are true (use a truncated Gaussian distribution) or false (use a nontruncated Gaussian distribution). Default is true.
MedianValue	Specifies the use of the median of the ranked values instead of the mean for normalization. Choices are true or false (default).

OutputValue	Specifies the scale of the returned gene expressivalues. Choices are:		
	 'log' 'log2' 'log10' 'natural' @functionname In the last instance, the data is transformed as 		
	defined by the function <i>functionname</i> . Default is 'log2'.		
ShowplotValue	Controls the plotting of a histogram showing the distribution of PM probe intensity values (blue) and the convoluted probability distribution function (red), with estimated parameters mu, sigma and alpha. Enter either 'all' (plot a histogram for each column or chip) or specify a subset of columns (chips) by entering the column number, list of numbers, or range of numbers.		
	For example:		
	• (, 'Showplot', 3,) plots the intensity values in column 3.		
	• (, 'Showplot', [3,5,7],) plots the intensity values in columns 3, 5, and 7.		
	• (, 'Showplot', 3:9,) plots the intensity values in columns 3 to 9.		
VerboseValue	Controls the display of the status of the reading of files and RMA processing. Choices are true (default) or false.		

affyrma

Return Values	Expression	DataMatrix object containing the log ₂ based gene expression values that have been background adjusted, normalized, and summarized using the Robust Multi-array Average (RMA) procedure.
Description		Each row in <i>Expression</i> corresponds to a gene (probe set), and each column corresponds to an Affymetrix CEL file.

Note This function does not work on the Solaris platform.

Expression = affyrma(*CELFiles*, *CDFFile*) reads the specified Affymetrix CEL files and the associated CDF library file (created from Affymetrix GeneChip arrays for expression or genotyping assays), processes the probe intensity values using RMA background adjustment, quantile normalization, and summarization procedures, then returns *Expression*, a DataMatrix object containing the log₂ based gene expression values in a matrix, the probe set IDs as row names, and the CEL file names as column names. Note that each row in *Expression* corresponds to a gene (probe set), and each column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.)

CELFiles is a string or cell array of CEL file names. *CDFFile* is a string specifying a CDF file name. If you set *CELFiles* to '*', then it reads all CEL files in the current directory. If you set *CELFiles* to ' ', then it opens the Select CEL Files dialog box from which you select the CEL files.

Note For details on the reading of files and RMA processing, see celintensityread, rmabackadj, quantilenorm, and rmasummary.

Expression = affyrma(*ProbeStructure*) uses RMA background adjustment, quantile normalization, and summarization procedures to process the probe intensity values in *ProbeStructure*, a MATLAB structure containing information from the CEL files, including probe intensities, probe indices, and probe set IDs, returned by the celintensityread function, and returns *Expression*.

Expression = affyrma(..., 'PropertyName', PropertyValue, ...) calls affyrma with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

Expression = affyrma(CELFiles, CDFFile, ...'CELPath', CELPathValue, ...) specifies a path and directory where the files specified by CELFiles are stored.

Expression = affyrma(CELFiles, CDFFile, ...'CDFPath', CDFPathValue, ...) specifies a path and directory where the file specified by CDFFile is stored.

Expression = affyrma(..., 'Method', MethodValue, ...)
specifies the estimation method for the background adjustment model
parameters. When MethodValue is 'RMA', affyrma implements the
estimation method described by Bolstad, 2005. When MethodValue is
'MLE', affyrma estimates the parameters using maximum likelihood.
Default is 'RMA'.

Expression = affyrma(..., 'Truncate', TruncateValue, ...)
specifies the background noise model used. When TruncateValue is
false, affyrma uses nontruncated Gaussian as the background noise
model. Default is true.

Expression = affyrma(..., 'Median', MedianValue, ...)
specifies the use of the median of the ranked values instead of the mean
for normalization. Choices are true or false (default).

```
Expression = affyrma(..., 'Output', OutputValue, ...)
specifies the scale of the returned gene expression values. OutputValue
can be:
```

- 'log'
- 'log2'
- 'log10'
- 'natural'
- @functionname

In the last instance, the data is transformed as defined by the function *functionname*. Default is 'log2'.

Expression = affyrma(..., 'Showplot', ShowplotValue, ...)
lets you plot a histogram showing the distribution of PM probe intensity
values (blue) and the convoluted probability distribution function (red),
with estimated parameters mu, sigma and alpha. When ShowplotValue
is 'all', rmabackadj plots a histogram for each column or chip. When
ShowplotValue is a number, list of numbers, or range of numbers,
rmabackadj plots a histogram for the indicated column number (chip).

For example:

- (..., 'Showplot', 3,...) plots the intensity values in column 3.
- (..., 'Showplot', [3,5,7],...) plots the intensity values in columns 3, 5, and 7.
- (..., 'Showplot', 3:9,...) plots the intensity values in columns 3 to 9.

Expression = affyrma(..., 'Verbose', *VerboseValue*, ...) controls the display of the status of the reading of files and RMA processing. Choices are true (default) or false.

Examples The following example assumes that you have the HG_U95Av2.CDF library file stored at D:\Affymetrix\LibFiles\HGGenome, and that

your current directory points to a location containing CEL files associated with this CDF library file. In this example, the affyrma function reads all the CEL files in the current directory and a CDF file in a specified directory. It also performs RMA background adjustment, quantile normalization, and summarization procedures on the PM probe intensity values, and returns a DataMatrix object, containing the metadata and processed data.

```
Expression = affyrma('*', 'HG_U95Av2.CDF',...
'CDFPath', 'D:\Affymetrix\LibFiles\HGGenome');
```

References [1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics. *4*, 249–264.

[2] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression (Reading, Massachusetts: Addison-Wesley Publishing Company), pp. 165–202.

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research *11*, 6823–6834.

[4] Bolstad, B. (2005). "affy: Built-in Processing Methods" http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/ inst/doc/builtinMethods.pdf

See Also affygcrma, celintensityread, gcrma, mafdr, mattest, quantilenorm, rmabackadj, rmasummary

affysnpannotread

Purpose	Read Affymetrix Mapping DNA array data from CSV-format annotation file		
Syntax	AnnotStruct = affysnpannotread(File, PID) AnnotStruct = affysnpannotread(File, PID, 'LookUpField', LookUpFieldValue)		
Arguments	File	String specifying a file name or a path and file name of an Affymetrix CSV annotation file for a Mapping 10K array set, Mapping 100K array set, or Mapping 500K array set.	
		If you specify only a file name, that file must be on the MATLAB search path or in the current directory.	
	PID	String or cell array of strings specifying one or more probe set IDs on an Affymetrix mapping array.	
	LookUpFieldValue	String or cell array of strings specifying one or more column headers in an Affymetrix CSV annotation file. Default are the fields shown in the following table.	
Return Values	AnnotStruct	MATLAB structure containing information for one or more probe sets from <i>File</i> , an Affymetrix CSV annotation file.	
		AnnotStruct contains a subset of the fields in <i>File</i> . The fields are described in the table below.	
Description	AnnotStruct = affysnpannotread(File, PID) reads File, an Affymetrix CSV annotation file for a Mapping 10K array set, Mapping 100K array set, or Mapping 500K array set, and returns AnnotStruct,		

a MATLAB structure containing annotation information for one or more probe sets specified by *PID*, a string or cell array of strings specifying one or more probe set IDs. *AnnotStruct* contains a subset of the fields in *File*. The fields are described in the following table.

Field	Description	
ProbeSetIDs	Cell array containing the unique probe set IDs specified by the <i>PID</i> input.	
Chromosome	Cell array containing the chromosome number on which each probe set is located.	
ChromPosition	Cell array containing the SNP genomic position on the chromosome for each probe set.	
Cytoband	Cell array containing the cytogenetic banding region of the chromosome on which each probe set is located.	
Sequence	Cell array containing the sequence of each probe set.	
AlleleA	Cell array containing the base that is allele A for each probe set.	
AlleleB	Cell array containing the base that is allele B for each probe set.	
Accession	Cell array containing the GenBank accession number for each probe set.	
FragmentLength	Cell array containing the length of each probe set.	

Structure Created from an Affymetrix CSV Annotation File

AnnotStruct = affysnpannotread(File, PID, 'LookUpField', LookUpFieldValue) returns annotation information from only the field (column) specified by LookUpFieldValue, a string or cell array of strings specifying one or more column headers in an Affymetrix CSV annotation file. Default are the fields shown in the previous table. **Note** You can download Affymetrix CSV annotation files such as Mapping50K_Xba240.na25.annot.csv from:

http://www.affymetrix.com/support/technical/annotationfilesmain.affx

Examples The following example assumes that you have the Mapping50K_Xba240.CDF file stored at C:\AffyLibFiles\, and that your current directory points to a location containing the Mapping50K_Xba240.na25.annot.csv annotation file.

1 Use the affyread function to create a structure containing information from the Mapping50K Xba240.CDF library file.

cdf = affyread('C:\AffyLibFiles\Mapping50K_Xba240.CDF');

2 Create a variable containing a cell array of the names of the probe sets, which are stored in the Name field of the ProbeSets field of the cdf structure.

probesetIDs = {cdf.ProbeSets.Name}';

3 Return a structure containing annotation information for all the probe sets in the Mapping50K_Xba240.na25.annot.csv annotation file.

snpInfo = affysnpannotread('Mapping50K_Xba240.na25.annot.csv',probesetIDs)

```
snpInfo =
```

```
ProbeSetIDs: {59024x1 cell}
Chromosome: [59024x1 int8]
ChromPosition: [59024x1 double]
Cytoband: {59024x1 cell}
Sequence: {59024x1 cell}
AlleleA: {59024x1 cell}
```

AlleleB: {59024x1 cell} Accession: {59024x1 cell} FragmentLength: [59024x1 double]

See Also Bioinformatics Toolbox functions: affysnpintensitysplit, affyread

affysnpintensitysplit

Purpose	Split Affymetrix SNP probe intensity information for alleles A and B			
Syntax	<pre>ProbeStructSplit = affysnpintensitysplit(ProbeStruct) ProbeStructSplit = affysnpintensitysplit(ProbeStruct,</pre>			
Arguments	ProbeStruct MATLAB structure containing probe intensity information from an Affymetrix Mapping DNA array, such as returned by celintensityread.			
	F	Controls the inclusion of control probes in <i>ProbeStructSplit</i> . Choices are true or false (default).		
Return Values	ProbeStructSplit MATLAB structure containing probe intensity information from an Affymetrix Mapping DNA array, split into information for alleles A and B.			
Description	<pre>ProbeStructSplit = affysnpintensitysplit(ProbeStruct) splits ProbeStruct, a structure containing probe intensity information from an Affymetrix Mapping DNA array, into ProbeStructSplit, a structure containing probe intensity information from an Affymetrix Mapping DNA array, split into information for alleles A and B.</pre>			
	ProbeStructSplit contains the following fields.			
	Field	Description		
	CDFName	File name of the Affymetrix CDF library file.		
	CELNames Cell array of names of the Affymetrix CEL files.			
	NumChips Number of CEL files read into the input			

structure.

Field	Description	
NumProbeSets	Number of probe sets in each CEL file.	
NumProbes	Maximum number of probes for just one allele in each CEL file.	
	Note If the number of probes for allele A is not the same as for allele B, the larger number is used.	
ProbeSetIDs	Cell array of the probe set IDs from the Affymetrix CDF library file.	
ProbeIndices	Column vector containing probe indexing information for just one allele in each cell file. Probes within a probe set are numbered 0 through N - 1, where N is the number of probes for one allele in the probe set.	
	Note ProbeIndices has the same number of elements as NumProbes.	
PMAIntensities	Matrix containing perfect match (PM) probe intensity values for allele A. Each row corresponds to an allele A probe, and each column corresponds to a CEL file. The rows are ordered the same way as in ProbeIndices, and the columns are ordered the same way as in the <i>CELFiles</i> input argument to the celintensityread function.	

Field	Description
PMBIntensities	Matrix containing perfect match (PM) probe intensity values for allele B. Each row corresponds to an allele B probe, and each column corresponds to a CEL file. The rows are ordered the same way as in ProbeIndices, and the columns are ordered the same way as in the <i>CELFiles</i> input argument to the celintensityread function.
MMAIntensities (optional)	Matrix containing mismatch (MM) probe intensity values for allele A. Each row corresponds to an allele A probe, and each column corresponds to a CEL file. The rows are ordered the same way as in ProbeIndices, and the columns are ordered the same way as in the <i>CELFiles</i> input argument to the celintensityread function.
MMBIntensities (optional)	Matrix containing mismatch (MM) probe intensity values for allele B. Each row corresponds to an allele B probe, and each column corresponds to a CEL file. The rows are ordered the same way as in ProbeIndices, and the columns are ordered the same way as in the <i>CELFiles</i> input argument to the celintensityread function.

ProbeStructSplit = affysnpintensitysplit(ProbeStruct, 'Controls', ControlsValue) controls the return of control probe intensities. Choices are true or false (default).

Note Control probes sometimes contain information for only one allele. In this case, the value for the corresponding allele (A or B) that is not present is set to NaN.

Examples The following example assumes that your current directory points to a location containing the Mapping50K_Hind240.CDF library file and 18 CEL files associated with this CDF library file. These files are associated with an Affymetrix Mapping DNA array.

1 Use the celintensityread function to read the Mapping50K_Hind240.CDF library file and 18 CEL files associated with it into a MATLAB structure.

```
ps = celintensityread('*','Mapping50K_Hind240.CDF')
```

```
ps =
```

```
CDFName: 'Mapping50K_Hind240.CDF'
CELNames: {18x1 cell}
NumChips: 18
NumProbeSets: 57299
NumProbes: 1145780
ProbeSetIDs: {57299x1 cell}
ProbeIndices: [1145780x1 uint8]
GroupNumbers: [1145780x1 uint8]
PMIntensities: [1145780x18 single]
```

2 Extract the PM probe intensities for allele A and allele B into another MATLAB structure, without including intensity information for the control probes.

ps_split = affysnpintensitysplit(ps)

ps_split =

```
CDFName: 'Mapping50K_Hind240.CDF'
CELNames: {18x1 cell}
NumChips: 18
NumProbeSets: 57275
NumProbes: 572750
ProbeSetIDs: {57275x1 cell}
ProbeIndices: [572750x1 uint8]
```

PMAIntensities: [572750x18 single]
PMBIntensities: [572750x18 single]

See Also Bioinformatics Toolbox functions: affysnpannotread, affyread, celintensityread

Purpose	Create table of SNP probe quartet results for Affymetrix probe set				
Syntax	SNPQStruct = affysnpquartets(CELStruct, CDFStruct, PS)				
Arguments	CELStruct Structure created by the affyread function from an Affymetrix CEL file, which contains information about the intensity values of the individual probes.				
	CDFStruct	Structure created by the affyread function from an Affymetrix CDF library file associated with the CEL file. The CDF library file contains information about which probes belong to which probe set.			
	PS Probe set index or the probe set ID/name.				
Return Values	SNPQStruct	<i>Ict</i> Structure containing probe quartet results for a specific SNP probe set from the data in a CEL file and associated CDF library file.			
Description	<pre>SNPQStruct = affysnpquartets(CELStruct, CDFStruct, PS) creates SNPQStruct, a structure containing probe quartet results for a specific SNP probe set, specified by PS, from the probe-level data in a CEL file and associated CDF library file. CELStruct is a structure created by the affyread function from an Affymetrix CEL file. PS is a probe set index or probe set ID/name from CDFStruct, a structure created by the affyread function from an Affymetrix CDF library file associated with the CEL file. SNPQStruct is a structure containing the following fields.</pre>				
	Field Description		Description		
	'ProbeSet'		Identifier for the probe set.		
	'AlleleA' String specifying the base that is allele A for the probe set.				

Field	Description
'AlleleB'	String specifying the base that is allele B for the probe set.
'Quartet'	Structure array containing intensity values for PM (perfect match) and MM (mismatch) probe pairs, including the sense and antisense probes for alleles A and B. Each structure in the array corresponds to a probe pair in the probe set.

Examples

The following example uses the NA06985_Hind_B5_3005533.CEL file. You can download this and other sample CEL files from:

http://www.affymetrix.com/support/technical/sample_data/hapmap_trio_data.affx

The NA06985_Hind_B5_3005533.CEL file is included in the 100K_trios.hind.1.zip file.

The following example uses the CDF library file for the Mapping 50K Hind 240 array, which you can download from:

http://www.affymetrix.com/support/technical/byproduct.affx?product=100k

The following example assumes that the NA06985_Hind_B5_3005533.CEL file is stored on the MATLAB search path or in the current directory. It also assumes that the associated CDF library file, Mapping50K_Hind240.cdf, is stored at D:\Affymetrix\LibFiles\.

1 Read the contents of a CEL file into a MATLAB structure.

```
celStruct = affyread('NA06985_Hind_B5_3005533.CEL');
```

2 Read the contents of a CDF file into a MATLAB structure.

cdfStruct = affyread('D:\Affymetrix\LibFiles\Mapping50K_Hind240.cdf');

3 Create a structure containing SNP probe quartet results for the SNP_A-1684395 probe set.

```
SNPQStruct = affysnpquartets(celStruct,cdfStruct,'SNP_A-1684395')
SNPQStruct =
ProbeSet: 'SNP_A-1684395'
AlleleA: 'A'
AlleleB: 'G'
```

Quartet: [1x5 struct]

4 View the intensity values of the first probe pair in the probe set.

```
SNPQStruct.Quartet(1)
```

ans =

```
A_Sense_PM: 5013
B_Sense_PM: 1290
A_Sense_MM: 1485
B_Sense_MM: 686
A_Antisense_PM: 3746
B_Antisense_PM: 1406
A_Antisense_MM: 1527
B_Antisense_MM: 958
```

See Also Bioinformatics Toolbox functions: affyread, probesetvalues

agferead

Purpose	Read Agilent Feature Extraction Software file					
Syntax	AGFEData = agferead(File)					
Arguments	File	File Microarray data file generated with the Agilent Feature Extraction Software.				
Description	Extraction Soft	gferead(<i>File</i>) reads files generated with the Feature tware from Agilent microarray scanners and creates a <i>EData</i>) containing the following fields:				
	• Header					
	• Stats					
	• Columns					
	• Rows					
	• Names					
	• IDs					
	• Data					
	• ColumnName	S				
	• TextData					
	• TextColumnNames					
	The Feature Extraction Software takes an image from an Agilent microarray scanner and generates raw intensity data for each spot on the plate. For more information about this software, see:					
	http://www	.chem.agilent.com/scripts/pds.asp?lpage=2547				
Examples		mple Agilent Feature Extraction Software file. Note fe_sample.txt is not provided with the Bioinformatics ware.				

	agfeStruct = agferead('fe_sample.txt')
	2 Plot the median foreground.
	<pre>maimage(agfeStruct,'gMedianSignal'); maboxplot(agfeStruct,'gMedianSignal');</pre>
See Also	Bioinformatics Toolbox functions: affyread, celintensityread, galread, geoseriesread, geosoftread, gprread, ilmnbsread, imageneread, magetfield, sptread

aminolookup

Purpose	Find amino acid codes, integers, abbreviations, names, and codons		
Syntax	aminolookup aminolookup(SeqAA) aminolookup('Code', CodeValue) aminolookup('Integer', IntegerValue) aminolookup('Abbreviation', AbbreviationValue) aminolookup('Name', NameValue)		
Arguments	SeqAA	String of single-letter codes or three-letter abbreviations representing an amino acid sequence. For valid codes and abbreviations, see the table Amino Acid Lookup on page 2-91.	
	CodeValue	String specifying a single-letter code representing an amino acid. For valid single-letter codes, see the table Amino Acid Lookup on page 2-91.	
	IntegerValue	Single integer representing an amino acid. For valid integers, see the table Amino Acid Lookup on page 2-91.	
	AbbreviationValue	String specifying a three-letter abbreviation representing an amino acid. For valid three-letter abbreviations, see the table Amino Acid Lookup on page 2-91.	
	NameValue	String specifying an amino acid name. For valid amino acid names, see the table Amino Acid Lookup on page 2-91.	
Description	aminolookup displays abbreviations, names,	a table of amino acid codes, integers, and codons.	

Amino Acid Lookup

Code	Integer	Abbreviation	Amino Acid Name	Codons
A	1	Ala	Alanine	GCU GCC GCA GCG
R	2	Arg	Arginine	CGU CGC CGA CGG AGA AGG
Ν	3	Asn	Asparagine	AAU AAC
D	4	Asp	Aspartic acid (Aspartate)	GAU GAC
С	5	Cys	Cysteine	UGU UGC
Q	6	Gln	Glutamine	CAA CAG
E	7	Glu	Glutamic acid (Glutamate)	GAA GAG
G	8	Gly	Glycine	GGU GGC GGA GGG
Н	9	His	Histidine	CAU CAC
I	10	Ile	Isoleucine	AUU AUC AUA
L	11	Leu	Leucine	UUA UUG CUU CUC CUA CUG
К	12	Lys	Lysine	AAA AAG
М	13	Met	Methionine	AUG
F	14	Phe	Phenylalanine	UUU UUC
Р	15	Pro	Proline	CCU CCC CCA CCG
S	16	Ser	Serine	UCU UCC UCA UCG AGU AGC

Amino	Acid	Lookup	(Continued)	
-------	------	--------	-------------	--

Code	Integer	Abbreviation	Amino Acid Name	Codons
т	17	Thr	Threonine	ACU ACC ACA ACG
W	18	Trp	Tryptophan	UGG
Y	19	Tyr	Tyrosine	UAU UAC
V	20	Val	Valine	GUU GUC GUA GUG
В	21	Asx	Asparagine or Aspartic acid (Aspartate)	AAU AAC GAU GAC
Z	22	Glx	Glutamine or Glutamic acid (Glutamate)	CAA CAG GAA GAG
Х	23	Хаа	Any amino acid	All codons
*	24	END	Termination codon (translation stop)	UAA UAG UGA
-	25	GAP	Gap of unknown length	NA

aminolookup(SeqAA) converts between single-letter codes and three-letter abbreviations for an amino acid sequence. If the input is a string of single-letter codes, then the output is a character string of three-letter abbreviations. If the input is a string of three-letter abbreviations, then the output is a string of the corresponding single-letter codes. If you enter one of the ambiguous single-letter codes B, Z, or X, this function displays the corresponding abbreviation for the ambiguous amino acid character.

```
aminolookup('abc')
                      ans =
                      AlaAsxCys
                   aminolookup('Code', CodeValue) displays the corresponding amino
                   acid three-letter abbreviation and name.
                   aminolookup('Integer', IntegerValue) displays the corresponding
                   amino acid single-letter code, three-letter abbreviation, and name.
                   aminolookup('Abbreviation', AbbreviationValue) displays the
                   corresponding amino acid single-letter code and name.
                   aminolookup('Name', NameValue) displays the corresponding amino
                   acid single-letter code and three-letter abbreviation.
Examples
                   • Convert an amino acid sequence in single-letter codes to the
                      corresponding three-letter abbreviations.
                        aminolookup('MWKQAEDIRDIYDF')
                        ans =
                        MetTrpLysGlnAlaGluAspIleArgAspIleTyrAspPhe
                   • Convert an amino acid sequence in three-letter abbreviations to the
                      corresponding single-letter codes.
                        aminolookup('MetTrpLysGlnAlaGluAspIleArqAspIleTyrAspPhe')
                        ans =
```

MWKQAEDIRDIYDF

• Display the three-letter abbreviation and name for the amino acid corresponding to the single-letter code R.

```
aminolookup('Code', 'R')
ans =
Arg Arginine
```

• Display the single-letter code, three-letter abbreviation, and name for the amino acid corresponding to the integer 1.

```
aminolookup('Integer', 1)
ans =
A Ala Alanine
```

• Display the single-letter code and name for the amino acid corresponding to the three-letter abbreviation asn.

```
aminolookup('Abbreviation', 'asn')
```

ans =

N Asparagine

• Display the single-letter code and three-letter abbreviation for the amino acid proline.

```
aminolookup('Name','proline')
ans =
P Pro
```

See Also Bioinformatics Toolbox functions: aa2int, aa2nt, aacount, geneticcode, int2aa, nt2aa, revgeneticcode

atomiccomp

Purpose	Calculate atomic composition of protein		
Syntax	<pre>NumberAtoms = atomiccomp(SeqAA)</pre>		
Arguments	SeqAA Amino acid sequence. Enter a character string or vector of integers from the table Mapping Amino Acid Letter Codes to Integers on page 2-2. You can also enter a structure with the field Sequence.		
Description	<i>NumberAtoms</i> = atomiccomp(<i>SeqAA</i>) counts the type and number of atoms in an amino acid sequence (<i>SeqAA</i>) and returns the counts in a 1-by-1 structure (<i>NumberAtoms</i>) with fields C, H, N, O, and S.		
Examples	1 Get an amino acid sequence from the NCBI GenPept database.		
	<pre>rhodopsin = getgenpept('NP_000530');</pre>		
	2 Count the atoms in a sequence.		
	<pre>rhodopsinAC = atomiccomp(rhodopsin)</pre>		
	<pre>rhodopsinAC =</pre>		
	C: 1814 H: 2725 N: 423 O: 477 S: 25		
	3 Retrieve the number of carbon atoms in the sequence.		
	rhodopsinAC.C		
	ans =		
	1814		

See Also Bioinformatics Toolbox functions: aacount, molweight, proteinplot

Purpose	Count nucleotides in sequence	
Syntax	NTStruct = basec	ount(SeqNT) ount(SeqNT,'Chart', ChartValue,) ount(SeqNT,'Others', OthersValue,) ount(SeqNT,'Structure', StructureValue,
Arguments	SeqNT	One of the following:
		• String of codes specifying a nucleotide sequence. For valid letter codes, see the table Mapping Nucleotide Letter Codes to Integers on page 2-794
		• Row vector of integers specifying a nucleotide sequence. For valid integers, see the table Mapping Nucleotide Integers to Letter Codes on page 2-562
		• MATLAB structure containing a Sequence field that contains a nucleotide sequence, such as returned by fastaread, emblread, getembl, genbankread, or getgenbank.
	ChartValue	String specifying a chart type. Choices are 'pie' or 'bar'.
	OthersValue	String specifying how to count ambiguous characters, including gaps indicated by a hyphen (-). Choices are 'full' (lists the ambiguous characters in separate fields) or 'bundle' (lists the ambiguous characters together in the field Others). Default is 'bundle'.
	StructureValue	Suppresses the unknown characters warning when set to 'full' .

basecount

Return Values	NTStruct	1-by-1 MATLAB structure containing the fields A, C, G, and T.	
Description	NTStruct = basecount(SeqNT) counts the number of each type of base in a SeqNT, a nucleotide sequence, and returns the counts in NTStruct, a 1-by-1 MATLAB structure containing the fields A, C, G, and T.		
	• For sequences with the character U, the number of U characters is added to the T field.		
	S, W, B, D, H, V, or	ntains ambiguous nucleotide characters (R, Y, K, M, N), or gaps indicated by a hyphen (-), then these bunted in the field Others, and the following warning S:	
	 Warning: Ambiguous symbols appear in the sequence. These will be in Others. If a sequence contains undefined nucleotide characters (E, F, H, I, J, L, O, P, Q, X, or Z), then these characters are counted in the field Others, and the following warning message appears. Warning: Unknown symbols appear in the sequence. These will be in Others. If the property 'Others' is set to 'full', ambiguous characters are listed separately in the fields R, Y, K, M, S, W, B, D, H, V, N, and Gap. 		
<i>NTStruct</i> = basecount(<i>SeqNT</i> ,' <i>PropertyName</i> ', <i>PropertyValue</i> ,) calls basecount with optional properties use property name/property value pairs. You can specify one or n properties in any order. Each <i>PropertyName</i> must be enclosed in quotation marks and is case insensitive. These property name/pr value pairs are as follows:) calls basecount with optional properties that property value pairs. You can specify one or more order. Each <i>PropertyName</i> must be enclosed in single and is case insensitive. These property name/property	
		ount(SeqNT,'Chart', ChartValue,) wing the relative proportions of the nucleotides. 'pie' or 'bar'.	

NTStruct = basecount(SeqNT, ...'Others', OthersValue, ...)
specifies how to count ambiguous characters (R, Y, K, M, S, W, B, D,
H, V, and N), or gaps indicated by a hyphen (-). Choices are 'full'
(lists the ambiguous characters in separate fields) or 'bundle' (lists
the ambiguous characters together in the field Others). Default is
'bundle'.

NTStruct = basecount(SeqNT, ...'Structure', StructureValue, ...) suppresses the unknown characters warning when set to 'full'.

- basecount(SeqNT) Displays fields for four nucleotides, and, if there are ambiguous and unknown characters, add an Others field with the ambiguous and unknown character counts.
- basecount(SeqNT, 'Others', 'full') Displays fields for 4 nucleotides, 11 ambiguous nucleotides, gaps, and, if there are unknown characters, adds an Others field with the unknown counts.
- basecount(SeqNT, 'Structure', 'full') Displays fields for four nucleotides and an Others field. If there are ambiguous or unknown characters, adds the counts to the Others field; otherwise displays 0 in the Others field.
- basecount(SeqNT, 'Others', 'full', 'Structure', 'full') Displays fields for 4 nucleotides, 11 ambiguous nucleotides, gaps, and an Others field. If there are unknown characters, adds the counts to the Others field; otherwise displays 0 in the Others field.
- **Examples** 1 Count the bases in a DNA sequence and return the results in a structure.

Bases = basecount('TAGCTGGCCAAGCGAGCTTG')
Bases =
 A: 4
 C: 5
 G: 7
 T: 4

2 Get the count for adenosine (A) bases.

Base	es.A
ans	=
	4

3 Count the bases in a DNA sequence containing ambiguous characters, listing the ambiguous characters in separate fields.

basecount('ABCDGGCCAAGCGAGCTTG','Others','full') ans = A: 4 C: 5 G: 6 T: 2 R: 0 Y: 0 K: 0 M: 0 S: 0 W: 0 B: 1 D: 1 H: 0 V: 0 N: 0 Gap: 0

See Also Bioinformatics Toolbox functions: aacount, baselookup, codoncount, cpgisland, dimercount, nmercount, ntdensity, seqtool

Purpose	Find nucleotide codes, integers, names, and complements	
Syntax	baselookup baselookup('Complement', <i>SeqNT</i>) baselookup('Code', <i>CodeValue</i>) baselookup('Integer', <i>IntegerValue</i>) baselookup('Name', <i>NameValue</i>)	
Arguments	SeqNT	Nucleotide sequence(s) represented by one of the following:
		• String of single-letter codes from the table Nucleotide Lookup on page 2-102
		• Cell array of sequences
		• Two-dimensional character array of sequences
		Note If the input is multiple sequences, the complement for each sequence is determined independently.
	CodeValue	Nucleotide letter code represented by one of the following:
		• String specifying a single-letter code representing a nucleotide. For valid single-letter codes, see the table Nucleotide Lookup on page 2-102.
		• Cell array of letter codes.
		• Two-dimensional character array of letter codes.

IntegerValue	Single integer representing a nucleotide. For valid integers, see the table Nucleotide Lookup on page 2-102.
NameValue	Nucleotide name represented by one of the following:
	• String specifying a nucleotide name. For valid nucleotide names, see the table Nucleotide Lookup on page 2-102.

- Cell array of names.
- Two-dimensional character array of names.
- **Description** baselookup displays a table of nucleotide codes, integers, names, and complements.

Nucleotide Lookup

Code	Integer	Nucleotide Name	Meaning	Complement
А	1	Adenine	А	Т
С	2	Cytosine	C	G
G	3	Guanine	G	С
т	4	Thymine	т	А
U	4	Uracil	U	А
R	5	Purine	A or G	Y
Y	6	Pyrimidine	C or T	R
К	7	Keto	G or T	М
М	8	Amino	A or C	К

Nucleotide	Lookup	(Continued)
------------	--------	-------------

Code	Integer	Nucleotide Name	Meaning	Complement
S	9	Strong interaction (3 H bonds)	C or G	S
W	10	Weak interaction (2 H bonds)	A or T	W
В	11	Not A	C or G or T	V
D	12	Not C	A or G or T	Н
Н	13	Not G	A or C or T	D
V	14	Not T or U	A or C or G	В
Ν, Χ	15	Any nucleotide	A or C or G or T or U	Ν
-	16	Gap of indeterminate length	Gap	-

baselookup('Complement', SeqNT) displays the complementary
nucleotide sequence.

baselookup('Code', CodeValue) displays the corresponding meaning and nucleotide name. For ambiguous nucleotide codes (R, Y, K, M, S, W, B, D, H, V, N, and X), the nucleotide name is a descriptive name.

baselookup('Integer', IntegerValue) displays the corresponding
letter code, meaning, and nucleotide name.

baselookup('Name', NameValue) displays the corresponding letter code, meaning, and nucleotide name or descriptive name.

baselookup

```
Examples • Convert a nucleotide sequence to its complementary sequence.
```

```
baselookup('Complement', 'TAGCTGRCCAAGGCCAAGCGAGCTTN')
ans =
```

```
ATCGACYGGTTCCGGTTCGCTCGAAN
```

• Display the meaning and nucleotide name or descriptive name for the nucleotide codes G and Y.

```
>> baselookup('Code', 'G')
ans =
G Guanine
>> baselookup('Code', 'Y')
ans =
T|C pYrimidine
```

• Display the nucleotide letter code, meaning, and nucleotide name or descriptive name for the integers 1 and 7.

```
baselookup('Integer', 1)
ans =
A A - Adenine
>> baselookup('Integer', 7)
ans =
```

K G|T - Keto

• Display the corresponding nucleotide letter code, meaning, and name for cytosine and purine.

```
baselookup('Name','cytosine')
ans =
C C - Cytosine
baselookup('Name','purine')
ans =
R G|A - puRine
```

See Also Bioinformatics Toolbox functions: aa2nt, basecount, codoncount, dimercount, geneticcode, int2nt, nt2aa, nt2int, revgeneticcode, seqtool

Purpose	Create biograph object
Syntax	BGobj = biograph(CMatrix) BGobj = biograph(CMatrix, NodeIDs) BGobj = biograph(CMatrix, NodeIDs,'ID', IDValue,) BGobj = biograph(CMatrix, NodeIDs,'Label', LabelValue,
	<pre>) BGobj = biograph(CMatrix, NodeIDs,'Description', DescriptionValue,)</pre>
	BGobj = biograph(CMatrix, NodeIDs,'LayoutType', LayoutTypeValue,)
	BGobj = biograph(CMatrix, NodeIDs,'EdgeType', EdgeTypeValue,)
	BGobj = biograph(CMatrix, NodeIDs,'Scale', ScaleValue,)
	BGobj = biograph(CMatrix, NodeIDs,'LayoutScale', LayoutScaleValue,)
	BGobj = biograph(CMatrix, NodeIDs,'EdgeTextColor', EdgeTextColorValue,)
	BGobj = biograph(CMatrix, NodeIDs,'EdgeFontSize', EdgeFontSizeValue,)
	BGobj = biograph(CMatrix, NodeIDs,'ShowArrows', ShowArrowsValue,)
	BGobj = biograph(CMatrix, NodeIDs,'ArrowSize', ArrowSizeValue,)
	BGobj = biograph(CMatrix, NodeIDs,'ShowWeights', ShowWeightsValue,)
	<pre>BGobj = biograph(CMatrix, NodeIDs,'ShowTextInNodes', ShowTextInNodesValue,)</pre>
	<pre>BGobj = biograph(CMatrix, NodeIDs,'NodeAutoSize', NodeAutoSizeValue,)</pre>
	<pre>BGobj = biograph(CMatrix, NodeIDs,'NodeCallback', NodeCallbackValue,)</pre>
	<pre>BGobj = biograph(CMatrix, NodeIDs,'EdgeCallback', EdgeCallbackValue,)</pre>
	<pre>BGobj = biograph(CMatrix, NodeIDs,'CustomNodeDrawFcn', CustomNodeDrawFcnValue,)</pre>

Arguments		
J	CMatrix	Full or sparse square matrix that acts as a connection matrix. That is, a value of 1 indicates a connection between nodes while a 0 indicates no connection. The number of rows/columns is equal to the number of nodes.
	NodeIDs	Node identification strings. Enter any of the following:
		• Cell array of strings with the number of strings equal to the number of rows or columns in the connection matrix <i>CMatrix</i> . Each string must be unique.
		• Character array with the number of rows equal to the number of nodes. Each row in the array must be unique.
		• String with the number of characters equal to the number of nodes. Each character must be unique.
		Default values are the row or column numbers.
		Note You must specify <i>NodeIDs</i> if you want to specify property name/value pairs. Set <i>NodeIDs</i> to [] to use the default values of the row/column numbers.
	IDValue	String to identify the biograph object. Default is ''.
	LabelValue	String to label the biograph object. Default is ''.

DescriptionValue	String that describes the biograph object. Default is ''.
LayoutTypeValue	String that specifies the algorithm for the layout engine. Choices are:
	• 'hierarchical' (default) — Uses a topological order of the graph to assign levels, and then arranges the nodes from top to bottom, while minimizing crossing edges.
	• 'radial' — Uses a topological order of the graph to assign levels, and then arranges the nodes from inside to outside of the circle, while minimizing crossing edges.
	• 'equilibrium' — Calculates layout by minimizing the energy in a dynamic spring system.
EdgeTypeValue	String that specifies how edges display. Choices are:
	• 'straight'
	• 'curved' (default)
	• 'segmented'
	Neto Curried on commented edges
	Note Curved or segmented edges occur only when necessary to avoid
	obstruction by nodes. Biograph objects with LayoutType equal to 'equilibrium' or 'radial' cannot produce curved or

segmented edges.

ScaleValue	Positive number that post-scales the node coordinates. Default is 1.	
LayoutScaleValue	Positive number that scales the size of the nodes before calling the layout engine. Default is 1.	
EdgeTextColorValue	Three-element numeric vector of RGB values. Default is [0, 0, 0], which defines black.	
EdgeFontSizeValue	Positive number that sets the size of the edge font in points. Default is 8.	
ShowArrowsValue	Controls the display of arrows for the edges. Choices are 'on' (default) or 'off'.	
ArrowSizeValue	Positive number that sets the size of the arrows in points. Default is 8 .	
ShowWeightsValue	Controls the display of text indicating the weight of the edges. Choices are 'on' (default) or 'off'.	
ShowTextInNodesValue	String that specifies the node property used to label nodes when you display a biograph object using the view method. Choices are:	
	• 'Label' — Uses the Label property of the node object (default).	
	• 'ID' — Uses the ID property of the node object.	
	• 'None'	
NodeAutoSizeValue	Controls precalculating the node size before calling the layout engine. Choices are 'on' (default) or 'off'.	

	<i>NodeCallbackValue</i>	User callback for all nodes. Enter the name of a function, a function handle, or a cell array with multiple function handles. After using the view function to display the biograph in the Biograph Viewer, you can double-click a node to activate the first callback, or right-click and select a callback to activate. Default is @(node) inspect(node), which displays the Property Inspector dialog box.	
	EdgeCallbackValue	User callback for all edges. Enter the name of a function, a function handle, or a cell array with multiple function handles. After using the view function to display the biograph in the Biograph Viewer, you can double-click an edge to activate the first callback, or right-click and select a callback to activate. Default is @(edge) inspect(edge), which displays the Property Inspector dialog box.	
	CustomNodeDrawFcnValue	Function handle to a customized function to draw nodes. Default is [].	
Description	<pre>BGobj = biograph(CMatrix) creates a biograph object, BGobj, using a connection matrix, CMatrix. All nondiagonal and positive entries in the connection matrix, CMatrix, indicate connected nodes, rows represent the source nodes, and columns represent the sink nodes.</pre>		
	BGobj = biograph(CMatrix, NodeIDs) specifies the node identification strings. NodeIDs can be:		
	• Cell array of strings with the number of strings equal to the number		

 Cell array of strings with the number of strings equal to the number of rows or columns in the connection matrix *CMatrix*. Each string must be unique.

- Character array with the number of rows equal to the number of nodes. Each row in the array must be unique.
- String with the number of characters equal to the number of nodes. Each character must be unique.

Default values are the row or column numbers.

Note If you want to specify property name/value pairs, you must specify *NodeIDs*. Set *NodeIDs* to [] to use the default values of the row/column numbers.

BGobj = biograph(..., 'PropertyName', PropertyValue, ...) calls biograph with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

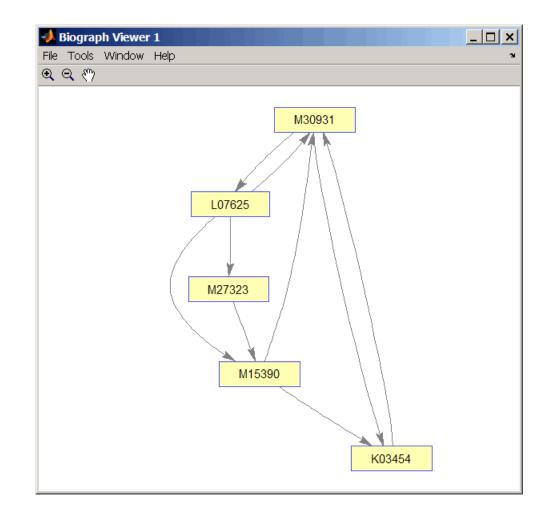
BGobj = biograph(*CMatrix*, *NodeIDs*, ...'ID', *IDValue*, ...) specifies an ID for the biograph object. Default is ''.

BGobj = biograph(CMatrix, NodeIDs, ...'Label', LabelValue, ...)
specifies a label for the biograph object. Default is ''.

BGobj = biograph(CMatrix, NodeIDs, ...'Description', DescriptionValue, ...) specifies a description of the biograph object. Default is ''.

BGobj = biograph(CMatrix, NodeIDs, ...'LayoutType', LayoutTypeValue, ...) specifies the algorithm for the layout engine.

BGobj = biograph(CMatrix, NodeIDs, ...'EdgeType', EdgeTypeValue, ...) specifies how edges display.


BGobj = biograph(CMatrix, NodeIDs, ...'Scale', ScaleValue, ...)
post-scales the node coordinates. Default is 1.

BGobj = biograph(CMatrix, NodeIDs, ...'LayoutScale', LayoutScaleValue, ...) scales the size of the nodes before calling the layout engine. Default is 1. BGobj = biograph(CMatrix, NodeIDs, ... 'EdgeTextColor', EdgeTextColorValue, ...) specifies a three-element numeric vector of RGB values. Default is [0, 0, 0], which defines black. BGobj = biograph(CMatrix, NodeIDs, ...'EdgeFontSize', EdgeFontSizeValue, ...) sets the size of the edge font in points. Default is 8. BGobj = biograph(CMatrix, NodeIDs, ... 'ShowArrows', ShowArrowsValue, ...) controls the display of arrows for the edges. Choices are 'on' (default) or 'off'. BGobj = biograph(CMatrix, NodeIDs, ... 'ArrowSize', ArrowSizeValue, ...) sets the size of the arrows in points. Default is 8. BGobj = biograph(CMatrix, NodeIDs, ... 'ShowWeights', ShowWeightsValue, ...) controls the display of text indicating the weight of the edges. Choices are 'on' (default) or 'off'. BGobj = biograph(CMatrix, NodeIDs, ... 'ShowTextInNodes', ShowTextInNodesValue, ...) specifies the node property used to label nodes when you display a biograph object using the view method. BGobj = biograph(CMatrix, NodeIDs, ... 'NodeAutoSize', *NodeAutoSizeValue*, ...) controls precalculating the node size before calling the layout engine. Choices are 'on' (default) or 'off'. BGobj = biograph(CMatrix, NodeIDs, ... 'NodeCallback', *NodeCallbackValue*, ...) specifies user callback for all nodes. BGobj = biograph(CMatrix, NodeIDs, ... 'EdgeCallback', *EdgeCallbackValue*, ...) specifies user callback for all edges. BGobj = biograph(CMatrix, NodeIDs, ... 'CustomNodeDrawFcn', CustomNodeDrawFcnValue, ...) specifies function handle to customized function to draw nodes. Default is [].

2 Create a biograph object, assign the node IDs, and then use the get function to display the node IDs.

3 Use the view method to display the biograph object.

```
view(bg2)
```


See Also Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: allshortestpaths, conncomp, dolayout, get, getancestors, getdescendants, getedgesbynodeid, getmatrix, getnodesbyid, getrelatives, isdag, isomorphism, isspantree, maxflow, minspantree, set, shortestpath, topoorder, traverse, view

Purpose	Create local BLAS	T database
Syntax	<pre>blastformat(, blastformat(, blastformat(, blastformat(,</pre>	<pre>butdb', InputdbValue) 'FormatPath', FormatPathValue,) 'Title', TitleValue,) 'Log', LogValue,) 'Protein', ProteinValue,) 'FormatArgs', FormatArgsValue,)</pre>
Arguments	InputdbValue	String specifying a file name or path and file name of a FASTA file containing a set of sequences to be formatted as a blastable database. If you specify only a file name, that file must be on the MATLAB search path or in the current directory. (This corresponds to the formatdb option -i.)
	FormatPathValue	String specifying the full path to the formatdb executable file, including the name and extension of the executable file. Default is the system path.
	TitleValue	String specifying the title for the local database. Default is the input FASTA file name. (This corresponds to the formatdb option -t.)
	LogValue	String specifying the file name or path and file name for the log file associated with the local database. Default is formatdb.log. (This corresponds to the formatdb option -1.)

ProteinValue	Specifies whether the sequences formatted as a local BLAST database are protein or not. Choices are true (default) or false. (This corresponds to the formatdb option -p.)
FormatArgsValue	NCBI formatdb command string, that is, a string containing one or more instances of $-x$ and the option associated with it, used to specify input arguments. For an example, see Using blastformat with formatdb Syntax and Input Arguments on page 2-119.

Description

Note To use the blastformat function, you must have a local copy of the NCBI formatdb executable file available from your system. You can download the formatdb executable file by accessing

http://blast.ncbi.nlm.nih.gov/download.shtml

then clicking the **download** link under the **blast** column for your platform. Run the downloaded executable and configure it for your system. For more information, see the readme file on the NCBI ftp site at:

ftp://ftp.ncbi.nih.gov/blast/documents/blast.html

For convenience, consider placing the NCBI formatdb executable file on your system path.

blastformat('Inputdb', *InputdbValue*) calls a local version of the NCBI formatdb executable file with *InputdbValue*, a file name or path and file name of a FASTA file containing a set of sequences. If you specify only a file name, that file must be on the MATLAB search path or in the current directory. (This corresponds to the formatdb option -i.)

It then formats the sequences as a local, blastable database, by creating multiple files, each with the same name as the *InputdbValue* FASTA

file, but with different extensions. The database files are placed in the same location as the FASTA file.

Note If you rename the database files, make sure they all have the same name.

blastformat(..., 'PropertyName', PropertyValue, ...) calls blastformat with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows.

blastformat(..., 'FormatPath', *FormatPathValue*, ...) specifies the full path to the formatdb executable file, including the name and extension of the executable file. Default is the system path.

blastformat(..., 'Title', *TitleValue*, ...) specifies the title for the local database. Default is the input FASTA file name. (This corresponds to the formatdb option -t.)

Note The 'Title' property does not change the file name of the database files. This title is used internally only, and appears in the report structure returned by the blastlocal function.

blastformat(..., 'Log', *LogValue*, ...) specifies the file name or path and file name for the log file associated with the local database. Default is formatdb.log. The log file captures the progress of the database creation and formatting. (This corresponds to the formatdb option -1.)

blastformat(..., 'Protein', *ProteinValue*, ...) specifies whether the sequences formatted as a local BLAST database are protein or not. Choices are true (default) or false. (This corresponds to the formatdb option -p.) blastformat(..., 'FormatArgs', FormatArgsValue, ...) specifies options using the input arguments for the NCBI formatdb function. FormatArgsValue is a string containing one or more instances of -x and the option associated with it. For example, to specify that the input is a database in ASN.1 format, instead of a FASTA file, you would use the following syntax:

```
blastformat('Inputdb', 'ecoli.asn', 'FormatArgs', '-a T')
```

Tip Use the 'FormatArgs' property to specify formatdb options for which there are no corresponding property name/property value pairs.

Note For a complete list of valid input arguments for the NCBI formatdb function, make sure that the formatdb executable file is located on your system path or current directory, then type the following at your system's command prompt.

formatdb -

Using formatdb Syntax

You can also use the syntax and input arguments accepted by the NCBI formatdb function, instead of the property name/property value pairs listed previously. To do so, supply a single string containing multiple options using the *-x option* syntax. For example, you can specify the ecoli.nt FASTA file, a title of myecoli, and that the sequences are not protein by using

```
blastformat('-i ecoli.nt -t myecoli -p F')
```

Note For a complete list of valid input arguments for the NCBI formatdb function, make sure that the formatdb executable file is located on your system path or current directory, then type the following at your system's command prompt.

formatdb -

Examples Using blastformat with Property Name/Value Pairs

1 Download the ecoli.nt.gz zip file from

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/

and then extract the ecoli.nt FASTA file to your MATLAB current directory.

2 Create a local blastable database from the ecoli.nt FASTA file and give it a title using the 'title' property.

Using blastformat with formatdb Syntax and Input Arguments

1 Download the ecoli.aa.gz zip file from

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/

and then extract the ecoli.aa FASTA file to your MATLAB current directory.

2 Create a local blastable database from the ecoli.aa FASTA file and rename the title and log file using formatdb syntax and input arguments.

blastformat('inputdb', 'ecoli.aa',...

blastformat

'formatargs', '-t myecoli_aa -l ecoli_aa.log');

References	[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. <i>215</i> , 403–410.
	[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. <i>25</i> , 3389–3402.
	For more information on the NCBI formatdb function, see:
	http://blast.ncbi.nlm.nih.gov/docs/formatdb.html
See Also	Bioinformatics Toolbox functions: blastlocal, blastncbi, blastread, blastreadlocal, getblast

Purpose	Perform search on local BLAST database to create BLAST report
Syntax	<pre>blastlocal('InputQuery', InputQueryValue) Data = blastlocal('InputQuery', InputQueryValue) blastlocal(, 'Program', ProgramValue,) blastlocal(, 'Database', DatabaseValue,) blastlocal(, 'BlastPath', BlastPathValue,) blastlocal(, 'Expect', ExpectValue,) blastlocal(, 'Format', FormatValue,) blastlocal(, 'ToFile', ToFileValue,) blastlocal(, 'Filter', FilterValue,) blastlocal(, 'GapOpen', GapOpenValue,) blastlocal(, 'GapExtend', GapExtendValue,)</pre>
	<pre> blastlocal(, 'BLASTArgs', BLASTArgsValue,)</pre>

blastlocal

A raine on ta		
Arguments	InputQueryValue	String specifying the file name or path and file name of a FASTA file containing query nucleotide or amino acid sequence(s). (This corresponds to the blastall option -i.)
	ProgramValue	String specifying a BLAST program. Choices are:
		 'blastp' (default) — Search protein query versus protein database.
		 'blastn' — Search nucleotide query versus nucleotide database.
		 'blastx' — Search translated nucleotide query versus protein database.
		 'tblastn' — Search protein query versus translated nucleotide database.
		 'tblastx' — Search translated nucleotide query versus translated nucleotide database.
		(The <i>ProgramValue</i> argument corresponds to the blastall option -p.)
	DatabaseValue	String specifying a file name or path and file name of a local BLAST database (formatted using the NCBI formatdb function) to search. Default is a local version of the nr database in the MATLAB current directory. (This corresponds to the blastall option -d.)
	BlastPathValue	String specifying the full path to the blastall executable file, including the name and extension of the executable file. Default is the system path.

ExpectValue	Value specifying the statistical significance threshold for matches against database sequences. Choices are any real number. Default is 10. (This corresponds to the blastall option -e.)
FormatValue	Integer specifying the alignment format of the BLAST search results. Choices are:0 (default) — Pairwise
	• 1 — Query-anchored, showing identities
	• 2 — Query-anchored, no identities
	• 3 — Flat query-anchored, showing identities
	• 4 — Flat query-anchored, no identities
	 5 — Query-anchored, no identities and blunt ends
	• 6 — Flat query-anchored, no identities and blunt ends
	• 8 — Tabular
	• 9 — Tabular with comment lines
	(This corresponds to the blastall option -m.)
ToFileValue	String specifying a file name or path and file name in which to save the contents of the BLAST report. (This corresponds to the blastall option -0.)
FilterValue	Controls the application of a filter (DUST filter for the blastn program or SEG filter for other programs) to the query sequence(s). Choices are true (default) or false. (This corresponds to the blastall option -F.)

	GapOpenValue	Integer that specifies the penalty for opening a gap in the alignment of sequences. Default is -1. (This corresponds to the blastall option -G.)
	GapExtendValue	Integer that specifies the penalty for extending a gap in the alignment of sequences. Default is -1. (This corresponds to the blastall option -E.)
	BLASTArgsValue	NCBI blastall command string, that is a string containing one or more instances of $-x$ and the option associated with it, used to specify input arguments. For an example, see step 7 in "Examples" on page 2-131.
Return Values	Data	MATLAB structure or array of structures (if multiple query sequences) containing fields corresponding to BLAST keywords and data from a local BLAST report.
Description	This function assu	mes that
	powerful comparat	lignment Search Tool (BLAST) offers a fast and ive analysis of protein and nucleotide sequences uences in online or local databases.

Note To use the blastlocal function, you must have a local copy of the NCBI blastall executable file (version 2.2.17) available from your system. You can download the blastall executable file by accessing

http://blast.ncbi.nlm.nih.gov/download.shtml

then clicking the **download** link under the **blast** column for your platform. Run the downloaded executable and configure it for your system. For more information, see the readme file on the NCBI ftp site at:

ftp://ftp.ncbi.nih.gov/blast/documents/blast.html

For convenience, consider placing the NCBI blastall executable file on your system path.

blastlocal('InputQuery', InputQueryValue) submits query sequence(s) specified by InputQueryValue, a FASTA file containing nucleotide or amino acid sequence(s), for a BLAST search of a local BLAST database, by calling a local version of the NCBI blastall executable file. The BLAST search results are displayed in the MATLAB Command Window. (This corresponds to the blastall option -i.)

Data = blastlocal('InputQuery', InputQueryValue) returns the BLAST search results in Data, a MATLAB structure or array of structures (if multiple query sequences) containing fields corresponding to BLAST keywords and data from a local BLAST report.

Data contains a subset of the following fields, based on the specified alignment format.

Field	Description
Algorithm	NCBI algorithm used to do a BLAST search.

blastlocal

Field	Description
Query	Identifier of the query sequence submitted to a BLAST search.
Length	Length of the query sequence.
Database	All databases searched.
Hits.Name	Name of a database sequence (subject sequence) that matched the query sequence.
Hits.Score	Alignment score between the query sequence and the subject sequence.
Hits.Expect	Expectation value for the alignment between the query sequence and the subject sequence.
Hits.Length	Length of a subject sequence.
Hits.HSPs.Score	Pairwise alignment score for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Expect	Expectation value for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Identities	Identities (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.

Field	Description
Hits.HSPs.Positives	Identical or similar residues (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject amino acid sequence.
	Note This field applies only to translated nucleotide or amino acid query sequences and/or databases.
Hits.HSPs.Gaps	Nonaligned residues (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Mismatches	Residues that are not similar to each other (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Frame	Reading frame of the translated nucleotide sequence for a high-scoring sequence pair between the query sequence and a subject sequence.
	Note This field applies only when performing translated searches, that is, when using tblastx, tblastn, and blastx.

blastlocal

Field	Description
Hits.HSPs.Strand	Sense (Plus = 5' to 3' and Minus = 3' to 5') of the DNA strands for a high-scoring sequence pair between the query sequence and a subject sequence.
	Note This field applies only when using a nucleotide query sequence and database.
Hits.HSPs.Alignment	Three-row matrix showing the alignment for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.QueryIndices	Indices of the query sequence residue positions for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.SubjectIndices	Indices of the subject sequence residue positions for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.AlignmentLengt	Length of the pairwise alignment for a high-scoring sequence pair between the query sequence and a subject sequence.
Alignment	Entire alignment for the query sequence and the subject sequence(s).
Statistics	Summary of statistical details about the performed search, such as lambda values, gap penalties, number of sequences searched, and number of hits.

... blastlocal(..., 'PropertyName', PropertyValue, ...) calls blastlocal with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows.

... blastlocal(..., 'Program', *ProgramValue*, ...) specifies the BLAST program. Choices are 'blastp' (default), 'blastn', 'blastx', 'tblastn', and 'tblastx'. (This corresponds to the blastall option -p.) For help in selecting an appropriate BLAST program, visit:

http://blast.ncbi.nlm.nih.gov/producttable.shtml

... blastlocal(..., 'Database', DatabaseValue, ...) specifies the local BLAST database (formatted using the NCBI formatdb function) to search. Default is a local version of the nr database in the MATLAB current directory. (This corresponds to the blastall option -d.)

... blastlocal(..., 'BlastPath', *BlastPathValue*, ...) specifies the full path to the blastall executable file, including the name and extension of the executable file. Default is the system path.

... blastlocal(..., 'Expect', *ExpectValue*, ...) specifies a statistical significance threshold for matches against database sequences. Choices are any real number. Default is 10. (This corresponds to the blastall option -e.) You can learn more about the statistics of local sequence comparison at:

http://blast.ncbi.nlm.nih.gov/tutorial/Altschul-1.html#head2

... blastlocal(..., 'Format', *FormatValue*, ...) specifies the alignment format of the BLAST search results. Choices are:

- 0 (default) Pairwise
- 1 Query-anchored, showing identities

- 2 Query-anchored, no identities
- 3 Flat query-anchored, showing identities
- 4 Flat query-anchored, no identities
- 5 Query-anchored, no identities and blunt ends
- 6 Flat query-anchored, no identities and blunt ends
- 7 Not used
- 8 Tabular
- 9 Tabular with comment lines

(This corresponds to the blastall option -m.)

... blastlocal(..., 'ToFile', ToFileValue, ...) saves the contents of the BLAST report to the specified file. (This corresponds to the blastall option -0.)

... blastlocal(..., 'Filter', *FilterValue*, ...) specifies whether a filter (DUST filter for the blastn program or SEG filter for other programs) is applied to the query sequence(s). Choices are true (default) or false. (This corresponds to the blastall option -F.)

... blastlocal(..., 'GapOpen', *GapOpenValue*, ...) specifies the penalty for opening a gap in the alignment of sequences. Default is -1. (This corresponds to the blastall option -G.)

... blastlocal(..., 'GapExtend', *GapExtendValue*, ...) specifies the penalty for extending a gap in the alignment of sequences. Default is -1. (This corresponds to the blastall option -E.)

... blastlocal(..., 'BLASTArgs', *BLASTArgsValue*, ...) specifies options using the input arguments for the NCBI blastall function. *BLASTArgsValue* is a string containing one or more instances or -*x* and the option associated with it. For example, to specify the BLOSUM 45 matrix, you would use the following syntax:

blastlocal('InputQuery', ecoliquery.txt, 'BLASTArgs', '-M BLOSUM45')

Tip Use the 'BlastArgs' property to specify blastall options for which there are no corresponding property name/property value pairs.

Note For a complete list of valid input arguments for the NCBI blastall function, make sure that the blastall executable file is located on your system path or current directory, then type the following at your system's command prompt.

```
blastall -
```

Using blastall Syntax

You can also use the syntax and input arguments accepted by the NCBI blastall function, instead of the property name/property value pairs listed previously. To do so, supply a single string containing multiple options using the *-x option* syntax. For example, you can specify the ecoliquery.txt FASTA file as your query sequences, the blastp program, and the ecoli local database, by using

```
blastlocal('-i ecoliquery.txt -p blastp -d ecoli')
```

Note For a complete list of valid input arguments for the NCBI blastall function, make sure that the blastall executable file is located on your system path or current directory, then type the following at your system's command prompt.

blastall -

Examples 1 Download the ecoli.nt.gz zip file from

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/

blastlocal

and then extract the ecoli.nt and ecoli.aa FASTA files to your MATLAB current directory.

2 Use the blastformat function to create local blastable databases from the ecoli.nt and ecoli.aa FASTA files.

```
blastformat('inputdb', 'ecoli.nt', 'protein', 'false');
blastformat('inputdb', 'ecoli.aa');
```

3 Use the getgenbank function to retrieve sequence information for the *E. coli* threonine operon from the GenBank database.

```
S = getgenbank('M28570.1');
```

4 Use the fastawrite function to create a FASTA file named query_nt.fa from this sequence information, using only the accession number as the header.

S.Header = S.Accession; fastawrite('query_nt.fa', S);

5 Use MATLAB syntax to submit the query sequence in the query_nt.fa FASTA file for a BLAST search of the local amino acid database ecoli.aa. Specify the BLAST program blastx. Return the BLAST search results in results, a MATLAB structure.

6 Use blastall syntax to submit the query sequence in the query_nt.fa FASTA file for a BLAST search of the local nucleotide database ecoli.nt. Specify the BLAST program blastn and an expectation value of 0.0001. Display the BLAST search results in the MATLAB Command Window.

```
blastlocal('-i query_nt.fa -d ecoli.nt -p blastn -e 0.0001')
```

7	Submit the query sequence in the query_nt.fa FASTA file for a
	BLAST search of the local nucleotide database ecoli.nt. Specify the
	BLAST program blastn and a tabular alignment format. Save the
	contents of the BLAST report to a file named myecoli_nt.txt.

References [1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. *215*, 403–410.

[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. *25*, 3389–3402.

For more information on the NCBI blastall function, see:

http://blast.ncbi.nlm.nih.gov/docs/blastall.html

See Also Bioinformatics Toolbox functions: blastformat, blastncbi, blastread, blastreadlocal, getblast

blastncbi

```
Purpose
                 Create remote NCBI BLAST report request ID or link to NCBI BLAST
                 report
Syntax
                 blastncbi(Seg, Program)
                 RID = blastncbi(Seg, Program)
                  [RID, RTOE] = blastncbi(Seq, Program)
                  ... blastncbi(Seg, Program, ... 'Database',
                 DatabaseValue, ...)
                  ... blastncbi(Seq, Program, ... 'Descriptions',
                     DescriptionsValue, ...)
                  ... blastncbi(Seq, Program, ... 'Alignments',
                 AlignmentsValue,
                     ...)
                  ... blastncbi(Seq, Program, ... 'Filter', FilterValue, ...)
                  ... blastncbi(Seq, Program, ... 'Expect', ExpectValue, ...)
                  ... blastncbi(Seg, Program, ... 'Word', WordValue, ...)
                  ... blastncbi(Seg, Program, ... 'Matrix', MatrixValue, ...)
                  ... blastncbi(Seg, Program, ... 'GapOpen',
                  GapOpenValue, ...)
                  ... blastncbi(Seq, Program, ... 'ExtendGap', ExtendGapValue,
                     ...)
                  ... blastncbi(Seg, Program, ... 'GapCosts', GapCostsValue,
                     ...)
                  ... blastncbi(Seq, Program, ... 'Inclusion', InclusionValue,
                     ...)
                  ... blastncbi(Seg, Program, ... 'Pct', PctValue, ...)
                  ... blastncbi(Seg, Program, ... 'Entrez', EntrezValue, ...)
```

Arguments	
-----------	--

Seq

Nucleotide or amino acid sequence specified by any of the following:

- GenBank, GenPept, or RefSeq accession number
- GI sequence identifier
- FASTA file
- URL pointing to a sequence file
- String
- Character array
- MATLAB structure containing a Sequence field

Program String specifying a BLAST program. Choices are:

- 'blastn' Search nucleotide query versus nucleotide database.
- 'blastp' Search protein query versus protein database.
- 'blastx' Search translated nucleotide query versus protein database.
- 'megablast' Quickly search for highly similar nucleotide sequences.
- 'psiblast' Search protein query using position-specific iterative BLAST.
- 'tblastn' Search protein query versus translated nucleotide database.
- 'tblastx' Search translated nucleotide query versus translated nucleotide database.

blastncbi

DatabaseValue	String specifying a database. Compatible databases depend on the type of sequence specified by <i>Seq</i> , and the program specified by <i>Program</i> .
	For a list of database choices for nucleotide sequences and amino acid sequences, see the lists in the section "Description" on page 2-141.
DescriptionsValue	Value specifying the number of short descriptions to include in the report. Default is 100, unless <i>Program</i> = 'psiblast', then default is 500.
AlignmentsValue	Value specifying the number of sequences for which high-scoring segment pairs (HSPs) are reported. Default is 100, unless <i>Program</i> = 'psiblast', then default is 500.
FilterValue	String specifying a filter. Possible choices are:
	• 'L' (default) — Low complexity.
	• 'R' — Human repeats.
	• 'm' — Mask for lookup table.
	• 'lcase' — Turn on the lowercase mask.
	Choices vary depending on the selected <i>Program.</i> For more information, see the table Choices for Optional Properties by BLAST Program on page 2-146.
ExpectValue	Value specifying the statistical significance threshold for matches against database sequences. Choices are any real number. Default is 10.

WordValue Value specifying a word length for the query sequence.

Choices for amino acid sequences are:

- 2
- 3 (default)

Choices for nucleotide sequences are:

- 7
- 11 (default)
- 15

Choices when *Program* = 'megablast' are:

- 11
- 12
- 16
- 20
- 24
- 28 (default)
- 32
- 48
- 64

MatrixValue String specifying the substitution matrix for amino acid sequences only. The matrix assigns the score for a possible alignment of any two amino acid residues. Choices are: 'PAM30' 'PAM70' 'BLOSUM45' 'BLOSUM62' (default) 'BLOSUM80' • GapOpenValue Integer that specifies the penalty for opening a gap in the alignment of amino acid sequences. Choices and default depend on the substitution matrix specified by the 'Matrix' property. For more information, see the table Choices for the GapCosts Property by Matrix on page 2-147. ExtendGapValue Integer that specifies the penalty for extending a gap in the alignment of amino acid sequences. Choices and default depend on the substitution matrix specified by the 'Matrix' property. For more information, see the table Choices for the GapCosts Property by Matrix on page 2-147. GapCostsValue Vector containing two integers: the first is the penalty for opening a gap, and the second is the penalty for extending the gap, in the alignment of amino acid sequences. Choices and default depend on the substitution matrix specified by the 'Matrix' property. For more information, see the table Choices for the GapCosts Property by Matrix on page 2-147.

InclusionValue Value specifying the statistical significance threshold for including a sequence in the Position-Specific Scoring Matrix (PSSM) created by PSI-BLAST for the subsequent iteration. Default is 0.005.

Note Specify an *InclusionValue* only when *Program* = 'psiblast'.

blastncbi

Value specifying the percent identity and the corresponding match and mismatch score for matching existing sequences in a public database. Choices are:

• None

PctValue

EntrezValue

- 99 (default) 99, 1, -3
- 98 98, 1, -3
- 95 95, 1, -3
- 90 90, 1, -2
- 85 85, 1, -2
- 80 80, 2, -3
- 75 75, 4, -5
- 60 60, 1, -1

Note Specify a *PctValue* only when *Program* = 'megablast'.

String specifying Entrez query syntax to search a subset of the selected database.

Tip Use this property to limit searches based on molecule types, sequence lengths, organisms, and so on.

blastncbi

Return Values	RID RTOE	Request ID for the NCBI BLAST report. Request Time Of Execution, which is an estimate of the time (in minutes) until completion. Tip Use this time estimate with the 'WaitTime' property when using the getblast function.
Description	<pre>powerful comparati against known sequ blastncbi(Seq, P, a Seq, a nucleotide BLAST program, an NCBI BLAST repor program, visit: http://blast.n RID = blastncbi(A report. [RID, RTOE] = bla Request ID for the D Execution, which is</pre>	<pre>ignment Search Tool (BLAST) offers a fast and we analysis of protein and nucleotide sequences ences in online databases. rogram) sends a BLAST request to NCBI against or amino acid sequence, using Program, a specified ind then returns a command window link to the et. For help in selecting an appropriate BLAST icbi.nlm.nih.gov/producttable.shtml Seq, Program) returns RID, the Request ID for the astncbi(Seq, Program) returns both RID, the NCBI BLAST report, and RTOE, the Request Time Of an estimate of the time until completion. the 'WaitTime' property when using the getblast</pre>
	blastncbi(. blastncbi with opt	, ' <i>PropertyName</i> ', <i>PropertyValue</i> ,) calls tional properties that use property name/property n specify one or more properties in any order. Each

PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are explained below. Additional information on these optional properties can be found at:

```
http://www.ncbi.nlm.nih.gov/staff/tao/URLAPI/blastcgihelp_new.html
```

... blastncbi(Seq, Program, ... 'Database', DatabaseValue, ...) specifies a database for the alignment search. Compatible databases depend on the type of sequence specified by Seq, and the program specified by Program.

Database choices for nucleotide sequences are:

- 'nr' (default)
- 'refseq_rna'
- 'refseq_genomic'
- 'est'
- 'est_human'
- 'est_mouse'
- 'est_others'
- 'gss'
- 'htgs'
- 'pat'
- 'pdb'
- 'month'
- 'alu_repeats'
- 'dbsts'
- 'chromosome'
- 'wgs'

• 'env_nt'

Database choices for amino acid sequences are:

- 'nr' (default)
- 'refseq_protein'
- 'swissprot'
- 'pat'
- 'month'
- 'pdb'
- 'env_nr'

For help in selecting an appropriate database, visit:

http://blast.ncbi.nlm.nih.gov/producttable.shtml

... blastncbi(Seq, Program, ... 'Descriptions', DescriptionsValue, ...) specifies the number of short descriptions to include in the report, when you do not specify return values.

... blastncbi(Seq, Program, ...'Alignments', AlignmentsValue, ...) specifies the number of sequences for which high-scoring segment pairs (HSPs) are reported, when you do not specify return values.

... blastncbi(Seq, Program, ... 'Filter', FilterValue, ...) specifies the filter to apply to the query sequence.

... blastncbi(Seq, Program, ... 'Expect', ExpectValue, ...) specifies a statistical significance threshold for matches against database sequences. Choices are any real number. Default is 10. You can learn more about the statistics of local sequence comparison at:

http://blast.ncbi.nlm.nih.gov/tutorial/Altschul-1.html#head2

... blastncbi(Seq, Program, ... 'Word', WordValue, ...) specifies a word size for the query sequence.

... blastncbi(Seq, Program, ... 'Matrix', MatrixValue, ...) specifies the substitution matrix for amino acid sequences only. This matrix assigns the score for a possible alignment of two amino acid residues.

... blastncbi(Seq, Program, ... 'GapOpen', GapOpenValue, ...) specifies the penalty for opening a gap in the alignment of amino acid sequences. Choices and default depend on the substitution matrix specified by the 'Matrix' property. For more information, see the table Choices for the GapCosts Property by Matrix on page 2-147.

For more information about allowed gap penalties for various matrices, see:

http://blast.ncbi.nlm.nih.gov/html/sub_matrix.html

... blastncbi(Seq, Program, ... 'ExtendGap', ExtendGapValue, ...) specifies the penalty for extending a gap greater than one space in the alignment of amino acid sequences. Choices and default depend on the substitution matrix specified by the 'Matrix' property. For more information, see the table Choices for the GapCosts Property by Matrix on page 2-147.

... blastncbi(Seq, Program, ... 'GapCosts', GapCostsValue, ...) specifies the penalty for opening and extending a gap in the alignment of amino acid sequences. GapCostsValue is a vector containing two integers: the first is the penalty for opening a gap, and the second is the penalty for extending the gap. Choices and default depend on the substitution matrix specified by the 'Matrix' property. For more information, see the table Choices for the GapCosts Property by Matrix on page 2-147.

... blastncbi(Seq, Program, ... 'Inclusion', InclusionValue, ...) specifies the statistical significance threshold for including a sequence in the Position-Specific Scoring Matrix (PSSM) created by PSI-BLAST for the subsequent iteration. Default is 0.005. **Note** Specify an *InclusionValue* only when *Program* = 'psiblast'.

... blastncbi(Seq, Program, ... 'Pct', PctValue, ...) specifies the percent identity and the corresponding match and mismatch score for matching existing sequences in a public database. Default is 99.

Note Specify a *PctValue* only when *Program* = 'megablast'.

... blastncbi(Seq, Program, ... 'Entrez', EntrezValue, ...) specifies Entrez query syntax to search a subset of the selected database.

Note For more information about Entrez query syntax, see:

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helpentrez.chapter.EntrezHelp

Tip Use this property to limit searches based on molecule types, sequence lengths, organisms, and so on. For more information on limiting searches, see:

http://blast.ncbi.nlm.nih.gov/blastcgihelp.shtml#entrez_query

		Pct		None 99 98 95 90 85 80 75			
		GapCosts			See the next table.		
Choices for Optional Properties by BLAST Program	are	Matrix			' PAM30' ' PAM70' ' BLOSUM45 '	'BLOSUM62' (default) 'BLOSUM80'	
Properties	properties	Word	7 11 (default) 15	11 12 16 20 24 28 (default) 32 48 64	2 3 (default)		
for Optional	he following	Filter	'L'(default) 'R' 'm' 'Icase'	- -	'L' (default) 'm' 'Icase'	'L' (default) 'R' 'm' 'Icase'	'L' (default) 'm' 'Icase'
Choices	Then choices for the following properties are	Database	'nr'(default) 'est' 'est_human' 'est_mouse'	est_others' gss' htgs' pdb' month' alu_repeats' dbsts' chromosome' wgs'	'refseq_genomic' 'env_nt'		'nr'(default) 'swissprot' 'pat' 'pdb' 'month' 'refseq_protein' 'env_nr'
2-14	When	BLAST program is	'blastn'	'megablast'	'tblastn'	'tblastx'	'blastp' 'blastx' 'psiblast'

blastncbi

When substitution matrix is	Then choices for GapCosts are
'PAM30'	[7 2] [6 2] [5 2] [10 1] [9 1] (default) [8 1]
'PAM70'	[8 2] [7 2]
'BLOSUM80'	[7 2] [6 2] [11 1] [10 1] (default) [9 1]
'BLOSUM45'	<pre>[13 3] [12 3] [11 3] [10 3] [15 2] (default) [14 2] [13 2] [12 2] [19 1] [18 1] [17 1] [16 1]</pre>
'BLOSUM62'	[9 2] [8 2] [7 2] [12 1] [11 1] (default) [10 1]

Choices for the GapCosts Property by Matrix

blastncbi

Examples	% Get a sequence from the Protein Data Bank and create % a MATLAB structure. S = getpdb('1CIV')
	% Use the structure as input for a BLAST search with an % expectation of 1e-10. blastncbi(S,'blastp','expect',1e-10)
	% Click the URL link (Link to NCBI BLAST Request) to go % directly to the NCBI request.
	% You can also perform a typical BLAST protein search directly with % an accession number and an alternative scoring matrix. RID = blastncbi('AAA59174','blastp','matrix','PAM70,' 'expect',1e-10)
	% You can pass the RID to GETBLAST to parse the report and % load it into a MATLAB structure. Struct = getblast(RID)
References	[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. <i>215</i> , 403–410.
	[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. <i>25</i> , 3389–3402.
See Also	Bioinformatics Toolbox functions: blastformat, blastlocal, blastread, blastreadlocal, getblast

blastread

Purpose	Read data from NCBI BLAST report file	
Syntax	Data = blastread(BLASTReport)	
Arguments	BLASTReport	NCBI BLAST-formatted report specified by any of the following:
		• File name or path and file name, such as returned by the getblast function with the 'ToFile' property.
		• URL pointing to an NCBI BLAST report.
		• MATLAB character array that contains the text for an NCBI BLAST report.
		If you specify only a file name, that file must be on the MATLAB search path or in the current directory.
Return Values	Data	MATLAB structure or array of structures (if multiple query sequences) containing fields corresponding to BLAST keywords and data from an NCBI BLAST report.
Description	The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative analysis of protein and nucleotide sequences against known sequences in online databases. BLAST reports can be lengthy, and parsing the data from the various formats can be cumbersome.	
	Data = blastread(BLASTReport) reads a BLAST report from BLASTReport, an NCBI-formatted report, and returns Data, a MATLAB structure or array of structures (if multiple query sequences) containing	

fields corresponding to the BLAST keywords. <code>blastread</code> parses the basic BLAST reports <code>BLASTN</code>, <code>BLASTP</code>, <code>BLASTX</code>, <code>TBLASTN</code>, and <code>TBLASTX</code>.

Data contains the following fields.

Field	Description
RID	Request ID for retrieving results for a specific NCBI BLAST search.
Algorithm	NCBI algorithm used to do a BLAST search.
Query	Identifier of the query sequence submitted to a BLAST search.
Database	All databases searched.
Hits.Name	Name of a database sequence (subject sequence) that matched the query sequence.
Hits.Length	Length of a subject sequence.
Hits.HSPs.Score	Pairwise alignment score for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Expect	Expectation value for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Identities	Identities (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.

Field	Description
Hits.HSPs.Positives	Identical or similar residues (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject amino acid sequence.
	Note This field applies only to translated nucleotide or amino acid query sequences and/or databases.
Hits.HSPs.Gaps	Nonaligned residues (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Frame	Reading frame of the translated nucleotide sequence for a high-scoring sequence pair between the query sequence and a subject sequence.
	Note This field applies only when performing translated searches, that is, when using tblastx, tblastn, and blastx.

blastread

Field	Description
Hits.HSPs.Strand	Sense (Plus = 5' to 3' and Minus = 3' to 5') of the DNA strands for a high-scoring sequence pair between the query sequence and a subject sequence.
	Note This field applies only when using a nucleotide query sequence and database.
Hits.HSPs.Alignment	Three-row matrix showing the
ni to mor on trigimont	alignment for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.QueryIndices	Indices of the query sequence residue positions for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.SubjectIndices	Indices of the subject sequence residue positions for a high-scoring sequence pair between the query sequence and a subject sequence.
Statistics	Summary of statistical details about the performed search, such as lambda values, gap penalties, number of sequences searched, and number of hits.

Examples 1 Create an NCBI BLAST report request using a GenPept accession number.

RID = blastncbi('AAA59174', 'blastp', 'expect', 1e-10)

RID =

'1175088155-31624-126008617054.BLASTQ3'

2 Pass the Request ID for the report to the getblast function, and save the report data to a text file.

```
getblast(RID, 'ToFile' ,'AAA59174_BLAST.rpt');
```

Note You may need to wait for the report to become available on the NCBI Web site before you can run the preceding command.

3 Using the saved file, read the results into a MATLAB structure.

References [1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. *215*, 403–410.

[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. *25*, 3389–3402.

For more information about reading and interpreting NCBI BLAST reports, see:

blastread

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

See Also Bioinformatics Toolbox functions: blastformat, blastlocal, blastncbi, blastreadlocal, getblast

Purpose	Read data from local BLAST report	
Syntax	Data = blastreadlocal(BLASTReport, Format)	
Arguments	BLASTReport	BLAST report specified by any of the following:File name or path and file name of a locally
		created BLAST report file, such as returned by the blastlocal function with the 'ToFile' property.
		• MATLAB character array that contains the text for a local BLAST report.
		If you specify only a file name, that file must be on the MATLAB search path or in the current directory.
	Format	Integer specifying the alignment format used to create <i>BLASTReport</i> . Choices are:
		• 0 — Pairwise
		• 1 — Query-anchored, showing identities
		• 2 — Query-anchored, no identities
		• 3 — Flat query-anchored, showing identities
		• 4 — Flat query-anchored, no identities
		ullet 5 — Query-anchored, no identities and blunt ends
		 6 — Flat query-anchored, no identities and blunt ends
		• 7 — Not used
		• 8 — Tabular
		• 9 — Tabular with comment lines

Return Values	Data	query sequences)	re or array of structures (if multiple containing fields corresponding rds and data from a local BLAST		
Description	powerful compa against known s	The Basic Local Alignment Search Tool (BLAST) offers a fast and powerful comparative analysis of protein and nucleotide sequences against known sequences in online and local databases. BLAST reports can be lengthy, and parsing the data from the various formats can be cumbersome.			
	Data = blastreadlocal(BLASTReport, Format) reads BLASTReport a locally created BLAST report file, and returns Data, a MATLAB structure or array of structures (if multiple query sequences) containi fields corresponding to BLAST keywords and data from a local BLAST report. Format is an integer specifying the alignment format used to create BLASTReport.				
		Note The function assumes the BLAST report was produced using version 2.2.17 of the blastall executable.			
	Data contains a subset of the following fields, based on the specalignment format. Field Description				
			-		
	Algorithm		NCBI algorithm used to do a BLAST search.		
	Query		Identifier of the query sequence submitted to a BLAST search.		
	Length		Length of the query sequence.		

All databases searched.

Database

Field	Description
Hits.Name	Name of a database sequence (subject sequence) that matched the query sequence.
Hits.Score	Alignment score between the query sequence and the subject sequence.
Hits.Expect	Expectation value for the alignment between the query sequence and the subject sequence.
Hits.Length	Length of a subject sequence.
Hits.HSPs.Score	Pairwise alignment score for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Expect	Expectation value for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Identities	Identities (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.

Field	Description
Hits.HSPs.Positives	Identical or similar residues (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject amino acid sequence.
	Note This field applies only to translated nucleotide or amino acid query sequences and/or databases.
Hits.HSPs.Gaps	Nonaligned residues (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Mismatches	Residues that are not similar to each other (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.

Field	Description
Hits.HSPs.Frame	Reading frame of the translated nucleotide sequence for a high-scoring sequence pair between the query sequence and a subject sequence.
	Note This field applies only when performing translated searches, that is, when using tblastx, tblastn, and blastx.
Hits.HSPs.Strand	Sense (Plus = 5' to 3' and Minus = 3' to 5') of the DNA strands for a high-scoring sequence pair between the query sequence and a subject sequence.
	Note This field applies only when using a nucleotide query sequence and database.
Hits.HSPs.Alignment	Three-row matrix showing the alignment for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.QueryIndices	Indices of the query sequence residue positions for a high-scoring sequence pair between the query sequence and a subject sequence.

Field	Description
Hits.HSPs.SubjectIndices	Indices of the subject sequence residue positions for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.AlignmentLength	Length of the pairwise alignment for a high-scoring sequence pair between the query sequence and a subject sequence.
Alignment	Entire alignment for the query sequence and the subject sequence(s).
Statistics	Summary of statistical details about the performed search, such as lambda values, gap penalties, number of sequences searched, and number of hits.

Examples

1 Download the ecoli.nt.gz zip file from

ftp://ftp.ncbi.nih.gov/blast/db/FASTA/

and then extract the $\verb+ecoli.nt$ FASTA file to your MATLAB current directory.

2 Create a local blastable database from the ecoli.nt FASTA file.

```
blastformat('inputdb', 'ecoli.nt', 'protein', 'false');
```

3 Use the getgenbank function to retrieve two sequences from the GenBank database.

```
S1 = getgenbank('M28570.1');
S2 = getgenbank('M12565');
```

4 Use the fastawrite function to create a FASTA file named query_multi_nt.fa from these two sequences, using the only accession number as the header.

```
Seqs(1).Header = S1.Accession;
Seqs(1).Sequence = S1.Sequence;
Seqs(2).Header = S2.Accession;
Seqs(2).Sequence = S2.Sequence;
fastawrite('query_multi_nt.fa', Seqs);
```

5 Submit the query sequences in the query_multi_nt.fa FASTA file for a BLAST search of the local nucleotide database ecoli.nt. Specify the BLAST program blastn and a tabular alignment format. Save the contents of the BLAST report to a file named myecoli_nt8.txt, and then read the local BLAST report, displaying the results in the MATLAB Command Window.

6 Submit the query sequences in the query_multi_nt.fa FASTA file for a BLAST search of the local nucleotide database ecoli.nt. Specify the BLAST program blastn and a query-anchored format. Save the contents of the BLAST report to a file named myecoli_nt1.txt, and then read the local BLAST report, saving the results in results, an array of structures.

References

[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. *215*, 403–410.

[2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. *25*, 3389–3402.

For more information about reading and interpreting BLAST reports, see:

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/information3.html

See Also Bioinformatics Toolbox functions: blastformat, blastlocal, blastncbi, blastread, getblast

Purpose	Return BLOSUM scoring matrix		
Syntax	<pre>Matrix = blosum(Identity) [Matrix, MatrixInfo] = blosum(Identity) = blosum(Identity,'Extended', ExtendedValue,) = blosum(Identity,'Order', OrderValue,)</pre>		
Arguments	Identity	Scalar specifying a percent identity level. Choices are:	
	• Values from 30 to 90 in increments of 5		
	• 62		
		• 100	
	ExtendedValue	Controls the listing of extended amino acid codes. Choices are true (default) or false.	
	OrderValue	Character string of legal amino acid characters that specifies the order amino acids are listed in the matrix. The length of the character string must be 20 or 24.	

blosum

Return	Matrix	BLOSUM (Blocks Substitution Matrix) scoring
Values	Matrix	matrix with a specified percent identity.
	MatrixInfo	Structure of information about <i>Matrix</i> containing the following fields:
		• Name
		• Scale
		• Entropy
		• ExpectedScore
		• HighestScore
		• LowestScore
		• Order
Description	Matrix) scoring r ordering of the ou A R N D C Q [Matrix, Matri	e

• Order

... = blosum(Identity, ... 'PropertyName', PropertyValue, ...) calls blosum with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = blosum(Identity, ... 'Extended', ExtendedValue, ...) controls the listing of extended amino acid codes. Choices are true (default) or false. If ExtendedValue is false, returns the scoring matrix for the standard 20 amino acids. Ordering of the output when ExtendedValue is false is

A R N D C Q E G H I L K M F P S T W Y V

... = blosum(*Identity*, ...'Order', *OrderValue*, ...) returns a BLOSUM matrix ordered by *OrderValue*, a character string of legal amino acid characters that specifies the order amino acids are listed in the matrix. The length of the character string must be 20 or 24.

Examples Return a BLOSUM matrix with a percent identity level of 50.

B50 = blosum(50)

Return a BLOSUM matrix with the amino acids in a specific order.

B75 = blosum(75, 'Order', 'CSTPAGNDEQHRKMILVFYW')

See Also Bioinformatics Toolbox functions: dayhoff, gonnet, nwalign, pam, swalign

celintensityread

Purpose	<pre>Read probe intensities from Affymetrix CEL files ProbeStructure = celintensityread(CELFiles, CDFFile) ProbeStructure = celintensityread(, 'CELPath', CELPathValue,) ProbeStructure = celintensityread(, 'PMOnly', PMOnlyValue,) ProbeStructure = celintensityread(, 'Verbose', VerboseValue,) CELFiles Any of the following:</pre>						
Syntax	<pre>ProbeStructure = celintensityread(, 'CELPath', CELPathValue,) ProbeStructure = celintensityread(, 'CDFPath', CDFPathValue,) ProbeStructure = celintensityread(, 'PMOnly', PMOnlyValue,) ProbeStructure = celintensityread(, 'Verbose', VerboseValue,) CELFiles Any of the following: • String specifying a single CEL file name. • '*', which reads all CEL files in the current directory. • ' ', which opens the Select CEL Files dialog box from which you select the CEL files. From</pre>						
Arguments	CELFiles	 String specifying a single CEL file name. '*', which reads all CEL files in the current directory. ' ', which opens the Select CEL Files dialog box from which you select the CEL files. From this dialog box, you can press and hold Ctrl or Shift while clicking to select multiple CEL files. 					
	CDFFile	-					
	CELPathValue	String specifying the path and directory where the files specified in <i>CELFiles</i> are stored.					

	CDFPathValue	String specifying the path and directory where the file specified in <i>CDFFile</i> is stored.
	PMOnlyValue	Property to include or exclude the mismatch (MM) probe intensity values in the returned structure. Enter true to return only perfect match (PM) probe intensities. Enter false to return both PM and MM probe intensities. Default is true.
	VerboseValue	Controls the display of a progress report showing the name of each CEL file as it is read. When <i>VerboseValue</i> is false, no progress report is displayed. Default is true.
Return Values	ProbeStructure	MATLAB structure containing information from the CEL files, including probe intensities, probe indices, and probe set IDs.
Description	Note This function	does not work on the Solaris platform.
	the specified Affym (created from Affym assays), and then c information from th indices, and probe s	celintensityread(<i>CELFiles, CDFFile</i>) reads etrix CEL files and the associated CDF library file netrix GeneChip arrays for expression or genotyping reates <i>ProbeStructure</i> , a structure containing ne CEL files, including probe intensities, probe et IDs. <i>CELFiles</i> is a string or cell array of CEL file a string specifying a CDF file name.
	directory. If you set dialog box from wh	to '*', then it reads all CEL files in the current <i>CELFiles</i> to '', then it opens the Select CEL Files ch you select the CEL files. From this dialog box, nold Ctrl or Shift while clicking to select multiple

If you set *CDFFile* to ' ', then it opens the Select CDF File dialog box from which you select the CDF file.

ProbeStructure = celintensityread(..., 'PropertyName', PropertyValue, ...) calls celintensityread with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

ProbeStructure = celintensityread(..., 'CELPath', CELPathValue, ...) specifies a path and directory where the files specified by CELFiles are stored.

ProbeStructure = celintensityread(..., 'CDFPath', CDFPathValue, ...) specifies a path and directory where the file specified by CDFFile is stored.

ProbeStructure = celintensityread(..., 'PMOnly', PMOnlyValue, ...) includes or excludes the mismatch (MM) probe intensity values. When PMOnlyValue is true, celintensityread returns only perfect match (PM) probe intensities. When PMOnlyValue is false, celintensityread returns both PM and MM probe intensities. Default is true.

You can learn more about the Affymetrix CEL files and download sample files from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

Note Some Affymetrix CEL files are combined with other data files in a DTT or CAB file. You must download and use the Affymetrix Data Transfer Tool to extract these files from the DTT or CAB file. You can download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

You will have to register and log in at the Affymetrix Web site to download the Affymetrix Data Transfer Tool.

Field	Description
CDFName	File name of the Affymetrix CDF library file.
CELNames	Cell array of names of the Affymetrix CEL files.
NumChips	Number of CEL files read into the structure.
NumProbeSets	Number of probe sets in each CEL file.
NumProbes	Number of probes in each CEL file.
ProbeSetIDs	Cell array of the probe set IDs from the Affymetrix CDF library file.
ProbeIndices	Column vector containing probe indexing information. Probes within a probe set are numbered 0 through N - 1, where N is the number of probes in the probe set.

ProbeStructure contains the following fields.

Field	Description			
GroupNumbers	Column vector containing group numbers for probes within the probe set. For gene expression data, the group number for all probes is 1. For SNP (genotyping) data, the group numbers for probes are:			
	• 1 — Allele A – (sense)			
	• 2 — Allele B – (sense)			
	• 3 — Allele A + (antisense)			
	• 4 — Allele B + (antisense)			
PMIntensities	Matrix containing perfect match (PM) probe intensity values. Each row corresponds to a probe, and each column corresponds to a CEL file. The rows are ordered the same way as in ProbeIndices, and the columns are ordered the same way as in the CELFiles input argument.			
MMIntensities (optional)	Matrix containing mismatch (MM) probe intensity values. Each row corresponds to a probe, and each column corresponds to a CEL file. The rows are ordered the same way as in ProbeIndices, and the columns are ordered the same way as in the CELFiles input argument.			

ProbeStructure = celintensityread(..., 'Verbose', VerboseValue, ...) controls the display of a progress report showing the name of each CEL file as it is read. When VerboseValue is false, no progress report is displayed. Default is true.

Examples

The following example assumes that you have the HG_U95Av2.CDF library file stored at D:\Affymetrix\LibFiles\HGGenome, and that your current directory points to a location containing CEL files associated

with this CDF library file. In this example, the celintensityread function reads all the CEL files in the current directory and a CDF file in a specified directory. The next command line uses the rmabackadj function to perform background adjustment on the PM probe intensities in the PMIntensities field of PMProbeStructure.

```
PMProbeStructure = celintensityread('*', 'HG_U95Av2.CDF',...
'CDFPath', 'D:\Affymetrix\LibFiles\HGGenome');
BackAdjustedMatrix = rmabackadj(PMProbeStructure.PMIntensities);
```

The following example lets you select CEL files and a CDF file to read using Open File dialog boxes:

```
PMProbeStructure = celintensityread(' ', ' ');
```

See Also Bioinformatics Toolbox functions: affygcrma, affyinvarsetnorm, affyprobeseqread, affyread, affyrma, affysnpintensitysplit, agferead, gcrma, gcrmabackadj, gprread, ilmnbsread, probelibraryinfo, probesetlink, probesetlookup, probesetplot, probesetvalues, rmabackadj, rmasummary, sptread

```
Purpose
                 Perform circular binary segmentation (CBS) on array-based
                 comparative genomic hybridization (aCGH) data
Syntax
                 SegmentStruct = cghcbs(CGHData)
                 SegmentStruct = cghcbs(CGHData, ...'Alpha',
                 AlphaValue, ...)
                 SegmentStruct = cghcbs(CGHData, ...'Permutations',
                     PermutationsValue, ...)
                 SegmentStruct = cghcbs(CGHData, ...'Method', MethodValue,
                     ...)
                 SegmentStruct = cghcbs(CGHData, ...'Smooth', SmoothValue,
                     ...)
                 SegmentStruct = cghcbs(CGHData, ... 'Prune',
                 PruneValue, ...)
                 SegmentStruct = cghcbs(CGHData, ...'Errsum', ErrsumValue,
                     ...)
                 SegmentStruct = cghcbs(CGHData, ... 'WindowSize',
                     WindowSizeValue, ...)
                 SegmentStruct = cghcbs(CGHData, ...'SampleIndex',
                     SampleIndexValue, ...)
                 SegmentStruct = cghcbs(CGHData, ...'Chromosome',
                     ChromosomeValue, ...)
                 SegmentStruct = cghcbs(CGHData, ...'Showplot',
                 ShowplotValue,
                     ...)
                 SegmentStruct = cghcbs(CGHData, ... 'Verbose', VerboseValue,
                     ...)
```

Arguments

CGHData

Array-based comparative genomic hybridization (aCGH) data in either of the following forms:

- Structure with the following fields:
 - Sample Cell array of strings containing the sample names (optional).
 - Chromosome Vector containing the chromosome numbers on which the clones are located.
 - GenomicPosition Vector containing the genomic positions (in any unit) to which the clones are mapped.
 - Log2Ratio Matrix containing log₂ ratio of test to reference signal intensity for each clone. Each row corresponds to a clone, and each column corresponds to a sample.
- Matrix in which each row corresponds to a clone. The first column contains the chromosome number, the second column contains the genomic position, and the remaining columns each contain the log₂ ratio of test to reference signal intensity for a sample.
- AlphaValue Scalar that specifies the significance level for the statistical tests to accept change points. Default is 0.01.
- PermutationsValue Scalar that specifies the number of permutations used for p-value estimation. Default is 10,000.

MethodValue	String that specifies the method to estimate the p-values. Choices are 'Perm' or 'Hybrid' (default). 'Perm' does a full permutation, while 'Hybrid' uses a faster, tail probability-based permutation. When using the 'Hybrid' method, the 'Perm' method is applied automatically when segment data length becomes less than 200.
SmoothValue	Controls the smoothing of outliers before segmenting using the procedure explained by Olshen et al. (2004). Choices are true (default) or false.
PruneValue	Controls the elimination of change points identified due to local trends in the data that are not indicative of real copy number change, using the procedure explained by Olshen et al. (2004). Choices are true or false (default).
ErrsumValue	Scalar that specifies the allowed proportional increase in the error sum of squares when eliminating change points using the 'Prune' property. Commonly used values are 0.05 and 0.1. Default is 0.05.
WindowSizeValue	Scalar that specifies the size of the window (in data points) used to divide the data when using the 'Perm' method on large data sets. Default is 200.
SampleIndexValue	A single sample index or a vector of sample indices that specify the sample(s) to analyze. Default is all sample indices.
ChromosomeValue	A single chromosome number or a vector of chromosome numbers that specify the data to analyze. Default is all chromosome numbers.

ShowplotValue Controls the display of plots of the segment means over the original data. Choices are either:

- true All chromosomes in all samples are plotted. If there are multiple samples in *CGHData*, then each sample is plotted in a separate Figure window.
- false No plot.
- W The layout displays all chromosomes in the whole genome in one plot in the Figure window.
- S The layout displays each chromosome in a subplot in the Figure window.
- *I* An integer specifying only one of the chromosomes in *CGHData* to be plotted.

Default is:

- false When return values are specified.
- true and W When return values are not specified.
- VerboseValue Controls the display of a progress report of the analysis. Choices are true (default) or false.

cghcbs

Return Values	SegmentStruct	 Structure containing segmentation information in the following fields: Sample — Sample name from <i>CGHData</i> input argument. If the input argument does not include sample names, then sample names are assigned as Sample1, Sample2, and so forth.
		• SegmentData — Structure array containing segment data for the sample in the following fields:
		 Chromosome — Chromosome number on which the segment is located.
		 Start — Genomic position at the start of the segment (in the same units as used for the CGHData input).
		 End — Genomic position at the end of the segment (in the same units as used for the CGHData input).
		 Mean — Mean value of the log₂ ratio of the test to reference signal intensity for the segment.
Description	segmentation (CBS) of (aCGH) data to deter	hcbs(CGHData) performs circular binary on array-based comparative genomic hybridization mine the copy number alteration segments of DNA that exhibit a statistical difference in copy points.

Note The CBS algorithm recursively splits chromosomes into segments based on a maximum t statistic estimated by permutation. This computation can be time consuming. If n = number of data points, then computation time ~ O(n^2).

SegmentStruct = cghcbs(CGHData, ...'PropertyName', PropertyValue, ...) calls cghcbs with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

SegmentStruct = cghcbs(CGHData, ...'Alpha', AlphaValue, ...) specifies the significance level for the statistical tests to accept change points. Default is 0.01.

SegmentStruct = cghcbs(CGHData, ... 'Permutations', PermutationsValue, ...) specifies the number of permutations used for p-value estimation. Default is 10,000.

SegmentStruct = cghcbs(CGHData, ...'Method', MethodValue, ...) specifies the method to estimate the p-values. Choices are 'Perm' or 'Hybrid' (default). 'Perm' does a full permutation, while 'Hybrid' uses a faster, tail probability-based permutation. When using the 'Hybrid' method, the 'Perm' method is applied automatically when segment data length becomes less than 200.

SegmentStruct = cghcbs(CGHData, ...'Smooth', SmoothValue, ...) controls the smoothing of outliers before segmenting, using the procedure explained by Olshen et al. (2004). Choices are true (default) or false.

SegmentStruct = cghcbs(CGHData, ...'Prune', PruneValue, ...) controls the elimination of change points identified due to local trends in the data that are not indicative of real copy number change, using the procedure explained by Olshen et al. (2004). Choices are true or false (default). SegmentStruct = cghcbs(CGHData, ... 'Errsum', ErrsumValue, ...) specifies the allowed proportional increase in the error sum of squares when eliminating change points using the 'Prune' property. Commonly used values are 0.05 and 0.1. Default is 0.05.

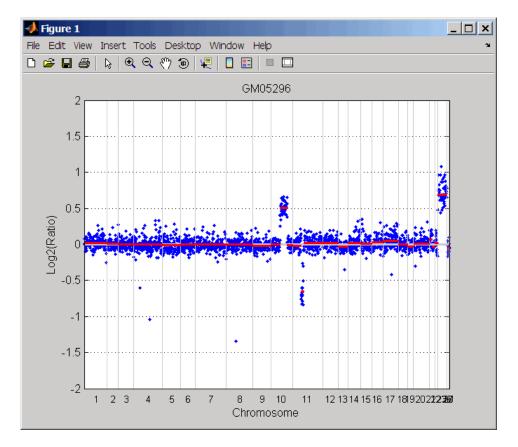
SegmentStruct = cghcbs(CGHData, ...'WindowSize', WindowSizeValue, ...) specifies the size of the window (in data points) used to divide the data when using the 'Perm' method on large data sets. Default is 200.

SegmentStruct = cghcbs(CGHData, ...'SampleIndex', SampleIndexValue, ...) analyzes only the sample(s) specified by SampleIndexValue, which can be a single sample index or a vector of sample indices. Default is all sample indices.

SegmentStruct = cghcbs(CGHData, ...'Chromosome', ChromosomeValue, ...) analyzes only the data on the chromosomes specified by ChromosomeValue, which can be a single chromosome number or a vector of chromosome numbers. Default is all chromosome numbers.

SegmentStruct = cghcbs(CGHData, ...'Showplot', ShowplotValue, ...) controls the display of plots of the segment means over the original data. Choices are true, false, W, S, or I, an integer specifying one of the chromosomes in CGHData. When ShowplotValue is true, all chromosomes in all samples are plotted. If there are multiple samples in CGHData, then each sample is plotted in a separate Figure window. When ShowplotValue is W, the layout displays all chromosomes in one plot in the Figure window. When ShowplotValue is S, the layout displays each chromosome in a subplot in the Figure window. When ShowplotValue is I, only the specified chromosome is plotted. Default is either:

- false When return values are specified.
- true and W When return values are not specified.


SegmentStruct = cghcbs(CGHData, ...'Verbose', VerboseValue, ...) controls the display of a progress report of the analysis. Choices are true (default) or false.

Examples Analyzing Data from the Coriell Cell Line Study

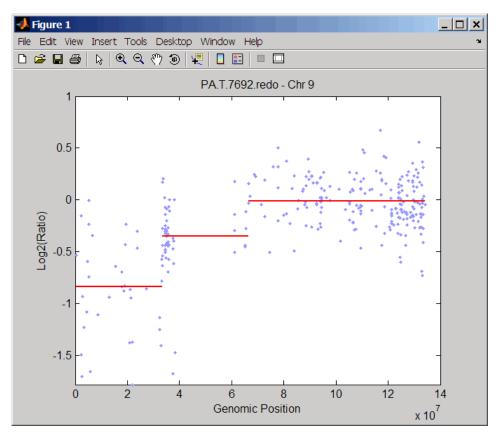
1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains coriell data, a structure of array-based CGH data.

load coriell_baccgh

- 2 Analyze all chromosomes of sample 3 (GM05296) of the aCGH data and return segmentation data in a structure, S. Plot the segment means over the original data for all chromosomes of this sample.
 - S = cghcbs(coriell_data,'sampleindex',3,'showplot',true);

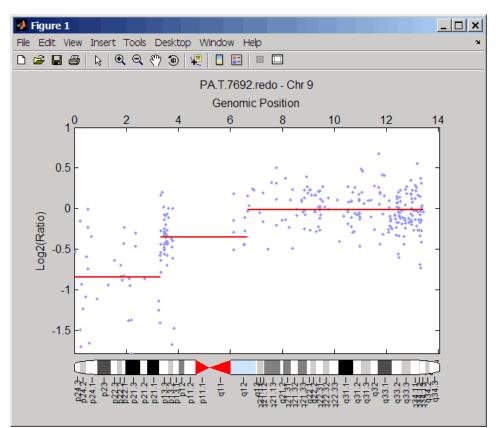
Chromosome 10 shows a gain, while chromosome 11 shows a loss.

The coriell_baccgh.mat file used in this example contains data from Snijders et al., 2001.


Analyzing Data from a Pancreatic Cancer Study

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains pancrea_data, a structure of array-based CGH data from a pancreatic cancer study.

load pancrea_oligocgh


2 Analyze only chromosome 9 in sample 32 of the CGH data and return the segmentation data in a structure, PS. Plot the segment means over the original data for chromosome 9 in this sample.

PS = cghcbs(pancrea_data,'sampleindex',32,'chromosome',9,... 'showplot',9);

Chromosome 9 contains two segments that indicate losses. For more detailed information on interpreting the data, see Aguirre et al. (2004).

3 Use the chromosomeplot function with the 'addtoplot' property to add the ideogram of chromosome 9 for *Homo sapiens* to the plot of the segmentation data.


```
chromosomeplot('hs_cytoBand.txt', 9, 'addtoplot', gca)
```

The pancrea_oligocgh.mat file used in this example contains data from Aguirre et al., 2004.

Displaying Copy Number Alteration Regions Aligned to a Chromosome Ideogram

 Create a structure containing segment gain and loss information for chromosomes 10 and 11 from sample 3 from the Coriell cell line study, making sure the segment data is in bp units. (You can determine copy number variance (CNV) information by exploring S, the structure of segments returned by the cghcbs function in Analyzing Data from the Coriell Cell Line Study on page 2-179.) For the 'CNVType' field, use 1 to indicate a loss and 2 to indicate a gain.

```
cnvStruct = struct('Chromosome', [10 11],...
'CNVType', [2 1],...
'Start', [S.SegmentData(10).Start(2),...
S.SegmentData(11).Start(2)]*1000,...
'End', [S.SegmentData(10).End(2),...
S.SegmentData(11).End(2)]*1000)
cnvStruct =
Chromosome: [10 11]
CNVType: [2 1]
Start: [66905000 35416000]
End: [110412000 43357000]
```

2 Pass the structure to the chromosomeplot function using the 'CNV' property to display the copy number gains (green) and losses (red) aligned to the human chromosome ideogram. Specify kb units for the display of segment information in the data tip.

```
chromosomeplot('hs_cytoBand.txt', 'cnv', cnvStruct, 'unit', 2)
```

	File Edit View Insert Tools Desktop Window Help							>	× ×			
1	2	3	4	5	6	7	8	9	10		12	
13		Chromoso ter - qter Start (kb): End (kb): 15	me 14 0.0 106368.6 16	17	18	19	20	21	22		Ŷ	

The coriell_baccgh.mat file used in this example contains data from Snijders et al., 2001.

References [1] Olshen, A.B., Venkatraman, E.S., Lucito, R., and Wigler, M. (2004). Circular binary segmentation for the analysis of array-based DNA copy number data. Biostatistics *5*, *4*, 557–572.

[2] Venkatraman, E.S., and Olshen, A.B. (2007). A Faster Circular Binary Segmentation Algorithm for the Analysis of Array CGH Data. Bioinformatics 23(6), 657–663. [3] Venkatraman, E.S., and Olshen, A.B. (2006).DNAcopy: A Package for Analyzing DNA Copy Data.http://www.bioconductor.org/packages/2.1/bioc/html/DNAcopy.html

[4] Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J., Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer, J., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D., and Albertson, D.G. (2001). Assembly of microarrays for genome-wide measurement of DNA copy number. Nature Genetics *29*, 263–264.

[5] Aguirre, A.J., Brennan, C., Bailey, G., Sinha, R., Feng, B., Leo, C., Zhang, Y., Zhang, J., Gans, J.D., Bardeesy, N., Cauwels, C., Cordon-Cardo, C., Redston, M.S., DePinho, R.A., and Chin, L. (2004). High-resolution characterization of the pancreatic adenocarcinoma genome. PNAS 101, 24, 9067–9072.

See Also Bioinformatics Toolbox functions: chromosomeplot, cytobandread

cghfreqplot

Purpose	Display frequency of DNA copy number alterations across multiple samples
Syntax	<pre>FreqStruct = cghfreqplot(CGHData) FreqStruct = cghfreqplot(CGHData,'Threshold', ThresholdValue,)</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'Group', GroupValue,</pre>
-	<pre>FreqStruct = cghfreqplot(CGHData,'Subgrp', SubgrpValue,)</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'Subplot', SubplotValue,)</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'Cutoff', CutoffValue,)</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'Chromosome', ChromosomeValue,)</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'IncludeX',</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'IncludeY',</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'Chrominfo', ChrominfoValue,)</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'ShowCentr', ShowCentrValue,)</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'Color', ColorValue,</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'YLim', YLimValue,)</pre>
	<pre>FreqStruct = cghfreqplot(CGHData,'Titles', TitlesValue,)</pre>

Arguments

CGHData

Array-based comparative genomic hybridization (aCGH) data in either of the following forms:

- Structure with the following fields:
 - Sample Cell array of strings containing the sample names (optional).
 - Chromosome Vector containing the chromosome numbers on which the clones are located.
 - GenomicPosition Vector containing the genomic positions (in bp, kb, or mb units) to which the clones are mapped.
 - Log2Ratio Matrix containing log₂ ratio of test to reference signal intensity for each clone. Each row corresponds to a clone, and each column corresponds to a sample.
- Matrix in which each row corresponds to a clone. The first column contains the chromosome number, the second column contains the genomic position, and the remaining columns each contain the log₂ ratio of test to reference signal intensity for a sample.
- ThresholdValuePositive scalar or vector that specifies the
gain/loss threshold. A clone is considered to be
a gain if its log2 ratio is above ThresholdValue,
and a loss if its log2 ratio is below negative
ThresholdValue.

The *ThresholdValue* is applied as follows:

- If a positive scalar, it is the gain and loss threshold for all the samples.
- If a two-element vector, the first element is the gain threshold for all samples, and the second element is the loss threshold for all samples.
- If a vector of the same length as the number of samples, each element in the vector is considered as a unique gain and loss threshold for each sample.

GroupValue	Specifies the sample groups to calculate the frequency from. Choices are:
	• A vector of sample column indices (for data with only one group). The samples specified in the vector are considered a group.
	• A cell array of vectors of sample column indices (for data divided into multiple groups). Each element in the cell array is considered a group.
	Default is a single group of all the samples in <i>CGHData</i> .
SubgrpValue	Controls the analysis of samples by subgroups. Choices are true (default) or false.
SubplotValue	Controls the display of all plots in one Figure window when more than one subgroup is analyzed. Choices are true (default) or false (displays plots in separate windows).
CutoffValue	Scalar or two-element numeric vector that specifies a cutoff, which controls the plotting of only the clones with frequency gains or losses greater than or equal to <i>CutoffValue</i> . If a two-element vector, the first element is the cutoff for gains, and the second element is for losses. Default is 0 .
ChromosomeValue	Single chromosome number or a vector of chromosome numbers that specify the chromosomes for which to display frequency plots. Default is all chromosomes in <i>CGHData</i> .
IncludeXValue	Controls the inclusion of the X chromosome in the analysis. Choices are true (default) or false.
IncludeYValue	Controls the inclusion of the Y chromosome in the analysis. Choices are true or false (default) .

ChrominfoValue	Cytogenetic banding information specified by either of the following:						
	• Structure returned by the cytobandread function						
	• String specifying the file name of an NCBI ideogram text file or a UCSC Genome Browser cytoband text file						
	Default is <i>Homo sapiens</i> cytogenetic banding information from the UCSC Genome Browser, NCBI Build 36.1 (http://genome.UCSC.edu).						
ShowCentrValue	Controls the display of the centromere positions as vertical dashed lines in the frequency plot. Choices are true (default) or false.						
	Tip The centromere positions are obtained from <i>ChrominfoValue</i> .						

ColorValue	Color scheme for the vertical lines in the plot, indicating the frequency of the gains and losses, specified by either of the following:						
	• Name of or handle to a function that returns a colormap						
	• M-by-3 matrix containing RGB values. If M equals 1, then that single color is used for all gains and losses. If M equals 2 or more, then the first row is used for gains, the second row is used for losses, and remaining rows are ignored. For example, [0 1 0;1 0 0] specifies green for gain and red for loss.						
	The default color scheme is a range of colors from pure green (gain = 1) through yellow (0) to pure red (loss = -1).						
YLimValue	Two-element vector specifying the minimum and maximum values on the vertical axis. Default is [1, -1].						
TitlesValue	Single string or a cell array of strings that specifies titles for the group(s), which are added to the tops of the plot(s).						

Return	
Values	

FreqStruct

Structure containing frequency data in the following fields:

- Group Structure array, with each structure representing a group of samples. Each structure contains the following fields:
 - Sample Cell array containing names of samples within the group.
 - GainFrequency Column vector containing the average gain for each clone for a group of samples.
 - LossFrequency Column vector containing the average loss for each clone for a group of samples.
- Chromosome Column vector containing the chromosome numbers on which the clones are located.
- GenomicPosition Column vector containing the genomic positions of the clones.

Tip You can use this output structure as input to the cghfreqplot function.

Description FreqStruct = cghfreqplot(CGHData) displays the frequency of copy number gain or loss across multiple samples for each clone on an array against their genomic position along the chromosomes.

FreqStruct = cghfreqplot(CGHData, ... 'PropertyName', PropertyValue, ...) calls cghfreqplot with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

```
FreqStruct = cghfreqplot(CGHData, ... 'Threshold', ThresholdValue, ...) specifies the gain/loss threshold. A clone is considered to be a gain if its log<sub>2</sub> ratio is above ThresholdValue, and a loss if its log<sub>2</sub> ratio is below negative ThresholdValue.
```

The ThresholdValue is applied as follows:

- If a positive scalar, it is the gain and loss threshold for all the samples.
- If a two-element vector, the first element is the gain threshold for all samples, and the second element is the loss threshold for all samples.
- If a vector of the same length as the number of samples, each element in the vector is considered as a unique gain and loss threshold for each sample.

Default is 0.25.

FreqStruct = cghfreqplot(CGHData, ...'Group', GroupValue, ...) specifies the sample groups to calculate the frequency from. Choices are:

- A vector of sample column indices (for data with only one group). The samples specified in the vector are considered a group.
- A cell array of vectors of sample column indices (for data divided into multiple groups). Each element in the cell array is considered a group.

Default is a single group of all the samples in CGHData.

FreqStruct = cghfreqplot(CGHData, ...'Subgrp', SubgrpValue, ...) controls the analysis of samples by subgroups. Choices are true (default) or false.

```
FreqStruct = cghfreqplot(CGHData, ...'Subplot',
SubplotValue, ...) controls the display of all plots in one Figure
```

window when more than one subgroup is analyzed. Choices are true (default) or false (displays plots in separate windows).

FreqStruct = cghfreqplot(CGHData, ...'Cutoff', CutoffValue, ...) specifies a cutoff value, which controls the plotting of only the clones with frequency gains or losses greater than or equal to CutoffValue. CutoffValue is a scalar or two-element numeric vector. If a two-element numeric vector, the first element is the cutoff for gains, and the second element is for losses. Default is 0.

FreqStruct = cghfreqplot(CGHData, ...'Chromosome', ChromosomeValue, ...) displays the frequency plots only of chromosome(s) specified by ChromosomeValue, which can be a single chromosome number or a vector of chromosome numbers. Default is all chromosomes in CGHData.

FreqStruct = cghfreqplot(CGHData, ...'IncludeX', IncludeXValue, ...) controls the inclusion of the X chromosome in the analysis. Choices are true (default) or false.

FreqStruct = cghfreqplot(CGHData, ...'IncludeY', IncludeYValue, ...) controls the inclusion of the Y chromosome in the analysis. Choices are true or false (default).

FreqStruct = cghfreqplot(CGHData, ...'Chrominfo', ChrominfoValue, ...) specifies the cytogenetic banding information for the chromosomes. ChrominfoValue can be either of the following

- Structure returned by the cytobandread function
- String specifying the file name of an NCBI ideogram text file or a UCSC Genome Browser cytoband text file

Default is *Homo sapiens* cytogenetic banding information from the UCSC Genome Browser, NCBI Build 36.1 (http://genome.UCSC.edu).

Tip You can download files containing cytogenetic G-banding data from the NCBI or UCSC Genome Browser ftp site. For example, you can download the cytogenetic banding data for *Homo sapiens* from:

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/ideogram.gz

or

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBandIdeo.txt.gz

FreqStruct = cghfreqplot(CGHData, ...'ShowCentr', ShowCentrValue, ...) controls the display of the centromere positions as vertical dashed lines in the frequency plot. Choices are true (default) or false.

Tip The centromere positions are obtained from *ChrominfoValue*.

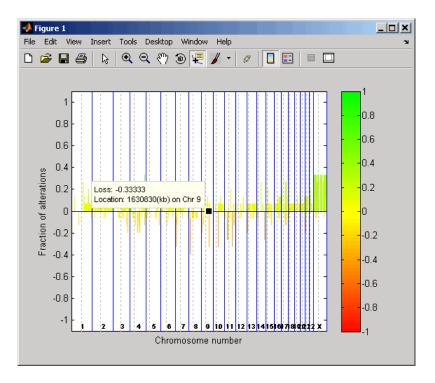
FreqStruct = cghfreqplot(CGHData, ...'Color', ColorValue, ...) specifies a color scheme for the vertical lines in the plot, indicating the frequency of the gains and losses. Choices are:

- Name of or handle to a function that returns a colormap.
- M-by-3 matrix containing RGB values. If M equals 1, then that single color is used for all gains and losses. If M equals 2 or more, then the first row is used for gains, the second row is used for losses, and remaining rows are ignored. For example, [0 1 0;1 0 0] specifies green for gain and red for loss.

The default color scheme is a range of colors from pure green (gain = 1) through yellow (0) to pure red (loss = -1).

FreqStruct = cghfreqplot(CGHData, ...'YLim', YLimValue, ...) specifies the y vertical limits for the frequency plot. YLimValue is a two-element vector specifying the minimum and maximum values on the vertical axis. Default is [1, -1].

FreqStruct = cghfreqplot(CGHData, ...'Titles', TitlesValue, ...) specifies titles for the group(s), which are added to the tops of the plot(s). TitlesValue can be a single string or a cell array of strings.


Examples Plotting Data from the Coriell Cell Line Study

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains coriell data, a structure of array-based CGH data.

load coriell_baccgh

2 Display a frequency plot of the copy number alterations across all samples in the Coriell aCGH data.

Struct = cghfreqplot(coriell_data);

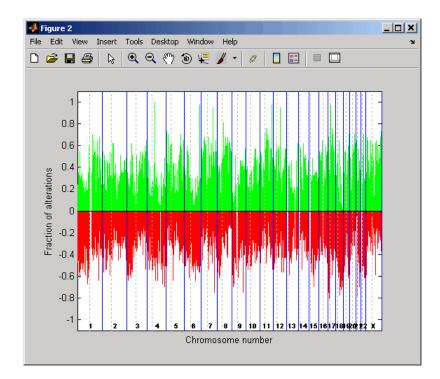
3 View data tips for the data, chromosomes, and centromeres by

clicking the Data Cursor button on the toolbar, then clicking data, a blue chromosome boundary line, or a dotted centromere line in the plot. To delete this data tip, right-click it, then select **Delete Current Datatip**.

4 Display a color bar indicating the degree of gain or loss by clicking

the Insert Colorbar 🛄 button on the toolbar.

The coriell_baccgh.mat file used in this example contains data from Snijders et al., 2001.


Plotting Pancreatic Cancer Study Data Using a Green and Red Color Scheme

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains pancrea_data, a structure of array-based CGH data from a pancreatic cancer study.

load pancrea_oligocgh

2 Display a frequency plot of the copy number alterations across all samples in the pancreatic cancer data, using a green and red color scheme.

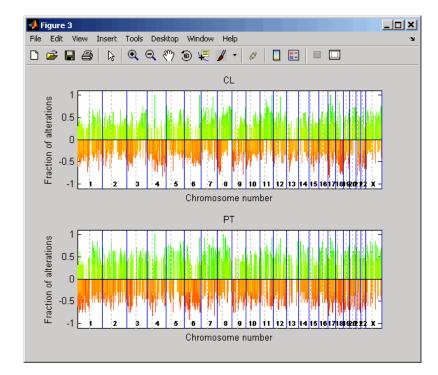
```
cghfreqplot(pancrea_data, 'Color', [0 1 0; 1 0 0])
```


The pancrea_oligocgh.mat file used in this example contains data from Aguirre et al., 2004.

Plotting Groups of aCGH Data, Specifying a Frequency Value Cutoff, and Adding a Chromosome Ideogram

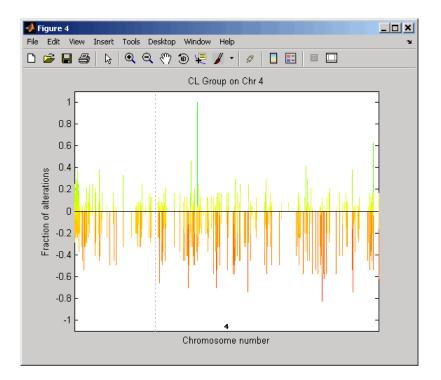
1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains pancrea_data, a structure of array-based CGH data from a pancreatic cancer study.

load pancrea_oligocgh

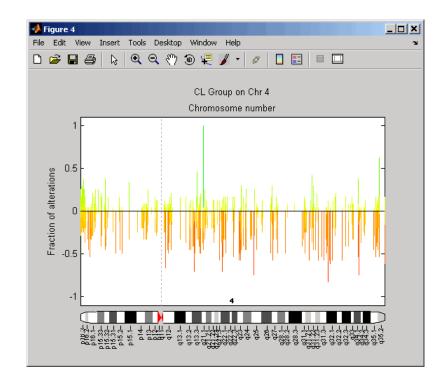

2 Define two groups of data.

```
grp1=strmatch('PA.C', pancrea_data.Sample);
grp2=strmatch('PA.T', pancrea_data.Sample);
```

3 Display a frequency plot of the copy number alterations across all samples in the two groups and limit the plotting to only the clones with frequency gains or losses greater than or equal to 0.25.


```
SP = cghfreqplot(pancrea_data, 'Group', {grp1, grp2},...
'Title', {'CL', 'PT'}, 'Cutoff', 0.25);
```

cghfreqplot


4 Display a frequency plot of the copy number alterations across all samples in the first group and limit the plot to chromosome 4 only.

```
SP = cghfreqplot(pancrea_data, 'Group', grp1, ...
'Title', 'CL Group on Chr 4', 'Chromosome', 4);
```


5 Use the chromosomeplot function with the 'addtoplot' property to add the ideogram of chromosome 4 for *Homo sapiens* to this frequency plot. Because the plot of the frequency data from the pancreatic cancer study is in kb units, use the 'Unit' property to convert the ideogram data to kb units.

```
chromosomeplot('hs_cytoBand.txt', 4, 'addtoplot', gca, 'unit', 2);
```


The pancrea_oligocgh.mat file used in this example contains data from Aguirre et al., 2004.

References [1] Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J., Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer, J., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D., and Albertson, D.G. (2001). Assembly of microarrays for genome-wide measurement of DNA copy number. Nature Genetics 29, 263–264.

> [2] Aguirre, A.J., Brennan, C., Bailey, G., Sinha, R., Feng, B., Leo, C., Zhang, Y., Zhang, J., Gans, J.D., Bardeesy, N., Cauwels, C., Cordon-Cardo, C., Redston, M.S., DePinho, R.A., and Chin, L. (2004).

cghfreqplot

High-resolution characterization of the pancreatic adenocarcinoma genome. PNAS 101, 24, 9067–9072.

See Also Bioinformatics Toolbox functions: cghcbs, chromosomeplot, cytobandread

```
PurposePlot chromosome ideogram with G-banding patternSyntaxchromosomeplot(CytoData)<br/>chromosomeplot(CytoData, ChromNum)<br/>chromosomeplot(CytoData, ChromNum, ..., 'Orientation',<br/>OrientationValue, ...)<br/>chromosomeplot(CytoData, ChromNum, ..., 'ShowBandLabel',<br/>ShowBandLabelValue, ...)<br/>chromosomeplot(CytoData, ChromNum, ..., 'AddToPlot',<br/>AddToPlotValue, ...)<br/>chromosomeplot(..., 'Unit', UnitValue, ...)<br/>chromosomeplot(..., 'CNV', CNVValue, ...)
```

CytoData	Either of the following:String specifying a file containing
	cytogenetic G-banding data (in bp units), such as an NCBI ideogram text file or a UCSC Genome Browser cytoband text file.
	• Structure containing cytogenetic G-banding data (in bp units) in the following fields:
	ChromLabels
	BandStartBPs
	BandEndBPs
	BandLabels
	GieStains
	Tip Use the cytobandread function to create the structure to use for <i>CytoData</i> .
ChromNum	Scalar or string specifying a single chromosome to plot. Valid entries are integers, 'X', and 'Y'.
	Note Setting <i>ChromNum</i> to 0 will plot ideograms for all chromosomes.
OrientationValue	String or number that specifies the orientation of the ideogram of a single chromosome specified by <i>ChromNum</i> . Choices are 'Vertical' or 1 (default) and 'Horizontal' or 2.

ShowBandLabelValue	Controls the display of band labels (such as q25.3) when plotting a single chromosome ideogram, specified by <i>ChromNum</i> . Choices are true (default) or false.					
AddToPlotValue	Variable name of a figure axis to which to a the single chromosome ideogram, specified b <i>ChromNum</i> .					
	Note If you use this property to add the ideogram to a plot of genomic data that is in units other than bp, use the 'Unit' property to convert the ideogram data to the appropriate units.					
	Tip Before printing a figure containing an added chromosome ideogram, change the					

added chromosome ideogram, change the background to white by issuing the following command:

set(gcf,'color','w')

UnitValue	Integer that specifies the units (base pairs, kilo base pairs, or mega base pairs) for the starting and ending genomic positions. This unit is used in the data tip displayed when you hover the cursor over chromosomes in the ideogram. This unit can also be used when using the 'AddToPlot' property to add the ideogram to a plot that is in units other than bp. Choices are 1 (bp), 2 (kb), or 3 (mb). Default is 1 (bp).				
CNVValue	Controls the display of copy number variance (CNV) data, provided by <i>CNVValue</i> , aligned to the chromosome ideogram. Gains are shown in green to the right or above the ideogram, while losses are shown in red to the left or below the ideogram. <i>CNVValue</i> is a structure array containing the four fields described in the table below.				

Description

chromosomeplot(*CytoData*) plots the ideogram of all chromosomes, using information from *CytoData*, a structure containing cytogenetic G-banding data (in bp units), or a string specifying a file containing cytogenetic G-banding data (in bp units), such as an NCBI ideogram text file or a UCSC Genome Browser cytoband text file. The G bands distinguish different areas of the chromosome. For example, for the *Homo sapiens* ideogram, possible G bands are:

- gneg white
- gpos25 light gray
- gpos50 medium gray
- gpos75 dark gray
- gpos100 black
- acen red (centromere)

- stalk light blue (regions with repeats)
- gvar indented region

Darker bands are AT-rich, while lighter bands are GC-rich.

chromosomeplot(CytoData, ChromNum) plots the ideogram of a single chromosome specified by ChromNum.

chromosomeplot(..., 'PropertyName', PropertyValue, ...) calls chromosomeplot with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

chromosomeplot(*CytoData*, *ChromNum*, ..., 'Orientation', *OrientationValue*, ...) specifies the orientation of the ideogram of a single chromosome specified by *ChromNum*. Choices are 'Vertical' or 1 (default) and 'Horizontal' or 2.

Note When plotting the ideogram of all chromosomes, the orientation is always vertical.

chromosomeplot(*CytoData*, *ChromNum*, ..., 'ShowBandLabel', *ShowBandLabelValue*, ...) displays band labels (such as q25.3) when plotting a single chromosome ideogram, specified by *ChromNum*. Choices are true (default) or false.

chromosomeplot(CytoData, ChromNum, ..., 'AddToPlot', AddToPlotValue, ...) adds the single chromosome ideogram, specified by ChromNum, to a figure axis specified by AddToPlotValue. **Note** If you use this property to add the ideogram to a plot of genomic data that is in units other than bp, use the 'Unit' property to convert the ideogram data to the appropriate units.

Tip Before printing a figure containing an added chromosome ideogram, change the background to white by issuing the following command:

```
set(gcf, 'color', 'w')
```

chromosomeplot(..., 'Unit', UnitValue, ...) specifies the units (base pairs, kilo base pairs, or mega base pairs) for the starting and ending genomic positions. This unit is used in the data tip displayed when you hover the cursor over chromosomes in the ideogram. This unit can also be used when using the 'AddToPlot' property to add the ideogram to a plot that is in units other than bp. Choices are 1 (bp), 2 (kb), or 3 (mb). Default is 1 (bp).

chromosomeplot(..., 'CNV', *CNVValue*, ...) displays copy number variance (CNV) data, provided by *CNVValue*, aligned to the chromosome ideogram. Gains are shown in green to the right or above the ideogram, while losses are shown in red to the left or below the ideogram. *CNVValue* is a structure array containing the following fields. Each field must contain the same number of elements.

Field	Description
Chromosome	Either of the following:
	• Numeric vector containing the chromosome number on which each CNV is located.
	Note For the sex chromosome, X, use N , where $N =$ number of autosomes + 1. For the sex chromosome, Y, use M , where $M =$ number of autosomes + 2. For example, for <i>Homo sapiens</i> use 23 for X and 24 for Y, and for <i>Mus musculus</i> (lab mouse), use 20 for X and 21 for Y.
	• Character array containing the chromosome number on which each CNV is located.
	Note Using a character array lets you use the characters X and Y (instead of numbers) for sex chromosomes. However, all elements in the array must be the same width, which may require you to add spaces to the strings. For example:
	[' 1'; ' 2'; '10'; ' X']
	Or you can use the char function with a cell array to create a character array of the chromosome numbers and letters. For example: .
	char({'1', '2', '10', 'X'})

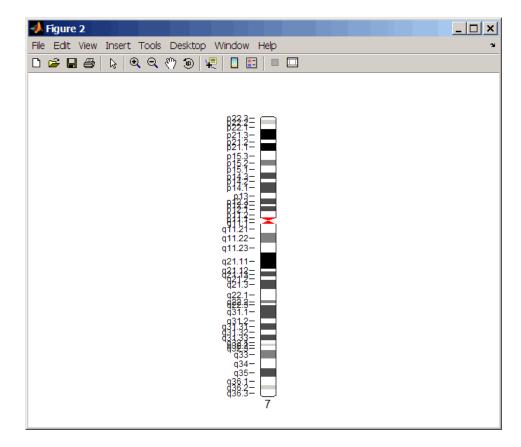
Field	Description
CNVType	Numeric vector containing the type of each CNV, either 1 (loss) or 2 (gain).
Start	Numeric vector containing the starting genomic position of each CNV. Units must be in base pairs.
End	Numeric vector containing the ending genomic position of each CNV. Units must be in base pairs.

Examples Plotting Chromosome Ideograms

1 Read the cytogenetic banding information for *Homo sapiens* into a structure.

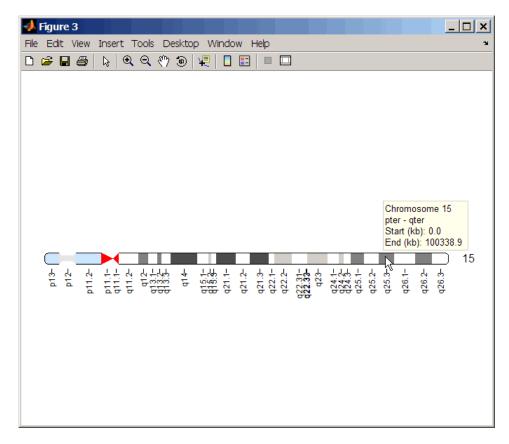
```
hs_cytobands = cytobandread('hs_cytoBand.txt')
```

hs_cytobands =


ChromLabels: {862x1 cell} BandStartBPs: [862x1 int32] BandEndBPs: [862x1 int32] BandLabels: {862x1 cell} GieStains: {862x1 cell}

2 Plot the entire chromosome ideogram for *Homo sapiens*.

chromosomeplot(hs_cytobands); title('Human Karyogram')


File Edit Vi		ert Tool	ls Deski	top Wir	ndow H	Help					_ 🗆	X v
🗅 🖨 🔒 (🖨 🗟	ାର୍ ପ୍	. 🖑 🖲) 🖳								
				H	uman K	aryogra	m					
1	2	3	4	5	6	7	(1) →	9	10	11	12	
1 3	14	15	16	17	18	19	20	21	22		Ç	

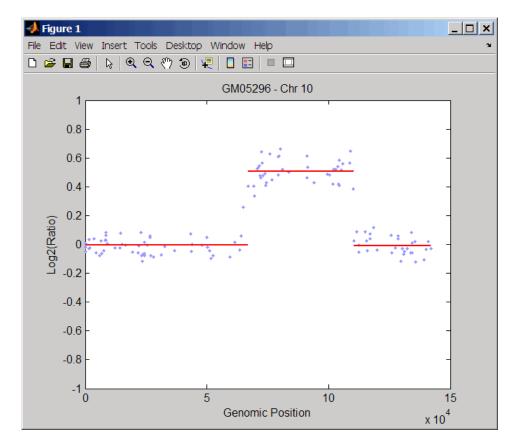
3 Display the ideogram of only chromosome 7 for *Homo sapiens* by right-clicking chromosome 7 in the plot, then selecting **Display in** New Figure > Vertical.

4 Plot the ideogram of only chromosome 15 for *Homo sapiens* in a horizontal orientation. Set the units used in the data tip to kilo base pairs.

```
chromosomeplot(hs_cytobands, 15, 'Orientation', 2, 'Unit', 2);
```

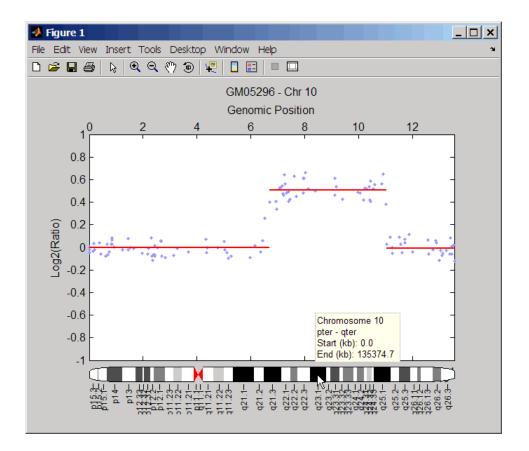

5 View a data tip with information about the chromosome by hovering the cursor over the chromosome. View a data tip with detailed

information about a specific band by clicking the Data Cursor **button** on the toolbar, then clicking the band in the plot. To delete this data tip, right-click it, then select **Delete Current Datatip**.


Tip You can change the orientation of a single chromosome ideogram by right-clicking, selecting **Display > Vertical** or **Horizontal**. You can show or hide the band labels of a single chromosome ideogram by right-clicking, then selecting **Show G-band Labels** or **Hide G-band Labels**.

Adding a Chromosome Ideogram to a Plot

1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains coriell_data, a structure of CGH data.


load coriell_baccgh

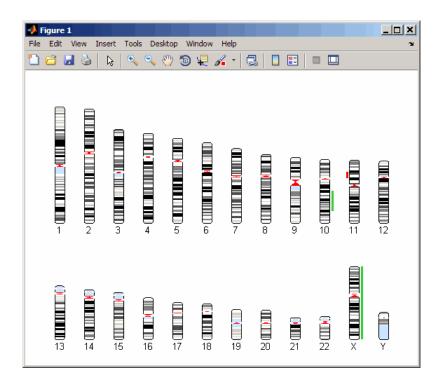
- **2** Use the cghcbs function to analyze chromosome 10 of sample 3 (GM05296) of the CGH data and return copy number variance (CNV) data in a structure, S. Plot the segment means over the original data for only chromosome 10 of sample 3.
 - S = cghcbs(coriell_data,'sampleindex',3,'chromosome',10,... 'showplot',10);

3 Use the chromosomeplot function with the 'addtoplot' property to add the ideogram of chromosome 10 for *Homo sapiens* to the plot. Because the plot of the CNV data from the Coriell cell line study is in kb units, use the 'Unit' property to convert the ideogram data to kb units.

```
chromosomeplot('hs_cytoBand.txt', 10, 'addtoplot', gca,...
'Unit', 2)
```


Tip Before printing the above figure containing an added chromosome ideogram, change the background to white by issuing the following command:

```
set(gcf,'color','w')
```


Displaying Copy Number Alteration Regions Aligned to a Chromosome Ideogram

1 Create a structure containing segment gain and loss information for chromosomes 10, 11, and X from sample 3 from the Coriell cell line study, making sure the segment data is in bp units. (You can determine copy number variance (CNV) information by exploring S, the structure of segments returned by the cghcbs function in step 2 in Adding a Chromosome Ideogram to a Plot on page 2-214.) For the 'CNVType' field, use 1 to indicate a loss and 2 to indicate a gain.

```
cnvStruct = struct('Chromosome', char({'10', '11', 'X'}),...
'CNVType', [2 1 2],...
'Start', [66905000 25416000 1],...
'End', [110412000 39389000 154913755]);
```

2 Pass the structure to the chromosomeplot function using the 'CNV' property to display the copy number gains (green) and losses (red) aligned to the human chromosome ideogram.

```
chromosomeplot('hs_cytoBand.txt', 'cnv', cnvStruct);
```


The coriell_baccgh.mat file used in this example contains data from Snijders et al., 2001.

- **References** [1] Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J., Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer, J., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D., and Albertson, D.G. (2001). Assembly of microarrays for genome-wide measurement of DNA copy number. Nature Genetics 29, 263–264.
- **See Also** Bioinformatics Toolbox functions: cghcbs, cytobandread

Purpose	Evaluate performance of classifier	
Syntax	<pre>classperf CP = classperf(truelabels) CP = classperf(truelabels, classout) CP = classperf(, 'Positive', PositiveValue, 'Negative', NegativeValue) classperf(CP, classout) classperf(CP, classout, testidx)</pre>	
Arguments	truelabels	True class labels for each observation, specified by one of the following:Numeric vectorCell array of strings
		Note When used in a cross-validation design experiment, <i>truelabels</i> should have the same size as the total number of observations.
	classout	Classifier output, specified by one of the following:
		Numeric vector
		• Cell array of strings
		Note <i>classout</i> must contain the same number of

elements as *truelabels*.

	PositiveValue	Numeric vector or cell array of strings that specifies the positive labels to identify the target class(es). Default is the first class returned by grp2idx(<i>truelabels</i>).	
	NegativeValue	Numeric vector or cell array of strings that specifies the negative labels to identify the control class(es). Default is all classes other than the first class returned by grp2idx(<i>truelabels</i>).	
	testidx	Vector that indicates the observations that were used in the current validation. Choices are:	
		• Index vector	
		• Logical index vector of the same size as <i>truelabels</i> used to construct the classifier performance object	
Return Values	СР	Classifier performance object with performance properties listed in the following table.	
Description	classperf provides an interface to keep track of the performance during the validation of classifiers. classperf creates and, optional updates a classifier performance object, <i>CP</i> , which accumulates the results of the classifier. The performance properties of a classifier performance object are listed in the following table.		
	classperf , without input arguments, displays all the performance properties of a classifier performance object.		
	<pre>CP = classperf(truelabels) creates and initializes an empty classifier performance object. CP is the handle to the object. truelabels is a vector or cell array of strings containing the true class labels for every observation. When used in a cross-validation design experiment, truelabels must have the same size as the total number of observations.</pre>		

CP = classperf(truelabels, classout) creates CP using truelabels, then updates CP using the classifier output, classout.

Tip This syntax is useful when you want to know the performance of a single validation.

CP = classperf(..., 'Positive', *PositiveValue*, 'Negative', *NegativeValue*) specifies the positive and negative labels to identify the target and the control classes, respectively. These labels are used to compute clinical diagnostic test performance.

If truelabels is a numeric vector, PositiveValue and NegativeValue must be numeric vectors whose entries are subsets of grp2idx(truelabels). If truelabels is a cell array of strings, PositiveValue and NegativeValue can be cell arrays of strings or numeric vectors whose entries are subsets of grp2idx(truelabels). PositiveValue defaults to the first class returned by grp2idx(truelabels), while NegativeValue defaults to all other classes.

PositiveValue and *NegativeValue* must consist of disjoint sets of the labels used in *truelabels*. For example, if

truelabels = [1 2 2 1 3 4 4 1 3 3 3 2]

you could set

```
p = [1 2];
n = [3 4];
```

For example, if you have a data set with data from six samples: five different types of cancer (ovarian, lung, prostate, skin, brain) and no cancer, then ClassLabels = {'Ovarian', 'Lung', 'Prostate', 'Skin', 'Brain', 'Healthy'}.

You could test a detector for lung cancer by using a *PositiveValue* of 2, and a *NegativeValue* = [1 3 4 5 6].

Or you can test for any type of cancer by using PositiveValue = [1 2	
3 4 5] and a NegativeValue of 6.	

In clinical tests, inconclusive values such as '' or NaN are counted as false negatives for the computation of the specificity, and as false positives for the computation of the sensitivity. That is, inconclusive results may decrease the diagnostic value of the test. Tested observations for which *truelabels* is not within the union of *PositiveValue* and *NegativeValue* are not considered. However, tested observations that result in a class not covered by the vector *truelabels* are counted as inconclusive.

classperf(CP, classout) updates CP, the classifier performance object, with the classifier output classout. classout must be the same size as truelabels, the vector or cell array used to construct the classifier performance object. When classout is a cell array of strings, an empty string, '', represents an inconclusive result of the classifier. For numeric arrays, NaN represents an inconclusive result.

classperf(CP, classout, testidx) updates CP, the classifier performance object, with the classifier output classout. classout has a smaller size than truelabels. testidx is an index vector or a logical index vector of the same size as truelabels, the vector or cell array used to construct the classifier performance object. testidx indicates the observations that were used in the current validation.

Note In the two previous syntaxes, you do not need to create a separate output variable to update the classifier performance object, *CP*.

Properties of a	You can access classifier performance object properties by using the get function	
Classifier Performance	<pre>get(CP, 'ControlClasses')</pre>	
Object	or using dot notation	

CP.ControlClasses

You cannot directly modify the classifier performance object properties by using the set function, with the exception of the Label and Description properties.

Tip To modify properties, use either of the following syntaxes:

```
classperf(CP, classout)
classperf(CP, classout, testidx)
```

Property	Description
Label	String to label the classifier performance object. Default is ''.
Description	String to describe the classifier performance object. Default is ''.
ClassLabels	Numeric vector or cell array of strings specifying a unique set of class labels from unique(<i>truelabels</i>).
GroundTruth	Numeric vector or cell array of strings that specifies the true class labels for each observation. The number of elements = NumberOfObservations.
NumberOfObservations	Positive integer specifying the number of observations in the study.

classperf

Property	Description
ControlClasses	Indices to the ClassLabels vector or cell array, indicating which classes to be considered as the control or negative classes in a diagnostic test.
	Tip You set the ControlClasses property with the 'Negative' property name/value pair. If you do not specify the 'Negative' property, ControlClasses defaults to all classes other than the first class returned by grp2idx(<i>truelabels</i>).
TargetClasses	Indices to the ClassLabels vector or cell array, indicating which classes to be considered as the target or positive classes in a diagnostic test.
	Tip You set the TargetClasses property with the 'Positive' property name/value pair. If you do not specify the 'Positive' property, TargetClasses defaults to the first class returned by grp2idx(<i>truelabels</i>).
ValidationCounter	Positive integer specifying the number of validations performed.

Property	Description
SampleDistribution	Numeric vector indicating how many times each sample was considered in the validation.
	For example, if you use resubstitution, SampleDistribution is a vector of ones and ValidationCounter = 1. If you have a ten-fold cross-validation, SampleDistribution is also a vector of ones, but ValidationCounter = 10.
	Tip SampleDistribution is more useful when doing Monte Carlo partitions of the test sets, as this will help determine if all the samples are being equally tested.
ErrorDistribution	Numeric vector indicating how many times each sample was misclassified.
SampleDistributionByClass	Numeric vector indicating the frequency of the true classes in the validation.
ErrorDistributionByClass	Numeric vector indicating the frequency of errors for each class in the validation.

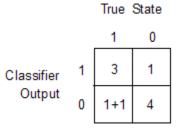
classperf

Property	Description
CountingMatrix	The classification confusion matrix. The order of rows and columns is the same as grp2idx(<i>truelabels</i>). Columns represent the true classes, and rows represent the classifier prediction. The last row in CountingMatrix is reserved to count inconclusive results. There are some families of classifiers that can reserve the right to make a hard class assignment; this can be based on metrics, such as the posterior probabilities, or on how close a sample is to the class boundaries.
CorrectRate	Correctly Classified Samples / Classified Samples
ErrorRate	Incorrectly Classified Samples / Classified Samples
	Note Inconclusive results are not counted.

Property	Description
LastCorrectRate	The following equation applies only to samples considered the last time the classifier performance object was updated:
	Correctly Classified Samples / Classified Samples
LastErrorRate	The following equation applies only to samples considered the last time the classifier performance object was updated:
	Incorrectly Classified Samples / Classified Samples
InconclusiveRate	Nonclassified Samples / Total Number of Samples
ClassifiedRate	Classified Samples / Total Number of Samples
Sensitivity	Correctly Classified Positive Samples / True Positive Samples
	Note Inconclusive results that are true positives are counted as errors for computing Sensitivity (following a conservative approach). This is the same as being incorrectly classified as negatives.

Property	Description
Specificity	Correctly Classified Negative Samples / True Negative Samples
	Note Inconclusive results that are true negatives are counted as errors for computing Specificity (following a conservative approach). This is the same as being incorrectly classified as positives.
PositivePredictiveValue	Correctly Classified Positive Samples / Positive Classified Samples
	Note Inconclusive results are classified as negatives when computing PositivePredictiveValue.
NegativePredictiveValue	Correctly Classified Negative Samples / Negative Classified Samples
	Note Inconclusive results are classified as positives when computing NegativePredictiveValue.
PositiveLikelihood	Sensitivity/(1-Specificity)
NegativeLikelihood	(1 - Sensitivity) / Specificity

Property	Description
Prevalence	True Positive Samples / Total Number of Samples
DiagnosticTable	A 2-by-2 numeric array with diagnostic counts. The first row indicates the number of samples that were classified as positive, with the number of true positives in the first column, and the number of false positives in the second column. The second row indicates the number of samples that were classified as negative, with the number of false negatives in the first column, and the number of true negatives in the second column.
	Correct classifications appear in the diagonal elements, and errors appear in the off-diagonal elements. Inconclusive results are considered errors and counted in the off-diagonal elements.
	For an illustration of a diagnostic table, see below.


Example Diagnostic Table

In a cancer study of ten patients, suppose we get the following results:

Patient	Classifier Output	Has Cancer
1	Positive	Yes
2	Positive	Yes
3	Positive	Yes
4	Positive	No

Patient	Classifier Output	Has Cancer
5	Negative	Yes
6	Negative	No
7	Negative	No
8	Negative	No
9	Negative	No
10	Inconclusive	Yes

The diagnostic table would look as follows:

Examples

% Classify the fisheriris data with a K-Nearest Neighbor classifier load fisheriris c = knnclassify(meas,meas,species,4,'euclidean','Consensus'); cp = classperf(species,c) get(cp) % 10-fold cross-validation on the fisheriris data using linear % discriminant analysis and the third column as only feature for

% classification load fisheriris indices = crossvalind('Kfold',species,10); cp = classperf(species); % initializes the CP object for i = 1:10

```
class = classify(meas(test,3),meas(train,3),species(train));
% updates the CP object with the current classification results
    classperf(cp,class,test)
end
cp.CorrectRate % queries for the correct classification rate
```

cp =

biolearning.classperformance

Label:	11
Description:	1.1
ClassLabels:	{3x1 cell}
truelabels:	[150x1 double]
NumberOfObservations:	150
ControlClasses:	[2x1 double]
TargetClasses:	1
ValidationCounter:	1
SampleDistribution:	[150x1 double]
ErrorDistribution:	[150x1 double]
SampleDistributionByClass:	[3x1 double]
ErrorDistributionByClass:	[3x1 double]
CountingMatrix:	[4x3 double]
CorrectRate:	1
ErrorRate:	0
InconclusiveRate:	0.0733
ClassifiedRate:	0.9267
Sensitivity:	1
Specificity:	0.8900
PositivePredictiveValue:	0.8197
NegativePredictiveValue:	1
PositiveLikelihood:	9.0909
NegativeLikelihood:	0
Prevalence:	0.3333
DiagnosticTable:	[2x2 double]

classperf

ans = 0.9467

See Also Bioinformatics Toolbox functions: crossvalind, knnclassify, svmclassify

Statistics Toolbox $^{\text{TM}}$ functions: classify, grp2idx

Purpose	Cleave amino acid sequence with enzyme	
Syntax	[Fragments, Cutting [Fragments, Cutting	SeqAA, Enzyme) SeqAA, PeptidePattern, Position) Sites] = cleave() Sites, Lengths] = cleave() lDigest', PartialDigestValue)
Arguments	SeqAA	One of the following:
		• String of single-letter codes specifying an amino acid sequence.
		• Row vector of integers specifying an amino acid sequence.
		• MATLAB structure containing a Sequence field that contains an amino acid sequence, such as returned by fastaread, getgenpept, genpeptread, getpdb, or pdbread.
		Examples: 'ARN' or [1 2 3].
	Enzyme	String specifying a name or abbreviation code for an enzyme or compound for which a cleavage rule is specified in the literature.
		Tip Use the cleavelookup function to display the names of enzymes and compounds in the cleavage rule library.

PeptidePattern	Short amino acid sequence to search for in <i>SeqAA</i> , a larger sequence. <i>PeptidePattern</i> can be any of the following:
	• Character string
	• Vector of integers
	• Regular expression
Position	Integer from 0 to the length of the <i>PeptidePattern</i> , that specifies a position in the <i>PeptidePattern</i> where the sequence is to be cleaved.
	Note Position 0 corresponds to the N terminal end of <i>PeptidePattern</i> .
PartialDigestValue	Value from 0 to 1 (default) that specifies the probability that a cleavage site will be cleaved.

Return Values	Fragments CuttingSites	Cell array of strings representing the fragments from the cleavage. Numeric vector with the indices representing the cleavage sites.
		Note A 0 (zero) is added to the list, so numel(<i>CuttingSites</i>)==numel(<i>Fragments</i>). You can use <i>CuttingSites</i> + 1 to point to the first amino acid of every fragment respective to the original sequence.
	Lengths	Numeric vector with the lengths of every fragment.
Description	ption Fragments = cleave(SeqAA, Enzyme) cuts SeqAA, an amino acid sequence, into parts at the cleavage sites specific for Enzyme, a string specifying a name or abbreviation code for an enzyme or compound for which a cleavage rule is specified in the literature. It returns Fragments, a cell array of strings representing the fragments from the cleavage. Tip Use the cleavelookup function to display the names of enzymes and compounds in the cleavage rule library. Fragments = cleave(SeqAA, PeptidePattern, Position) cuts SeqAA, an amino acid sequence, into parts at the cleavage sites specified by a peptide pattern and position.	
		ngSites] = cleave() returns a numeric es representing the cleavage sites.

Note A 0 (zero) is added to the list, so numel(*CuttingSites*)==numel(*Fragments*). You can use *CuttingSites* + 1 to point to the first amino acid of every fragment respective to the original sequence.

[*Fragments*, *CuttingSites*, *Lengths*] = cleave(...) returns a numeric vector with the lengths of every fragment.

cleave(..., 'PartialDigest', PartialDigestValue) simulates
a partial digestion where PartialDigestValue is the probability of
a cleavage site being cut. PartialDigestValue is a value from 0 to
1 (default).

The following table lists some common proteases and their cleavage sites.

Protease	Peptide Pattern	Position
Aspartic acid N	D	1
Chymotrypsin	[WYF](?!P)	1
Glutamine C	[ED](?!P)	1
Lysine C	[K](?!P)	1
Trypsin	[KR](?!P)	1

Examples 1 Retrieve a protein sequence from the GenPept database.

S = getgenpept('AAA59174');

2 Cleave the sequence using proteinase K.

[partsPK, sitesPK, lengthsPK] = cleave(S.Sequence, 'proteinase K');

3 Display the indices of the cleavage sites, lengths, and sequences of the first 10 fragments.

```
for i=1:10
                                %s\n',sitesPK(i),lengthsPK(i),partsPK{i}
            fprintf('%5d%5d
        end
     0
           3
               MGT
      3
           6
               GGRRGA
     9
           1
               А
    10
           1
               А
    11
           1
               А
    12
           2
               ΡL
    14
           1
               L
    15
           1
               ٧
    16
           1
               А
    17
           1
               V
4 Cleave the same sequence using one of trypsin's cleavage rules
  (cleave after K or R when the next residue is not P).
    [partsT, sitesT, lengthsT] = cleave(S.Sequence, '[KR](?!P)',1);
5 Display the indices of the cleavage sites, lengths, and sequences of
  the first 10 fragments.
      for i=1:10
             fprintf('%5d%5d
                                 %s\n',sitesT(i),lengthsT(i),partsT{i})
         end
       0
            6
                 MGTGGR
       6
            1
                 R
       7
           34
                 GAAAAPLLVAVAALLLGAAGHLYPGEVCPGMDIR
      41
            5
                 NNLTR
      46
           21
                 LHELENCSVIEGHLQILLMFK
                TRPEDFR
      67
            7
      74
            6
                 DLSFPK
      80
           12
                 LIMITDYLLLFR
```

- 92 8 VYGLESLK
- 100 10 DLFPNLTVIR

See Also Bioinformatics Toolbox functions: cleavelookup, rebasecuts, restrict, seqshowwords

MATLAB function: regexp

ode', <i>CodeValue</i>) ame', <i>NameValue</i>)
String specifying a code representing an abbreviation code for an enzyme or compound. For valid codes, see the table Cleave Lookup on page 2-239.
String specifying an enzyme or compound name. For valid names, see the table Cleave Lookup on page 2-239.

Description cleavelookup displays a table of abbreviation codes, cleavage positions, cleavage patterns, and full names of enzymes and compounds for which cleavage rules are specified by the cleavage rule library. For more information, see the ExPASy PeptideCutter tool.

Code	Position	Pattern	Full Name
ARG-C	1	R	ARG-C proteinase
ASP-N	2	D	ASP-N endopeptidase
BNPS	1	W	BNPS-Skatole
CASP1	1	(?<=[FWYL]\w[HAT])D(?=[^PEDQKR])	Caspase 1
CASP2	1	(?<=DVA)D(?=[^PEDQKR])	Caspase 2
CASP3	1	(?<=DMQ)D(?=[^PEDQKR])	Caspase 3

Cleave Lookup

Cleave Lookup (Continued)

Code	Position	Pattern	Full Name
CASP4	1	(?<=LEV)D(?=[^PEDQKR])	Caspase 4
CASP5	1	(?<=[LW]EH)D	Caspase 5
CASP6	1	(?<=VE[HI])D(?=[^PEDQKR])	Caspase 6
CASP7	1	(?<=DEV)D(?=[^PEDQKR])	Caspase 7
CASP8	1	(?<=[IL]ET)D(?=[^PEDQKR])	Caspase 8
CASP9	1	(?<=LEH)D	Caspase 9
CASP10	1	(?<=IEA)D	Caspase 10
CH-HI	1	([FY](?=[^P])) (W(?=[^MP]))	Chymotrypsin- high specificity
CH-LO	1	([FLY](?=[^P])) (W(?=[^MP])) (M(?=[^PY])) (H(?=[^DMPW]))	Chymotrypsin- low specificity
CLOST	1	R	Clostripain
CNBR	1	М	CNBR
ENTKIN	1	(?<=[DN][DN][DN])K	Enterokinase
FACTXA	1	(?<=[AFGILTVM][DE]G)R	Factor XA
FORMIC	1	D	Formic acid
GLUEND	1	E	Glutamyl endopeptidase
GRANB	1	(?<=IEP)D	Granzyme B
HYDROX	1	N(?=G)	Hydroxylamine
IODOB	1	W	Iodosobenzoic acid
LYSC	1	К	Lysc

Cleave Lookup (Continued)

Code	Position	Pattern	Full Name
NTCB	1	C	NTCB
PEPS	1	((?<=[^HKR][^P])[^R](?=[FLWY][^P])) ((?<=[^HKR][^P])[FLWY](?=\w[^P]))	Pepsin PH = 1.3
PEPS2	1	((?<=[^HKR][^P])[^R](?=[FL][^P])) ((?<=[^HKR][^P])[FL](?=\w[^P]))	Pepsin PH > 2
PROEND	1	(?<=[HKR])P(?=[^P])	Proline endopeptidase
PROTK	1	[AEFILTVWY]	Proteinase K
STAPHP	1	(?<=[^E])E	Staphylococcal peptidase I
THERMO	1	[^DE](?=[AFILMV])	Thermolysin
THROMB	1	((?<=\w\wG)R(?=G)) ((?<=[AFGILTVM][AFGILTVWA]P)R(?=[^DE][^DE]))	Thrombin
TRYPS	1	((?<=\w)[KR](?=[^P])) ((?<=W)K(?=P)) ((?<=M)R(?=P))	Trypsin

cleavelookup('Code', CodeValue) displays the cleavage position, cleavage pattern, and full name of the enzyme or compound specified by CodeValue, a string specifying an abbreviation code.

cleavelookup('Name', NameValue) displays the cleavage position, cleavage pattern, and abbreviation code of the enzyme or compound specified by NameValue, a string specifying an enzyme or compound name.

Examples Using cleavelookup with an Enzyme Name

Display the cleavage position, cleavage pattern, and abbreviation code of the enzyme Caspase 1.

```
cleavelookup('name', 'CASPASE 1')
```

ans =

1 (?<=[FWYL]\w[HAT])D(?=[^PEDQKR]) CASP1

Using cleavelookup with an Abbreviation Code

Display the cleavage position, cleavage pattern, and full name of the enzyme with a abbreviation code of CASP1.

```
cleavelookup('code', 'CASP1')
ans =
1 (?<=[FWYL]\w[HAT])D(?=[^PEDQKR]) CASPASE 1
See Also
Bioinformatics Toolbox functions: cleave, rebasecuts, restrict</pre>
```

```
Purpose
                  Compute hierarchical clustering, display dendrogram and heat map,
                  and create clustergram object
Syntax
                  CGobj = clustergram(Data)
                  CGobj = clustergram(Data, ... 'RowLabels',
                  RowLabelsValue, ...)
                  CGobj = clustergram(Data, ... 'ColumnLabels',
                     ColumnLabelsValue, ...)
                  CGobj = clustergram(Data, ...'Standardize',
                  StandardizeValue,
                     ...)
                  CGobj = clustergram(Data, ... 'Cluster', ClusterValue, ...)
                  CGobj = clustergram(Data, ... 'RowPdist',
                  RowPdistValue. ...)
                  CGobj = clustergram(Data, ... 'ColumnPdist',
                  ColumnPdistValue,
                     ...)
                  CGobj = clustergram(Data, ... 'Linkage', LinkageValue, ...)
                  CGobj = clustergram(Data, ... 'Dendrogram', DendrogramValue,
                     ...)
                  CGobj = clustergram(Data, ... 'OptimalLeafOrder',
                     OptimalLeafOrderValue, ...)
                  CGobj = clustergram(Data, ... 'ColorMap',
                  ColorMapValue, ...)
                  CGobj = clustergram(Data, ... 'DisplayRange',
                     DisplayRangeValue, ...)
                  CGobj = clustergram(Data, ...'SymmetricRange',
                     SymmetricRangeValue, ...)
                  CGobj = clustergram(Data, ... 'LogTrans',
                  LogTransValue, ...)
                  CGobj = clustergram(Data, ... 'Ratio', RatioValue, ...)
                  CGobj = clustergram(Data, ... 'Impute', ImputeValue, ...)
                  CGobj = clustergram(Data, ... 'RowMarker', RowMarkerValue,
                     ...)
                  CGobj = clustergram(Data, ... 'ColumnMarker',
                     ColumnMarkerValue, ...)
```

clustergram

Arguments	Data	DataMatrix object or numeric matrix of data. If the matrix contains gene expression data, typically each row corresponds to a gene and each column corresponds to sample.
	RowLabelsValue	Vector of numbers or cell array of text strings to label the rows in the dendrogram and heat map. Default is a vector of values 1 through <i>M</i> , where <i>M</i> is the number of rows in <i>Data</i> .
	ColumnLabelsValue	Vector of numbers or cell array of text strings to label the columns in the dendrogram and heat map. Default is a vector of values 1 through <i>N</i> , where <i>N</i> is the number of columns in <i>Data</i> .
	StandardizeValue	Numeric value that specifies the dimension for standardizing the values in <i>Data</i> . The standardized values are transformed so that the mean is 0 and the standard deviation is 1 in the specified dimension. Choices are:
		 1 — Standardize along the columns of data.
		• 2 (default) — Standardize along the rows of data.
		• 3 — Do not perform standardization.

ClusterValue	Numeric value that specifies the dimension for clustering the values in <i>Data</i> . Choices are:
	• 1 — Cluster rows of data only.
	• 2 — Cluster columns of data only.
	• 3 (default) — Cluster rows of data, then cluster columns of row-clustered data.
RowPdistValue	String that specifies the distance metric to pass to the pdist function (Statistics Toolbox software) to use to calculate the pairwise distances between rows. For information on choices, see the pdist function. Default is 'euclidean'.
	Note If the distance metric requires extra arguments, then <i>RowPdistValue</i> is a cell array. For example, to use the Minkowski distance with exponent P, you would use

{'minkowski', P}.

ColumnPdistValue	String that specifies the distance metric to pass to the pdist function (Statistics Toolbox software) to use to calculate the pairwise distances between columns. For information on choices, see the pdist function. Default is 'euclidean'.
	Note If the distance metric requires extra arguments, then <i>ColumnPdistValue</i> is a cell array. For example, to use the Minkowski distance with exponent P, you would use {'minkowski', P}.
LinkageValue	String or two-element cell array of strings that specifies the linkage method to pass to the linkage function (Statistics Toolbox software) to use to create the hierarchical cluster tree for rows and columns. If a two-element cell array of strings, the first element is used for linkage between rows, and the second element is used for linkage between columns. For information on choices, see the linkage function. Default is 'average'. Tip To specify the linkage method for only one dimension, set the other dimension to
	one dimension, set the other dimension to

DendrogramValue	Scalar or two-element numeric vector or cell array of strings that specifies the 'colorthreshold' property to pass to the dendrogram function (Statistics Toolbox software) to create the dendrogram plot. If a two-element numeric vector or cell array, the first element is for the rows, and the second element is for the columns. For more information, see the dendrogram function.
	Tip To specify the 'colorthreshold' property for only one dimension, set the other dimension to ''.
<i>OptimalLeafOrderValue</i>	Property to enable or disable the optimal leaf ordering calculation, which determines the leaf order that maximizes the similarity between neighboring leaves. Choices are true (enable) or false (disable). Default depends on the size of <i>Data</i> . If the number of rows or columns in <i>Data</i> is greater than 1000, default is false; otherwise, default is true.
	Note Disabling the optimal leaf ordering calculation can be useful when working with large data sets because this calculation uses a large amount of memory and can be very time consuming.

ColorMapValue	Either of the following:
	 M-by-3 matrix of RGB values Name of or handle to a function that returns a colormap, such as redgreencmap or redbluecmap
	Default is redgreencmap, in which red represents values above the mean, black represents the mean, and green represents values below the mean of a row (gene) across all columns (samples).
DisplayRangeValue	Positive scalar that specifies the display range of standardized values. Default is 3, which means there is a color variation for values between -3 and 3, but values >3 will be the same color as 3, and values < -3 will be the same color as -3 .
	For example, if you specify redgreencmap for the 'ColorMap' property, pure red represents values ≥ <i>DisplayRangeValue</i> , and pure green represents values ≤ - <i>DisplayRangeValue</i> .
SymmetricRangeValue	Property to force the color scale of the heat map to be symmetric around zero. Choices are true (default) or false.
LogTransValue	Controls the \log_2 transform of <i>Data</i> from natural scale. Choices are true or false (default).

RatioValue	Either of the following:
	• Scalar
	• Two-element vector
	It specifies the ratio of space that the row and column dendrograms occupy relative to the heat map. If <i>RatioValue</i> is a scalar, it is used as the ratio for both dendrograms. If <i>RatioValue</i> is a two-element vector, the first element is used for the ratio of the row dendrogram width to the heat map width, and the second element is used for the ratio of the column dendrogram height to the heat map height. The second element is ignored for one-dimensional clustergrams. Default is 1/5.
ImputeValue	Any of the following:
	• Name of a function that imputes missing data
	• Handle to a function that imputes missing data
	• Cell array where the first element is the name of or handle to a function that imputes missing data and the remaining elements are property name/property value pairs used as inputs to the function
	Caution If you have missing data points, use the 'Impute' property; otherwise, the clustergram function will error.

RowMarkerValue Optional structure array for annotating the groups (clusters) of rows determined by the clustergram function. Each structure in the array represents a group of rows and contains the following fields: • GroupNumber — The row group number to annotate. • Annotation — String specifying text to annotate the row group. • Color — String or three-element vector of RGB values specifying a color, which is used to label the row group. For more information on specifying colors, see colorspec. If this field is empty, default is 'blue'. ColumnMarkerValue Optional structure array for annotating groups (clusters) of columns determined by the clustergram function. Each structure in the array represents a group of columns and contains the following fields: • GroupNumber — The column group number to annotate. • Annotation — String specifying text to annotate the column group. • Color — String or three-element vector of RGB values specifying a color, which is used to label the column group. For more information on specifying colors, see colorspec. If this field is empty,

default is 'blue'.

Description

CGobj = clustergram(Data) performs hierarchical clustering analysis on the values in Data, a DataMatrix object or numeric matrix, creates CGobj, an object containing the analysis data, and displays a dendrogram and heat map. It uses hierarchical clustering with euclidean distance metric and average linkage to generate the hierarchical tree. The clustering is performed first along the columns (producing row-clustered data), and then along the rows in the matrix Data. If Data contains gene expression data, typically the rows correspond to genes and the columns correspond to samples.

CGobj = clustergram(Data, ... 'PropertyName', PropertyValue, ...) calls clustergram with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

CGobj = clustergram(Data, ... 'RowLabels', RowLabelsValue, ...) uses the contents of RowLabelsValue, a vector of numbers or cell array of text strings, as labels for the rows in the dendrogram and heat map. Default is a vector of values 1 through *M*, where *M* is the number of rows in Data.

CGobj = clustergram(Data, ... 'ColumnLabels',ColumnLabelsValue, ...) uses the contents of ColumnLabelsValue, a vector of numbers or cell array of text strings, as labels for the columns in the dendrogram and heat map. Default is a vector of values 1 through <math>M, where M is the number of columns in Data.

CGobj = clustergram(Data, ...'Standardize', StandardizeValue, ...) specifies the dimension for standardizing the values in Data. The standardized values are transformed so that the mean is 0 and the standard deviation is 1 in the specified dimension. StandardizeValue can be:

- 1 Standardize along the columns of data.
- 2 (default) Standardize along the rows of data.
- 3 Do not perform standardization.

CGobj = clustergram(*Data*, ... 'Cluster', *ClusterValue*, ...) specifies the dimension for clustering the values in *Data*. *ClusterValue* can be:

- 1 Cluster rows of data only.
- 2 Cluster columns of data only.
- 3 (default) Cluster rows of data, then cluster columns of row-clustered data.

CGobj = clustergram(*Data*, ... 'RowPdist', *RowPdistValue*, ...) specifies the distance metric to pass to the pdist function (Statistics Toolbox software) to use to calculate the pairwise distances between rows. *RowPdistValue* is a string. For information on choices, see the pdist function. Default is 'euclidean'.

CGobj = clustergram(Data, ...'ColumnPdist', ColumnPdistValue, ...) specifies the distance metric to pass to the pdist function (Statistics Toolbox software) to use to calculate the pairwise distances between columns. ColumnPdistValue is a string. For information on choices, see the pdist function. Default is 'euclidean'.

Note If the distance metric requires extra arguments, then *RowPdistValue* or *ColumnPdistValue* is a cell array. For example, to use the Minkowski distance with exponent P, you would use {'minkowski', P}.

CGobj = clustergram(*Data*, ... 'Linkage', *LinkageValue*, ...) specifies the linkage method to pass to the linkage function (Statistics Toolbox software) to use to create the hierarchical cluster tree for rows and columns. *LinkageValue* is a string or two-element cell array of strings. If a two-element cell array of strings, the first element is used for linkage between rows, and the second element is used for linkage between columns. For information on choices, see the linkage function. Default is 'average'.

Tip To specify the linkage method for only one dimension, set the other dimension to ''.

CGobj = clustergram(*Data*, ...'Dendrogram', *DendrogramValue*, ...) specifies the 'colorthreshold' property to pass to the dendrogram function (Statistics Toolbox software) to create the dendrogram plot. *DendrogramValue* is a scalar or two-element numeric vector or cell array of strings that specifies the 'colorthreshold' property. If a two-element numeric vector or cell array, the first element is for the rows, and the second element is for the columns. For more information, see the dendrogram function.

Tip To specify the 'colorthreshold' property for only one dimension, set the other dimension to ''.

```
CGobj = clustergram(Data, ...'OptimalLeafOrder',
OptimalLeafOrderValue, ...) enables or disables the optimal leaf
ordering calculation, which determines the leaf order that maximizes
the similarity between neighboring leaves. Choices are true (enable)
or false (disable). Default depends on the size of Data. If the number
of rows or columns in Data is greater than 1000, default is false;
otherwise, default is true.
```

Note Disabling the optimal leaf ordering calculation can be useful when working with large data sets because this calculation uses a large amount of memory and can be very time consuming.

CGobj = clustergram(*Data*, ... 'ColorMap', *ColorMapValue*, ...) specifies the colormap to use to create the clustergram. This controls the colors used to display the heat map. *ColorMapValue* is either an M-by-3 matrix of RGB values or the name of or handle to a function that returns a colormap, such as redgreencmap or redbluecmap. Default is redgreencmap.

Note In redgreencmap, red represents values above the mean, black represents the mean, and green represents values below the mean of a row (gene) across all columns (samples). In redbluecmap, red represents values above the mean, white represents the mean, and blue represents values below the mean of a row (gene) across all columns (samples).

CGobj = clustergram(Data, ...'DisplayRange', DisplayRangeValue, ...) specifies the display range of standardized values. DisplayRangeValue must be a positive scalar. Default is 3, which means there is a color variation for values between -3 and 3, but values >3 will be the same color as 3, and values < -3 will be the same color as -3.

For example, if you specify redgreencmap for the 'ColorMap' property, pure red represents values \geq *DisplayRangeValue*, and pure green represents values \leq *-DisplayRangeValue*.

CGobj = clustergram(Data, ...'SymmetricRange', SymmetricRangeValue, ...) controls whether the color scale of the heat map is symmetric around zero. SymmetricRangeValue can be true (default) or false.

CGobj = clustergram(Data, ... 'LogTrans', LogTransValue, ...) controls the log₂ transform of Data from natural scale. Choices are true or false (default).

CGobj = clustergram(*Data*, ...'Ratio', *RatioValue*, ...) specifies the ratio of space that the row and column dendrograms occupy relative to the heat map. If *RatioValue* is a scalar, it is used as the ratio for both dendrograms. If *RatioValue* is a two-element vector, the first element is used for the ratio of the row dendrogram width to the heat map width, and the second element is used for the ratio of the column dendrogram height to the heat map height. The second element is ignored for one-dimensional clustergrams. Default is 1/5.

CGobj = clustergram(*Data*, ... 'Impute', *ImputeValue*, ...) specifies a function and optional inputs that impute missing data. *ImputeValue* can be any of the following:

- Name of a function that imputes missing data
- Handle to a function that imputes missing data
- Cell array where the first element is the name of or handle to a function that imputes missing data and the remaining elements are property name/property value pairs used as inputs to the function

Tip If you have missing data points, use the 'Impute' property; otherwise, the clustergram function will error.

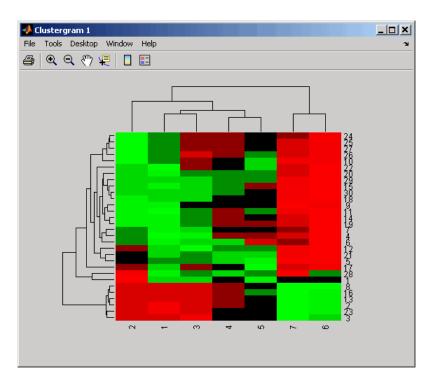
CGobj = clustergram(*Data*, ... 'RowMarker', *RowMarkerValue*, ...) specifies an optional structure array for annotating the groups of rows determined by the clustergram function. Each structure in the array represents a group of rows and contains the following fields:

- GroupNumber The row group number to annotate.
- Annotation String specifying text to annotate the row group.
- Color String or three-element vector of RGB values specifying a color, which is used to label the row group. For more information on specifying colors, see colorspec. If this field is empty, default is 'blue'.

CGobj = clustergram(Data, ... 'ColumnMarker', ColumnMarkerValue, ...) specifies an optional structure array for annotating the groups of columns determined by the clustergram function. Each structure in the array represents a group of columns and contains the following fields:

- GroupNumber The column group number to annotate.
- Annotation String specifying text to annotate the column group.
- Color String or three-element vector of RGB values specifying a color, which is used to label the column group. For more information on specifying colors, see colorspec. If this field is empty, default is 'blue'.

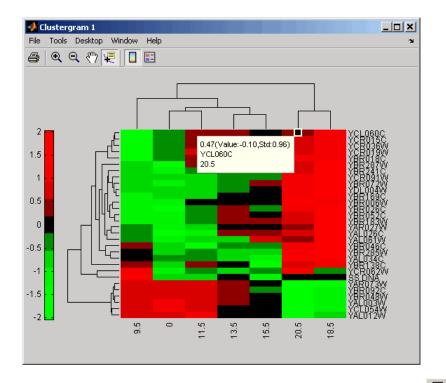
Tip If necessary, view row labels (right) and column labels (bottom) by using the Zoom In button on the toolbar to zoom the clustergram.


Examples The following example uses data from an experiment (DeRisi et al., 1997) that used DNA microarrays to study temporal gene expression of almost all genes in *Saccharomyces cerevisiae* during the metabolic shift from fermentation to respiration. Expression levels were measured at seven time points during the diauxic shift.

1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains filtered yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene expression data, genes, a cell array of GenBank accession numbers for labeling the rows in yeastvalues, and times, a vector of time values for labeling the columns in yeastvalues.

load filteredyeastdata

2 Create a clustergram object and display the dendrograms and heat map from the gene expression data in the first 30 rows of the yeastvalues matrix.


cgo = clustergram(yeastvalues(1:30,:))

Clustergram object with 30 rows of nodes and 7 columns of nodes.

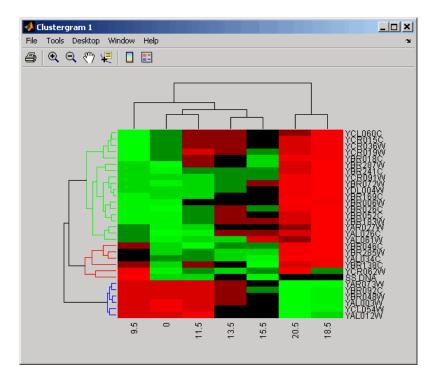
3 Use the set method and the genes and times vectors to add meaningful row and column labels to the clustergram.

set(cgo,'RowLabels',genes(1:30),'ColumnLabels',times)

4 Add a color bar to the clustergram by clicking the Insert Colorbar button on the toolbar, then view a data tip containing the intensity value, row label, and column label for a specific area of the heat map

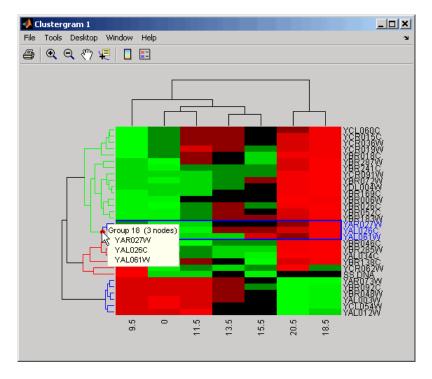
by clicking the Data Cursor button on the toolbar, then clicking an area in the heat map. To delete this data tip, right-click it, then select **Delete Current Datatip**.

5 Use the get method to display the properties of the clustergram object, cgo:

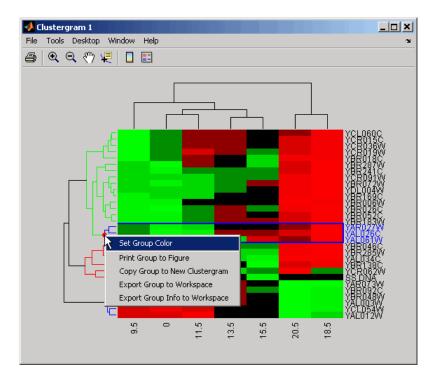

get(cgo)

RowLabels: {30x1 cell}

```
ColumnLabels: {7x1 cell}
     Standardize: {'ROW (2)'}
         Cluster: {'ALL (3)'}
        RowPDist: {'Euclidean'}
     ColumnPDist: {'Euclidean'}
         Linkage: {'Average'}
      Dendrogram: {[0]}
OptimalLeafOrder: 1
        LogTrans: 0
        Colormap: [11x3 double]
    DisplayRange: 3
  SymmetricRange: 1
           Ratio: [0.2000 0.2000]
          Impute: []
      RowMarkers: []
   ColumnMarkers: []
```


6 Change the clustering parameters by changing the linkage method and changing the color of the groups of nodes in the dendrogram whose linkage is less than a threshold of 3.

```
set(cgo,'Linkage','complete','Dendrogram',3)
```

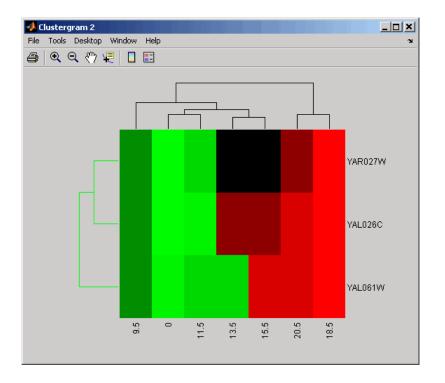


7 Place the cursor on a branch node in the dendrogram to highlight (in blue) the group associated with it. Press and hold the mouse button to display a data tip listing the group number and the nodes (genes or samples) in the group.

clustergram

8 Right-click a branch node in the dendrogram to display a menu of options.

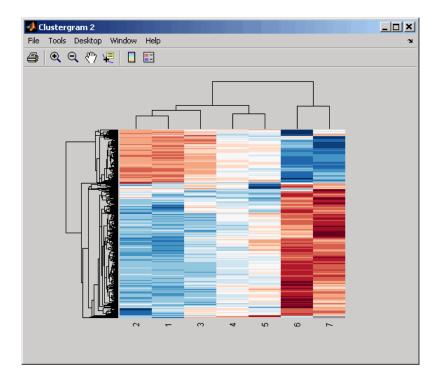
The following options are available:


- Set Group Color Change the group color.
- **Print Group to Figure** Print the group to a Figure window.
- **Copy Group to New Clustergram** Copy the group to a new Clustergram window.
- **Export Group to Workspace** Create a clustergram object of the group in the MATLAB Workspace.
- Export Group Info to Workspace Create a structure containing information about the group in the MATLAB Workspace. The structure contains these fields: GroupNames, RowNodeNames, ColumnNodeNames, and ExprValues.

- **9** Create a clustergram object in the MATLAB Workspace of Group 18 by right-clicking it, then selecting **Export Group to Workspace**. In the Export to Workspace dialog box, type **Group18**, then click **OK**.
- **10** Use the get method to display the properties of the clustergram object, Group18.

```
get(Group18)
       RowGroupNames: {2x1 cell}
        RowNodeNames: {3x1 cell}
    ColumnGroupNames: {6x1 cell}
     ColumnNodeNames: {7x1 cell}
          ExprValues: [3x7 double]
         Standardize: {'ROW (2)'}
             Cluster: {'ALL (3)'}
            RowPDist: {'Euclidean'}
         ColumnPDist: {'Euclidean'}
             Linkage: 'complete'
          Dendrogram: 3
    OptimalLeafOrder: 1
            LogTrans: 0
            Colormap: [11x3 double]
        DisplayRange: 3
      SymmetricRange: 1
               Ratio: [0.2000 0.2000]
              Impute: []
          RowMarkers: []
       ColumnMarkers: []
```

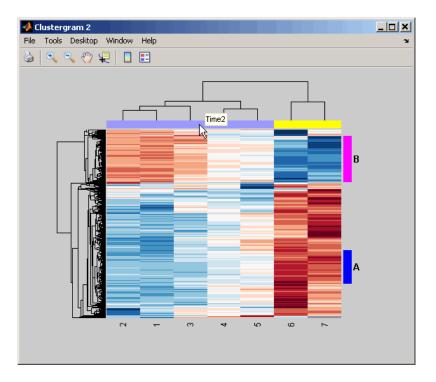
11 Use the view method to view the clustergram (dendrograms and heat map) of the clustergram object, Group18.


```
view(Group18)
```


Note You cannot use the set function with a clustergram object created by exporting a group from another clustergram object.

12 View all the gene expression data using a diverging red and blue colormap.

cgo_all = clustergram(yeastvalues,'Colormap',redbluecmap)
Clustergram object with 614 rows of nodes and 7 columns of nodes.



13 Create structure arrays to specify marker colors and annotations for two groups of rows (510 and 593) and two groups of columns (4 and 5).

```
rm = struct('GroupNumber',{510,593},'Annotation',{'A','B'},...
'Color',{'b','m'});
cm = struct('GroupNumber',{4,5},'Annotation',{'Time1','Time2'},..
'Color',{[1 1 0],[0.6 0.6 1]});
```

14 Use the 'RowMarker' and 'ColumnMarker' properties to add the color markers and annotations to the clustergram.

set(cgo_all,'RowMarker',rm,'ColumnMarker',cm)

Click the color column markers to display the annotations.

References [1] Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). Fast optimal leaf ordering for hierarchical clustering. Bioinformatics *17*, Suppl 1:S22 – 9. PMID: 11472989.

[2] Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA *95*, 14863–8.

[3] DeRisi, J.L., Iyer, V.R., and Brown, P.O. (1997). Exploring the metabolic and genetic control of gene expression on a genomic scale. Science *278*, 680–686s.

[4] Golub, T.R., Slonim, D.K., and Tamayo, P., et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science *286* (*15*), 531–537.

See Also Bioinformatics Toolbox functions: redbluecmap, redgreencmap

Bioinformatics Toolbox object: clustergram object

Bioinformatics Toolbox methods of a clustergram object: get, ${\tt plot}, {\tt set}, {\tt view}$

Statistics Toolbox functions: cluster, dendrogram, linkage, pdist

codonbias

Purpose	Calculate codon frequency for each amino acid coded for in nucleotide sequence
Syntax	CodonFreq = codonbias(SeqNT) CodonFreq = codonbias(SeqNT,'GeneticCode', GeneticCodeValue,) CodonFreq = codonbias(SeqNT,'Frame', FrameValue,) CodonFreq = codonbias(SeqNT,'Reverse', ReverseValue,) CodonFreq = codonbias(SeqNT,'Pie', PieValue,)

Arguments	SeqNT	One of the following:
		• String of codes specifying a nucleotide sequence
		• Row vector of integers specifying a nucleotide sequence
		• MATLAB structure containing a Sequence field that contains a nucleotide sequence, such as returned by fastaread, emblread, getembl, genbankread, or getgenbank
		Valid characters include A, C, G, T, and U.
		codonbias does not count ambiguous nucleotides or gaps.
	GeneticCodeValue	Integer or string specifying a genetic code number or code name from the table Genetic Code on page 2-271. Default is 1 or 'Standard'.
		Tip If you use a code name, you can truncate the name to the first two letters of the name.
	FrameValue	Integer specifying a reading frame in the nucleotide sequence. Choices are 1 (default), 2, or 3.

	ReverseValue	Controls the return of the codon frequency for the reverse complement sequence of the nucleotide sequence specified by <i>SeqNT</i> . Choices are true or false (default).
	PieValue	Controls the creation of a figure of 20 pie charts, one for each amino acid. Choices are true or false (default).
Return Values	CodonFreq	MATLAB structure containing a field for each amino acid, each of which contains the associated codon frequencies as percentages.
Description	However, the probabi for an amino acid) is sequences. Knowing t	e coded by two or more nucleic acid codons. lity that a specific codon (from all possible codons used to code an amino acid varies between the frequency of each codon in a protein coding ino acid is a useful statistic.
	percent for each amin	ias(SeqNT) calculates the codon frequency in o acid coded for in SeqNT, a nucleotide sequence, ts in CodonFreq, a MATLAB structure containing acid.
	PropertyValue, use property name/pr properties in any orde	<pre>ias(SeqNT,'PropertyName',) calls codonbias with optional properties that operty value pairs. You can specify one or more er. Each PropertyName must be enclosed in single is case insensitive. These property name/property ows:</pre>
	GeneticCodeValue, GenetidCodeValue ar or code name from the	ias(SeqNT,'GeneticCode',) specifies a genetic code. Choices for re an integer or string specifying a code number e table Genetic Code on page 2-271. If you use a runcate the name to the first two characters of the 'Standard'.

Tip If you use a code name, you can truncate the name to the first two letters of the name.

CodonFreq = codonbias(SeqNT, ... 'Frame', FrameValue, ...) calculates the codon frequency in the reading frame specified by FrameValue, which can be 1 (default), 2, or 3.

CodonFreq = codonbias(SeqNT, ... 'Reverse', ReverseValue, ...) controls the return of the codon frequency for the reverse complement of the nucleotide sequence specified by SeqNT. Choices are true or false (default).

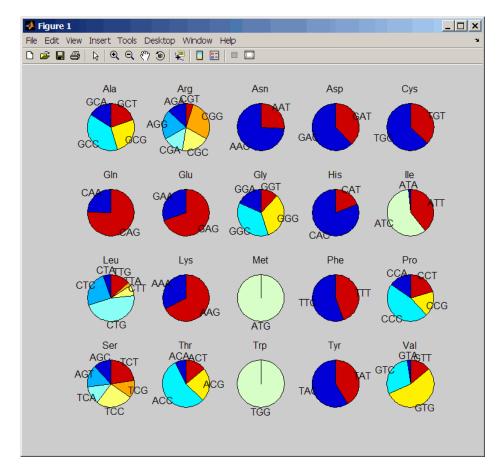
CodonFreq = codonbias(SeqNT, ... 'Pie', PieValue, ...) controls the creation of a figure of 20 pie charts, one for each amino acid. Choices are true or false (default).

Code Number	Code Name
1	Standard
2	Vertebrate Mitochondrial
3	Yeast Mitochondrial
4	Mold, Protozoan, Coelenterate Mitochondrial, and Mycoplasma/Spiroplasma
5	Invertebrate Mitochondrial
6	Ciliate, Dasycladacean, and Hexamita Nuclear
9	Echinoderm Mitochondrial
10	Euplotid Nuclear
11	Bacterial and Plant Plastid
12	Alternative Yeast Nuclear

Genetic Code

Genetic Code (Continued)

Code Number	Code Name
13	Ascidian Mitochondrial
14	Flatworm Mitochondrial
15	Blepharisma Nuclear
16	Chlorophycean Mitochondrial
21	Trematode Mitochondrial
22	Scenedesmus Obliquus Mitochondrial
23	Thraustochytrium Mitochondrial


Examples 1 Import a nucleotide sequence from the GenBank database into the MATLAB software. For example, retrieve the DNA sequence that codes for a human insulin receptor.

S = getgenbank('M10051');

2 Calculate the codon frequency for each amino acid coded for by the DNA sequence, and then plot the results.

cb = codonbias(S.Sequence, 'PIE', true)

A figure with 20 pie charts for the 20 amino acids displays.

3 Get the codon frequency for the alanine (A) amino acid.

```
cb.Ala
ans =
Codon: {'GCA' "GCC' "GCG' 'GCT'}
Freq: [0.1600 0.3867 0.2533 02000]
```

See Also Bioinformatics Toolbox functions: aminolookup, codoncount, geneticcode, nt2aa

Purpose	Count codons in	nucleotide sequence
Syntax	= codonco = codonco	ncount(SeqNT) nArray] = codoncount(SeqNT) unt(SeqNT,'Frame', FrameValue,) unt(SeqNT,'Reverse', ReverseValue,) unt(SeqNT,'Figure', FigureValue,)
Arguments	SeqNT	One of the following:
		• String of codes specifying a nucleotide sequence. For valid letter codes, see the table Mapping Nucleotide Letter Codes to Integers on page 2-794
		• Row vector of integers specifying a nucleotide sequence. For valid integers, see the table Mapping Nucleotide Integers to Letter Codes on page 2-562
		• MATLAB structure containing a Sequence field that contains a nucleotide sequence, such as returned by fastaread, emblread, getembl, genbankread, or getgenbank.
		Examples: 'ACGT' or [1 2 3 4]
	FrameValue	Integer specifying a reading frame in the nucleotide sequence. Choices are 1 (default), 2, or 3.
	<i>ReverseValue</i>	Controls the return of the codon count for the reverse complement sequence of the nucleotide sequence specified by <i>SeqNT</i> . Choices are true or false (default).
	FigureValue	Controls the display of a heat map of the codon counts. Choices are true or false (default).

codoncount

Return		
Values	Codons	MATLAB structure containing fields for the 64 possible codons (AAA, AAC, AAG,, TTG, TTT), which contain the codon counts in <i>SeqNT</i> .
	CodonArray	A 4-by-4-by-4 array containing the raw count data for each codon. The three dimensions correspond to the three positions in the codon, and the indices to each element are represented by $1 = A, 2 = C, 3 =$ G, and $4 = T$. For example, the element (2,3,4) in the array contains the number of CGT codons.
Description	sequence, and r	ncount (SeqNT) counts the codons in SeqNT, a nucleotide eturns the codon counts in Codons, a MATLAB structure s for the 64 possible codons (AAA, AAC, AAG,, TTG, TTT).
	_	es that have codons with the character U, these codons the corresponding codons containing a T.
	S, W, B, D, H, V	the contains ambiguous nucleotide characters (R, Y, K, M, /, or N), or gaps indicated by a hyphen (-), then these re counted in the field Others, and the following warning ears:
	Warning: An	biguous symbols appear in the sequence. These will be in Others.
	L, O, P, Q, X, o	ce contains undefined nucleotide characters (E, F, H, I, J, r Z), then codons containing these characters are counted thers, and the following warning message appears:
	Warning: Ur	known symbols appear in the sequence. These will be in Others.
	a 4-by-4-by-4 an three dimension the indices to ear	nArray] = codoncount(SeqNT) returns CodonArray, cray containing the raw count data for each codon. The ns correspond to the three positions in the codon, and ach element are represented by $1 = A, 2 = C, 3 = G$, example, the element (2,3,4) in the array contains CGT codons.

... = codoncount(SeqNT, ... 'PropertyName', PropertyValue, ...) calls codoncount with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = codoncount(SeqNT, ... 'Frame', FrameValue, ...) counts the codons in the reading frame specified by FrameValue, which can be 1 (default), 2, or 3.

... = codoncount(SeqNT, ... 'Reverse', ReverseValue, ...) controls the return of the codon count for the reverse complement sequence of SeqNT. Choices are true or false (default).

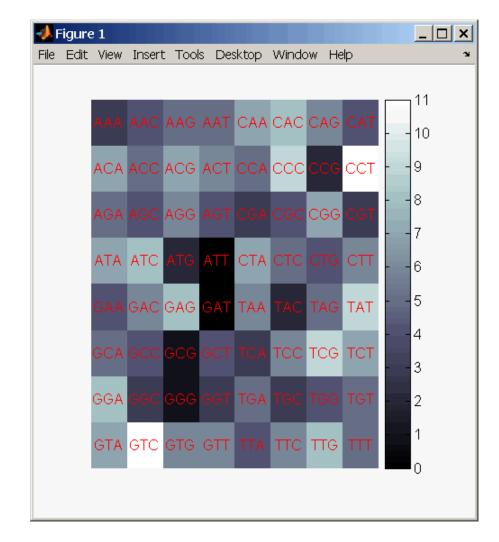
... = codoncount(SeqNT, ...'Figure', FigureValue, ...) controls the display of a heat map of the codon counts. Choices are true or false (default).

Examples • Count the codons in a nucleotide sequence.

codons = codoncount('AAACGTTA')

codons =

AAA: 1 ATC: 0 CGG: 0 GCT: 0 TCA: 0 AAC: 0 ATG: 0 CGT: 1 GGA: 0 TCC: 0 AAG: 0 ATT: 0 CTA: 0 GGC: 0 TCG: 0 AAT: 0 CAA: 0 CTC: 0 GGG: 0 TCT: 0 ACA: 0 CAC: 0 CTG: 0 GGT: 0 TGA: 0 ACC: 0 CAG: 0 CTT: 0 GTA: 0 TGC: 0 ACG: 0 CAT: 0 GAA: 0 GTC: 0 TGG: 0 ACT: 0 CCA: 0 GAC: 0 GTG: 0 TGT: 0 AGA: 0 CCC: 0 GAG: 0 GTT: 0 TTA: 0 CCG: 0 GAT: 0 AGC: 0 TAA: 0 TTC: 0 AGG: 0 CCT: 0 GCA: 0 TAC: 0 TTG: 0 AGT: 0 CGA: 0 GCC: 0 TAG: 0 TTT: 0 ATA: 0 CGC: 0 GCG: 0 TAT: 0

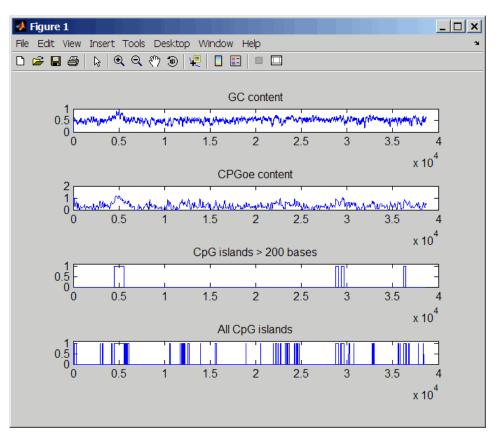

• Count the codons in the second frame for the reverse complement of a sequence.

```
r2codons = codoncount('AAACGTTA','Frame',2,'Reverse',true);
```

• Create a heat map of the codons in a random nucleotide sequence.

```
a = randseq(1000);
codoncount(a,'Figure', true);
```

codoncount


See Also Bioinformatics Toolbox functions: aacount, basecount, baselookup, codonbias, dimercount, nmercount, ntdensity, seqrcomplement, seqwordcount

cpgisland

Purpose	Locate CpG island	ls in DNA sequence
Syntax	<pre>WindowValue, cpgStruct = cpg. MinIslandValue,</pre>	island(SeqDNA,'Window',
Arguments	SeqDNA	One of the following:
		• String of codes specifying a DNA nucleotide sequence
		• Row vector of integers specifying a DNA nucleotide sequence
		• MATLAB structure containing a Sequence field that contains a DNA nucleotide sequence, such as returned by fastaread, emblread, getembl, genbankread, or getgenbank
		Valid characters include A, C, G, and T.
		cpgisland does not count ambiguous nucleotides or gaps.
	WindowValue	Integer specifying the window size for calculating GC content and CpGobserved/CpGexpected ratios. Default is 100 bases. A smaller window size increases the noise in a plot.
	MinIslandValue	Integer specifying the minimum number of consecutive marked bases to report as a CpG island. Default is 200 bases.

	GCminValue	Value specifying the minimum GC percent in a window needed to mark a base. Choices are a value between 0 and 1. Default is 0.5.
	<i>CpGoeValue</i>	Value specifying the minimum CpGobserved/CpGexpected ratio in each window needed to mark a base. Choices are a value between 0 and 1. Default is 0.6. This ratio is defined as:
		CPGobs/CpGexp = (NumCpGs*Length)/(NumGs*NumCs)
	PlotValue	Controls the plotting of GC content, CpGoe content, CpG islands greater than the minimum island size, and all potential CpG islands for the specified criteria. Choices are true or false (default).
Return Values	cpgStruct	MATLAB structure containing the starting and ending bases of the CpG islands greater than the minimum island size.
Description	sequence, for CpC a CpGobserved/Cp meeting this crite then returns the p	fisland (<i>SeqDNA</i>) searches <i>SeqDNA</i> , a DNA nucleotide d islands with a GC content greater than 50% and pGexpected ratio greater than 60%. It marks bases ria within a moving window of 100 DNA bases and results in <i>cpgStruct</i> , a MATLAB structure containing ending bases of the CpG islands greater than the size of 200 bases.
	<i>PropertyValue</i> , use property nam properties in any	<pre>island(SeqDNA,'PropertyName',) calls cpgisland with optional properties that e/property value pairs. You can specify one or more order. Each PropertyName must be enclosed in single and is case insensitive. These property name/property s follows:</pre>

```
cpgStruct = cpgisland(SeqDNA, ...'Window', WindowValue,
                   ...) specifies the window size for calculating GC content and
                   CpGobserved/CpGexpected ratios. Default is 100 bases. A smaller
                   window size increases the noise in a plot.
                   cpgStruct = cpgisland(SeqDNA, ...'MinIsland',
                   MinIslandValue, ...) specifies the minimum number of consecutive
                   marked bases to report as a CpG island. Default is 200 bases.
                   cpgStruct = cpgisland(SeqDNA, ...'GCmin', GCminValue, ...)
                   specifies the minimum GC percent in a window needed to mark a base.
                   Choices are a value between 0 and 1. Default is 0.5.
                   cpgStruct = cpgisland(SeqDNA, ...'CpGoe', CpGoeValue, ...)
                   specifies the minimum CpGobserved/CpGexpected ratio in each window
                   needed to mark a base. Choices are a value between 0 and 1. Default is
                   0.6. This ratio is defined as:
                      CPGobs/CpGexp = (NumCpGs*Length)/(NumGs*NumCs)
                   cpgStruct = cpgisland(SeqDNA, ...'Plot', PlotValue, ...)
                   controls the plotting of GC content, CpGoe content, CpG islands greater
                   than the minimum island size, and all potential CpG islands for the
                   specified criteria. Choices are true or false (default).
Examples
                    1 Import a nucleotide sequence from the GenBank database. For
                      example, retrieve a sequence from Homo sapiens chromosome 12.
                        S = getgenbank('AC156455');
                   2 Calculate the CpG islands in the sequence and plot the results.
                        cpgisland(S.Sequence, 'PLOT', true)
                        ans =
                            Starts: [4470 28753 29347 36229]
                            Stops: [5555 29064 29676 36450]
```


The CpG islands greater than 200 bases in length are listed and a plot displays.

See Also Bioinformatics Toolbox functions: basecount, ntdensity, seqshoworfs

crossvalind

Purpose	Generate cross-validation indices
Syntax	<pre>Indices = crossvalind('Kfold', N, K) [Train, Test] = crossvalind('HoldOut', N, P) [Train, Test] = crossvalind('LeaveMOut', N, M) [Train, Test] = crossvalind('Resubstitution', N, [P,Q]) [] = crossvalind(Method, Group,) [] = crossvalind(Method, Group,, 'Classes', C) [] = crossvalind(Method, Group,, 'Min', MinValue)</pre>
Description	Indices = crossvalind('Kfold', N, K) returns randomly generated indices for a K-fold cross-validation of N observations. Indices contains equal (or approximately equal) proportions of the integers 1 through K that define a partition of the N observations into K disjoint subsets. Repeated calls return different randomly generated partitions. K defaults to 5 when omitted. In K-fold cross-validation, K-1 folds are used for training and the last fold is used for evaluation. This process is repeated K times, leaving one different fold for evaluation each time.
	[Train, Test] = crossvalind('HoldOut', N, P) returns logical index vectors for cross-validation of N observations by randomly selecting P*N (approximately) observations to hold out for the evaluation set. P must be a scalar between 0 and 1. P defaults to 0.5 when omitted, corresponding to holding 50% out. Using holdout cross-validation within a loop is similar to K-fold cross-validation one time outside the loop, except that non-disjointed subsets are assigned to each evaluation.
	[Train, Test] = crossvalind('LeaveMOut', N, M), where M is an integer, returns logical index vectors for cross-validation of N observations by randomly selecting M of the observations to hold out for the evaluation set. M defaults to 1 when omitted. Using LeaveMOut cross-validation within a loop does not guarantee disjointed evaluation sets. Use K-fold instead.
	[Train, Test] = crossvalind('Resubstitution', N, [P,Q]) returns logical index vectors of indices for cross-validation of N observations by randomly selecting P*N observations for the evaluation set and Q*N observations for training. Sets are selected in order to

minimize the number of observations that are used in both sets. P and Q are scalars between 0 and 1. Q=1-P corresponds to holding out (100*P)%, while P=Q=1 corresponds to full resubstitution. [P,Q] defaults to [1,1] when omitted.

 $[\dots]$ = crossvalind(Method, Group, ...) takes the group structure of the data into account. Group is a grouping vector that defines the class for each observation. Group can be a numeric vector, a string array, or a cell array of strings. The partition of the groups depends on the type of cross-validation: For K-fold, each group is divided into K subsets, approximately equal in size. For all others, approximately equal numbers of observations from each group are selected for the evaluation set. In both cases the training set contains at least one observation from each group.

[...] = crossvalind(Method, Group, ..., 'Classes', C) restricts the observations to only those values specified in C. C can be a numeric vector, a string array, or a cell array of strings, but it is of the same form as Group. If one output argument is specified, it contains the value 0 for observations belonging to excluded classes. If two output arguments are specified, both will contain the logical value false for observations belonging to excluded classes.

[...] = crossvalind(Method, Group, ..., 'Min', MinValue) sets the minimum number of observations that each group has in the training set. Min defaults to 1. Setting a large value for Min can help to balance the training groups, but adds partial resubstitution when there are not enough observations. You cannot set Min when using K-fold cross-validation.

Examples Create a 10-fold cross-validation to compute classification error.

```
load fisheriris
indices = crossvalind('Kfold',species,10);
cp = classperf(species);
for i = 1:10
    test = (indices == i); train = ~test;
    class = classify(meas(test,:),meas(train,:),species(train,:));
```

```
classperf(cp,class,test)
end
cp.ErrorRate
```

Approximate a leave-one-out prediction error estimate.

```
load carbig
x = Displacement; y = Acceleration;
N = length(x);
sse = 0;
for i = 1:100
    [train,test] = crossvalind('LeaveMOut',N,1);
    yhat = polyval(polyfit(x(train),y(train),2),x(test));
    sse = sse + sum((yhat - y(test)).^2);
end
CVerr = sse / 100
```

Divide cancer data 60/40 without using the 'Benign' observations. Assume groups are the true labels of the observations.

```
labels = {'Cancer', 'Benign', 'Control'};
groups = labels(ceil(rand(100,1)*3));
[train,test] = crossvalind('holdout',groups,0.6,'classes',...
{'Control','Cancer'});
sum(test) % Total groups allocated for testing
sum(train) % Total groups allocated for training
```

```
See Also Bioinformatics Toolbox functions: classperf, knnclassify, svmclassify
```

Statistics Toolbox functions: classify, grp2idx

cytobandread

Purpose	Read cytogene	tic banding information
Syntax	CytoStruct =	cytobandread(File)
Arguments	File	String specifying a file containing cytogenetic G-banding data, such as an NCBI ideogram text file or a UCSC Genome Browser cytoband text file.
Return Values	CytoStruct	<pre>Structure containing cytogenetic G-banding data in the following fields: • ChromLabels • BandStartBPs • BandEndBPs • BandLabels • GieStains</pre>

Description CytoStruct = cytobandread(File) reads File, which is a string specifying a file containing cytogenetic G-banding data, and returns CytoStruct, which is a structure containing the following fields.

Field	Description
ChromLabels	Cell array containing the chromosome label (number or letter) on which each band is located.
BandStartBPs	Column vector containing the number of the base pair at the start of each band.
BandEndBPs	Column vector containing the number of the base pair at the end of each band.

Field	Description
BandLabels	Cell array containing the FISH label of each band, for example, p32.3.
GieStains	Cell array containing the Giemsa staining result for each band. Possible stain results depend on the species. For example, for <i>Homo sapiens</i> , the possibilities are: • gneg • gpos25 • gpos50
	gpos75gpos100
	• acen
	• stalk
	• gvar

Tip You can download files containing cytogenetic G-banding data from the NCBI or UCSC Genome Browser ftp site. For example, you can download the cytogenetic banding data for *Homo sapiens* from:

ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/mapview/ideogram.gz

or

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/cytoBandIdeo.txt.gz

Examples Read the cytogenetic banding information for *Homo sapiens* into a structure.

```
hs_cytobands = cytobandread('hs_cytoBand.txt')
hs_cytobands =
    ChromLabels: {862x1 cell}
    BandStartBPs: [862x1 int32]
    BandEndBPs: [862x1 cell}
    GieStains: {862x1 cell}
```

See Also Bioinformatics Toolbox function: chromosomeplot

DataMatrix

Purpose	Create DataMatrix object
Syntax	<pre>DMobj = DataMatrix(Matrix) DMobj = DataMatrix(Matrix, RowNames, ColumnNames) DMobj = DataMatrix('File', FileName) DMobj = DataMatrix(, 'RowNames', RowNamesValue,) DMobj = DataMatrix(, 'ColNames', ColNamesValue,) DMobj = DataMatrix(, 'Name', NameValue,) DMobj = DataMatrix('File', FileName,'Delimiter', DelimiterValue,) DMobj = DataMatrix('File', FileName,'HLine', HLineValue,) DMobj = DataMatrix('File', FileName,'Rows', RowsValue,) DMobj = DataMatrix('File', FileName,'Columns',</pre>
	ColumnsValue,)

Arguments

Matrix	Two-dimensional numeric or logical array.
RowNames	Row names for the DataMatrix object, specified by a numeric vector, character array, or cell array of strings, whose elements are equal in number to the number of rows in <i>Matrix</i> . <i>RowNames</i> are typically gene names or probe identifiers from a microarray experiment.

Note The row names do not need to be unique.

ColumnNames	Column names for the DataMatrix object, specified by a numeric vector, character array, or cell array of strings, whose elements are equal in number to the number of columns in <i>Matrix</i> . <i>ColumnNames</i> are typically sample identifiers from a microarray experiment.
	Note The column names do not need to be unique.
FileName	String specifying a file name or a path and file name of a tab-delimited TXT or XLS file that contains table-oriented data and metadata.
	Note Typically, the first row of the table contains column names, the first column contains row names, and the numeric data starts at the 2,2 position. The DataMatrix function will detect if the first column does not contain row names, and read data from the first column. However, if the first row does not contain header text (column names), set the HLine property to 0.

RowNamesValue, ColNamesValue	Row names or column names for the DataMatrix object. Choices are:
	• Numeric vector, character array, or a cell array of strings, whose elements are equal in number to the number of rows or number of columns of numeric data in the input matrix.
	• A single string, which is used as a prefix for row or column names. Numbers will be appended to the prefix.
	• true — Unique row or column names will be assigned using the formats row1, row2, row3, etc., or col1, col2, col3, etc.
	 false — Default. No row or column names are assigned.
	Note The row or column names do not need to be unique.
NameValue	String specifying a name for the DataMatrix object. Default is ''.
DelimiterValue	String specifying a delimiter symbol to use for the input file. Typical choices are:
	• • •
	• '\t' (default)
	• ','
	• ';'
	• ' '

HLineValue	Positive integer that specifies which row of the input file contains the column header text (column names). Default is 1.		
	When creating the DataMatrix object <i>DMobj</i> , the DataMatrix function loads data from (<i>HLineValue</i> + 1) to the end of the file.		
	Tip If the input file does not contain column header text (column names), set <i>HLineValue</i> to 0.		
RowsValue, ColumnsValue	A subset of rows or columns in File, for the DataMatrix function to use to create the DataMatrix object. Choices are:		
	• Cell array of strings		
	• Character array		
	• Numeric or logical vector		

Description A DataMatrix object encapsulates measurement data and feature metadata from a microarray experiment so that it can be indexed by gene names or probe identifiers and by sample identifiers. For examples of creating and using DataMatrix objects, see "Working with DataMatrix Objects" in the Bioinformatics Toolbox User's Guide.

Note The DataMatrix constructor function is part of the microarray object package. To make it available, type the following in the MATLAB command line:

import bioma.data.*

Otherwise, use bioma.data.DataMatrix instead of DataMatrix, in the following syntaxes.

DMobj = DataMatrix(Matrix) creates a DataMatrix object, DMobj, from Matrix, a two-dimensional numeric or logical array. Matrix can also be a DataMatrix object.

DMobj = DataMatrix(Matrix, RowNames, ColumnNames) creates a DataMatrix object, DMobj, from Matrix, a two-dimensional numeric or logical array, with row names and column names specified by RowNames and ColumnNames. RowNames and ColumnNames can be a numeric vector, character array, or cell array of strings, whose elements are equal in number to the number of rows and number of columns, respectively, in Matrix. RowNames are typically gene names or probe identifiers, while ColumnNames are typically sample identifiers.

Note The row or column names do not need to be unique.

DMobj = DataMatrix('File', *FileName*) creates a DataMatrix object, *DMobj*, from *FileName*, a string specifying a file name or a path and file name of a tab-delimited TXT or XLS file that contains table-oriented data and metadata. **Note** Typically, the first row of the table contains column names, the first column contains row names, and the numeric data starts at the 2,2 position. The DataMatrix function will detect if the first column does not contain row names, and read data from the first column. However, if the first row does not contain header text (column names), set the HLine property to 0.

DMobj = DataMatrix(..., 'PropertyName', PropertyValue, ...) calls DataMatrix with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

DMobj = DataMatrix(..., 'RowNames', RowNamesValue, ...) specifies
row names for DMobj. RowNamesValue can be any of the following:

- Numeric vector, character array, or a cell array of strings, whose elements are equal in number to the number of rows of numeric data in the input matrix.
- A single string, which is used as a prefix for row names. Row numbers will be appended to the prefix.
- true Unique row names will be assigned using the format row1, row2, row3, etc.
- false Default. No row names are assigned.

Note The row names do not need to be unique.

DMobj = DataMatrix(..., 'ColNames', ColNamesValue, ...) specifies
column names for DMobj. ColNamesValue can be any of the following:

- Numeric vector, character array, or a cell array of strings, whose elements are equal in number to the number of columns of numeric data in the input matrix.
- A single string, which is used as a prefix for column names. Column numbers will be appended to the prefix.
- true Unique column names will be assigned using the format col1, col2, col3, etc.
- false Default. No column names are assigned.

Note The column names do not need to be unique.

DMobj = DataMatrix(..., 'Name', NameValue, ...) specifies a name
for DMobj. Default is ''.

```
DMobj = DataMatrix('File', FileName, ...'Delimiter',
DelimiterValue, ...) specifies a delimiter symbol to use for the
input file. Typical choices are:
```

- • •
- '\t' (default)
- ','
- ';'
- '|'

DMobj = DataMatrix('File', FileName, ...'HLine', HLineValue, ...) specifies which row of the input file contains the column header text (column names). HLineValue is a positive integer. Default is 1. When creating the DataMatrix object DMobj, the DataMatrix function loads data from (HLineValue + 1) to the end of the file. **Tip** If the input file does not contain column header text (column names), set *HLineValue* to 0.

	<pre>DMobj = DataMatrix('File', FileName,'Rows', RowsValue,) specifies a subset of row names in File for the DataMatrix function to use to create DMobj. RowsValue can be a cell array of strings, a character array, or a numeric or logical vector.</pre>		
DMobj = DataMatrix('File', FileName,'Columns', ColumnsValue,) specifies a subset of column names in F the DataMatrix function to use to create DMobj. ColumnsValue cell array of strings, a character array, or a numeric or logical			
Examples	For examples of creating and using DataMatrix objects, see "Working with DataMatrix Objects" in the Bioinformatics Toolbox User's Guide.		
See Also	Bioinformatics Toolbox object: DataMatrix object		
	Bioinformatics Toolbox methods of a DataMatrix object: colnames, disp, dmarrayfun, dmbsxfun, double, eq, ge, get, gt, horzcat, isequal, isequalwithequalnans, ldivide, le, lt, max, mean, median, min, minus, ndims, ne, numel, plot, plus, power, rdivide, rownames, set, single, sortcols, sortrows, std, sum, times, var, vertcat		

dayhoff

Purpose	Return Dayhoff scoring matrix
Syntax	ScoringMatrix = dayhoff
Description	ScoringMatrix = dayhoff returns a PAM250 type scoring matrix. The order of amino acids in the matrix is $A \in N \cup C \cup$
See Also	Bioinformatics Toolbox functions: blosum, gonnet, pam

Purpose	Count dimers in nucleotide sequence	
Syntax	<pre>Dimers = dimercount(SeqNT) [Dimers, Percent] = dimercount(SeqNT) = dimercount(SeqNT, 'Chart', ChartValue)</pre>	
Arguments	SeqNT	One of the following:
		 String of codes specifying a nucleotide sequence. For valid letter codes, see the table Mapping Nucleotide Letter Codes to Integers on page 2-794.
		• Row vector of integers specifying a nucleotide sequence. For valid integers, see the table Mapping Nucleotide Integers to Letter Codes on page 2-562.
		• MATLAB structure containing a Sequence field that contains a nucleotide sequence, such as returned by fastaread, emblread, getembl, genbankread, or getgenbank.
		Examples: 'ACGT' or [1 2 3 4]
	ChartValue	String specifying a chart type. Choices are 'pie' or 'bar'.

dimercount

Return Values	Dimers	MATLAB structure containing the fields AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, and TT, which contain the dimer counts in <i>SeqNT</i> .	
	Percent	A 4-by-4 matrix with the relative proportions of the dimers in $SeqNT$. The rows correspond to A, C, G, and T in the first element of the dimer, and the columns correspond to A, C, G, and T in the second element of the dimer.	
Description	<i>Dimers</i> = dimercount(<i>SeqNT</i>) counts the nucleotide dimers in <i>SeqNT</i> , a nucleotide sequence, and returns the dimer counts in <i>Dimers</i> , a MATLAB structure containing the fields AA, AC, AG, AT, CA, CC, CG, CT, GA, GC, GG, GT, TA, TC, TG, and TT.		
	• For sequences that have dimers with the character U, these dimers are added to the corresponding dimers containing a T.		
	• If the sequence contains ambiguous nucleotide characters (R, Y, K, M, S, W, B, D, H, V, or N), or gaps indicated by a hyphen (-), then these characters are counted in the field Others, and the following warning message appears.		
	Warning	: Ambiguous symbols appear in the sequence. These will be in Others.	
	• If the sequence contains undefined nucleotide characters (E, F, H, I, J, L, O, P, Q, X, or Z), then dimers containing these characters are counted in the field Others, and the following warning message appears:		
	Warning	: Unknown symbols appear in the sequence. These will be in Others.	
	matrix with correspond t	<pre>ercent] = dimercount(SeqNT) returns Percent, a 4-by-4 the relative proportions of the dimers in SeqNT. The rows to A, C, G, and T in the first element of the dimer, and the respond to A, C, G, and T in the second element of the dimer.</pre>	

... = dimercount(SeqNT, 'Chart', ChartValue) creates a chart showing the relative proportions of the dimers. ChartValue can be 'pie' or 'bar'.

Examples Count the dimers in a nucleotide sequence and display a matrix of the percentage of each dimer.

```
[Dimers, Percent] = dimercount('TAGCTGGCCAAGCGAGCTTG')
```

Dimers =

AA:	1
AC:	0
AG:	3
AT:	0
CA:	1
CC:	1
CG:	1
CT:	2
GA:	1
GC:	4
GG:	1
GT:	0
TA:	1
TC:	0
TG:	2
TT:	1

Percent =

0.0526	0	0.1579	0
0.0526	0.0526	0.0526	0.1053
0.0526	0.2105	0.0526	0
0.0526	0	0.1053	0.0526

See Also Bioinformatics Toolbox functions: aacount, basecount, baselookup, codoncount, nmercount, ntdensity

Purpose	Convert DNA sequence to RNA sequence		
Syntax	SeqRNA = dna2rna(SeqDNA)		
Arguments	SeqDNA	DNA sequence. Enter either a character string with the characters A, T, G, C, and ambiguous characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of integers from the table Mapping Nucleotide Letter Codes to Integers on page 2-794. You can also enter a structure with the field Sequence.	
	SeqRNA	RNA sequence.	
Description	SeqRNA = dna2rna(SeqDNA) converts a DNA sequence to an RNA sequence by converting any thymine nucleotides (T) in the DNA sequence to uracil (U). The RNA sequence is returned in the same format as the DNA sequence. For example, if SeqDNA is a vector of integers, then so is SeqRNA.		
Examples	Convert a DNA sequence to an RNA sequence.		
	<pre>rna = dna2rna('ACGATGAGTCATGCTT')</pre>		
	rna = ACGAUGAGUCAU	GCUU	
See Also	Bioinformatics Toolbox function: rna2dna MATLAB functions: regexp, strrep		

Purpose	Estimate synonymous and nonsynonymous substitution rates		
Syntax	<pre>[Dn, Ds, Vardn, Vards 'GeneticCode', Gen [Dn, Ds, Vardn, Vards MethodValue,) [Dn, Ds, Vardn, Vards WindowValue,) [Dn, Ds, Vardn, Vards 'AdjustStops',</pre>	<pre>s] = dnds(SeqNT1, SeqNT2,'Method', s] = dnds(SeqNT1, SeqNT2,'Window', s] = dnds(SeqNT1, SeqNT2, AdjustStopsValue,) s] = dnds(SeqNT1, SeqNT2,'Verbose',</pre>	
Arguments	SeqNT1, SeqNT2	Nucleotide sequences. Enter either a string or a structure with the field Sequence.	
	GeneticCodeValue	Property to specify a genetic code. Enter a Code Number or a string with a Code Name from the table Genetic Code on page 2-9. If you use a Code Name, you can truncate it to the first two characters. Default is 1 or Standard.	

MethodValue	String specifying the method for calculating substitution rates. Choices are:
	• NG (default) — Nei-Gojobori method (1986) uses the number of synonymous and nonsynonymous substitutions and the number of potentially synonymous and nonsynonymous sites. Based on the Jukes-Cantor model.
	• LWL — Li-Wu-Luo method (1985) uses the number of transitional and transversional substitutions at three different levels of degeneracy of the genetic code. Based on Kimura's two-parameter model.
	• PBL — Pamilo-Bianchi-Li method (1993) is similar to the Li-Wu-Luo method, but with bias correction. Use this method when the number of transitions is much larger than the number of transversions.
WindowValue	Integer specifying the sliding window size, in codons, for calculating substitution rates and variances.

AdjustStopsValue	Controls whether stop codons are excluded from calculations. Choices are true (default) or false.
VerboseValue	Property to control the display of the codons considered in the computations and their amino acid translations. Choices are true or false (default). Tip Specify true to use this display to manually verify the codon alignment of the two input sequences. The presence of stop
	codons (*) in the amino acid translation can indicate that <i>SeqNT1</i> and <i>SeqNT2</i> are not codon-aligned.

Return Values	Dn	Nonsynonymous substitution rate(s).
	Ds	Synonymous substitution rate(s).
	Vardn	Variance for the nonsynonymous substitution rate(s).
	Vards	Variance for the synonymous substitutions rate(s).

Description [*Dn, Ds, Vardn, Vards*] = dnds(*SeqNT1, SeqNT2*) estimates the synonymous and nonsynonymous substitution rates per site between the two homologous nucleotide sequences, *SeqNT1* and *SeqNT2*, by comparing codons using the Nei-Gojobori method.

dnds returns:

- *Dn* Nonsynonymous substitution rate(s).
- Ds Synonymous substitution rate(s).

- *Vardn* Variance for the nonsynonymous substitution rate(s).
- Vards Variance for the synonymous substitutions rate(s).

This analysis:

• Assumes that the nucleotide sequences, *SeqNT1* and *SeqNT2*, are codon-aligned, that is, do not have frame shifts

Tip If your sequences are not codon-aligned, use the nt2aa function to convert them to amino acid sequences, use the nwalign function to globally align them, then use the seqinsertgaps function to recover the corresponding codon-aligned nucleotide sequences. See Estimating Synonymous and Nonsynonymous Substitution Rates Between Two Nucleotide Sequences That Are Not Codon-Aligned on page 2-310.

- Excludes codons that include ambiguous nucleotide characters or gaps
- Considers the number of codons in the shorter of the two nucleotide sequences

Caution

If *SeqNT1* and *SeqNT2* are too short or too divergent, saturation can be reached, and dnds returns NaNs and a warning message.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ... 'PropertyName', PropertyValue, ...) calls dnds with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

```
[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2,
...'GeneticCode', GeneticCodeValue, ...) calculates synonymous
and nonsynonymous substitution rates using the specified genetic code.
Enter a Code Number or a string with a Code Name from the table
Genetic Code on page 2-9. If you use a Code Name, you can truncate it
to the first two characters. Default is 1 or Standard.
```

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Method', MethodValue, ...) allows you to calculate synonymous and nonsynonymous substitution rates using the following algorithms:

- NG (default) Nei-Gojobori method (1986) uses the number of synonymous and nonsynonymous substitutions and the number of potentially synonymous and nonsynonymous sites. Based on the Jukes-Cantor model.
- LWL Li-Wu-Luo method (1985) uses the number of transitional and transversional substitutions at three different levels of degeneracy of the genetic code. Based on Kimura's two-parameter model.
- PBL Pamilo-Bianchi-Li method (1993) is similar to the Li-Wu-Luo method, but with bias correction. Use this method when the number of transitions is much larger than the number of transversions.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Window', WindowValue, ...) performs the calculations over a sliding window, specified in codons. Each output is an array containing a rate or variance for each window.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ... 'AdjustStops', AdjustStopsValue, ...) controls whether stop codons are excluded from calculations. Choices are true (default) or false.

Tip When the 'AdjustStops' property is set to true, the following are true:

- Stop codons are excluded from frequency tables.
- Paths containing stop codons are not counted in the Nei-Gojobori method.

[Dn, Ds, Vardn, Vards] = dnds(SeqNT1, SeqNT2, ...'Verbose', VerboseValue, ...) controls the display of the codons considered in the computations and their amino acid translations. Choices are true or false (default).

Tip Specify true to use this display to manually verify the codon alignment of the two input sequences, *SeqNT1* and *SeqNT2*. The presence of stop codons (*) in the amino acid translation can indicate that *SeqNT1* and *SeqNT2* are not codon-aligned.

Examples Estimating Synonymous and Nonsynonymous Substitution Rates Between the gag Genes of Two HIV Viruses

1 Retrieve two sequences from the GenBank database for the gag genes of two HIV viruses.

gag1 = getgenbank('L11768'); gag2 = getgenbank('L11770');

2 Estimate the synonymous and nonsynonymous substitution rates between the two sequences.

```
[dn ds vardn vards] = dnds(gag1, gag2)
dn =
```

```
0.0244
ds =
0.0697
vardn =
2.3509e-005
vards =
2.3438e-004
```

Estimating Synonymous and Nonsynonymous Substitution Rates Between Two Nucleotide Sequences That Are Not Codon-Aligned

 Retrieve two nucleotide sequences from the GenBank database for the neuraminidase (NA) protein of two strains of the influenza A virus (H5N1).

hk01 = getgenbank('AF509094'); vt04 = getgenbank('DQ094287');

2 Extract the coding region from the two nucleotide sequences.

```
hk01_cds = featuresparse(hk01, 'feature', 'CDS', 'Sequence', true);
vt04_cds = featuresparse(vt04, 'feature', 'CDS', 'Sequence', true);
```

3 Align the amino acids sequences converted from the nucleotide sequences.

[sc,al] = nwalign(nt2aa(hk01_cds),nt2aa(vt04_cds),'extendgap',1);

4 Use the seqinsertgaps function to copy the gaps from the aligned amino acid sequences to their corresponding nucleotide sequences, thus codon-aligning them.

hk01_aligned = seqinsertgaps(hk01_cds,al(1,:))
vt04_aligned = seqinsertgaps(vt04_cds,al(3,:))

5 Estimate the synonymous and nonsynonymous substitutions rates of the codon-aligned nucleotide sequences and also display the codons considered in the computations and their amino acid translations.

[dn,ds] = dnds(hk01 aligned,vt04 aligned,'verbose',true)

References

ICES [1] Li, W., Wu, C., and Luo, C. (1985). A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Molecular Biology and Evolution 2(2), 150–174.

[2] Nei, M., and Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular Biology and Evolution *3(5)*, 418–426.

[3] Nei, M., and Jin, L. (1989). Variances of the average numbers of nucleotide substitutions within and between populations. Molecular Biology and Evolution 6(3), 290–300.

[4] Nei, M., and Kumar, S. (2000). Synonymous and nonsynonymous nucleotide substitutions" in Molecular Evolution and Phylogenetics (Oxford University Press).

[5] Pamilo, P., and Bianchi, N. (1993). Evolution of the Zfx And Zfy genes: rates and interdependence between the genes. Molecular Biology and Evolution 10(2), 271–281.

See Also Bioinformatics Toolbox functions: dndsml, featuresparse, geneticcode, nt2aa, nwalign, seqinsertgaps, seqpdist

dndsml

Purpose	Estimate synonymous and nonsynonymous substitution rates using maximum likelihood method		
Syntax	<pre>[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2) [Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2,'GeneticCode', GeneticCodeValue,) [Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2,'Verbose', VerboseValue,)</pre>		
Arguments	SeqNT1, SeqNT2	Nucleotide sequences. Enter either a string or a structure with the field Sequence.	
	GeneticCodeValue	Property to specify a genetic code. Enter a Code Number or a string with a Code Name from the table Genetic Code on page 2-9. If you use a Code Name, you can truncate it to the first two characters. Default is 1 or Standard.	
	VerboseValue	Property to control the display of the codons considered in the computations and their amino acid translations. Choices are true or false (default).	
		Tip Specify true to use this display to manually verify the codon alignment of the two input sequences. The presence of stop codons (*) in the amino acid translation can indicate that <i>SeqNT1</i> and <i>SeqNT2</i> are not codon-aligned.	
Return Values	Dn Ds	Nonsynonymous substitution rate(s). Synonymous substitution rate(s).	
	Like	Likelihood of estimate of substitution rates.	

Description

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2) estimates the synonymous and nonsynonymous substitution rates between the two homologous sequences, SeqNT1 and SeqNT2, using the Goldman-Yang method (1994). This maximum likelihood method estimates an explicit model for codon substitution that accounts for transition/transversion rate bias and base/codon frequency bias. Then it uses the model to correct synonymous and nonsynonymous counts to account for multiple substitutions at the same site. The maximum likelihood method is best suited when the sample size is significant (larger than 100 bases) and when the sequences being compared can have transition/transversion rate biases and base/codon frequency biases.

dndsml returns:

- Dn Nonsynonymous substitution rate(s).
- Ds Synonymous substitution rate(s).
- Like Likelihood of this estimate.

This analysis:

• Assumes that the nucleotide sequences, *SeqNT1* and *SeqNT2*, are codon-aligned, that is, do not have frame shifts.

Tip If your sequences are not codon-aligned, use the nt2aa function to convert them to amino acid sequences, use the nwalign function to globally align them, then use the seqinsertgaps function to recover the corresponding codon-aligned nucleotide sequences. See Estimating Synonymous and Nonsynonymous Substitution Rates Between Two Nucleotide Sequences That Are Not Codon-Aligned on page 2-315

• Excludes any ambiguous nucleotide characters or codons that include gaps.

• Considers the number of codons in the shorter of the two nucleotide sequences.

Caution

If *SeqNT1* and *SeqNT2* are too short or too divergent, saturation can be reached, and dndsml returns NaNs and a warning message.

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'PropertyName', PropertyValue, ...) calls dnds with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'GeneticCode', GeneticCodeValue, ...) calculates synonymous and nonsynonymous substitution rates using the specified genetic code. Enter a Code Number or a string with a Code Name from the table Genetic Code on page 2-9. If you use a Code Name, you can truncate it to the first two characters. Default is 1 or Standard.

[Dn, Ds, Like] = dndsml(SeqNT1, SeqNT2, ...'Verbose', VerboseValue, ...) controls the display of the codons considered in the computations and their amino acid translations. Choices are true or false (default).

Tip Specify true to use this display to manually verify the codon alignment of the two input sequences, *SeqNT1* and *SeqNT2*. The presence of stop codons (*) in the amino acid translation can indicate that *SeqNT1* and *SeqNT2* are not codon-aligned.

Examples Estimating Synonymous and Nonsynonymous Substitution Rates Between the gag Genes of Two HIV Viruses

 Retrieve two sequences from the GenBank database for the gag genes of two HIV viruses

```
gag1 = getgenbank('L11768');
gag2 = getgenbank('L11770');
```

2 Estimate the synonymous and nonsynonymous substitution rates between the two sequences.

Estimating Synonymous and Nonsynonymous Substitution Rates Between Two Nucleotide Sequences That Are Not Codon-Aligned

1 Retrieve two nucleotide sequences from the GenBank database for the neuraminidase (NA) protein of two strains of the Influenza A virus (H5N1).

hk01 = getgenbank('AF509094'); vt04 = getgenbank('DQ094287');

2 Extract the coding region from the two nucleotide sequences.

```
hk01_cds = featuresparse(hk01, 'feature', 'CDS', 'Sequence', true);
vt04_cds = featuresparse(vt04, 'feature', 'CDS', 'Sequence', true);
```

3 Align the amino acids sequences converted from the nucleotide sequences.

```
[sc,al]=nwalign(nt2aa(hk01_cds),nt2aa(vt04_cds),'extendgap',1);
```

4 Use the seqinsertgaps function to copy the gaps from the aligned amino acid sequences to their corresponding nucleotide sequences, thus codon-aligning them.

```
hk01_aligned = seqinsertgaps(hk01_cds,al(1,:));
vt04_aligned = seqinsertgaps(vt04_cds,al(3,:));
```

5 Estimate the synonymous and nonsynonymous substitutions rates of the codon-aligned nucleotide sequences and also display the codons considered in the computations and their amino acid translations.

```
[dn,ds] = dndsml(hk01_aligned,vt04_aligned,'verbose',true)
dn =
          0.0445
ds =
          0.1576
```

References [1] Tamura, K., and Mei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution *10*, 512–526.

[2] Yang, Z., and Nielsen, R. (2000). Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Molecular Biology and Evolution *17*, 32–43.

[3] Goldman, N., and Yang, Z. (1994). A Codon-based Model of Nucleotide Substitution for Protein-coding DNA Sequences. Mol. Biol. Evol. 11(5), 725–736. See Also Bioinformatics Toolbox functions: dnds, featuresparse, geneticcode, nt2aa, nwalign, seqinsertgaps, seqpdist

emblread

Purpose	Read data from EMBL file		
Syntax	<i>EMBLData</i> = emblread <i>EMBLSeq</i> = emblread <i>SequenceOnlyValue</i>)	d(File) (File, 'SequenceOnly',	
Arguments	File	Either of the following:	
		• String specifying a file name, a path and file name, or a URL pointing to a file. The referenced file is an EMBL-formatted file.	
		• MATLAB character array that contains the text of an EMBL-formatted file	
	SequenceOnlyValue	Controls the reading of only the sequence without the metadata. Choices are true or false (default).	
Return Values	EMBLData	MATLAB structure with fields corresponding to EMBL data.	
	EMBLSeq	MATLAB character string representing the sequence.	
Description	EMBLData = emblread(File) reads data from File, an EMBL-formatted file, and creates EMBLData, a MATLAB structure with fields corresponding to the EMBL two-character line type code. Each line type code is stored as a separate element in the structure.		
	EMBLData contains the following fields.		
	Field		
	Identification.EntryName		

Field
Identification.Version
Identification.Topology
Identification.Molecule
Identification.DataClass
Identification.Division
Identification.SequenceLength
Accession
SequenceVersion
DateCreated
DateUpdated
Description
Keyword
OrganismSpecies
OrganismClassification
Organelle
Reference{#}.Number
Reference{#}.Comment
Reference{#}.Position
Reference{#}.MedLine
Reference{#}.PubMed
Reference{#}.Group
Reference{#}.Authors
Reference{#}.Title
Reference{#}.Location
DatabaseCrossReference

Field
Comments
Assembly
Feature
Basecount.BP
Basecount.A
Basecount.C
Basecount.G
Basecount.T
Basecount.Other
Sequence

Note Topology information was not included in EMBL flat files before release 87 of the database. When reading a file created before release 87, EMBLREAD returns an empty Identification.Topology field.

Note The entry name is no longer displayed in the ID line of EMBL flat files in release 87. When reading a file created in release 87, EMBLREAD returns the accession number in the Identification.EntryName field.

EMBLSeq = emblread (File, 'SequenceOnly', SequenceOnlyValue) controls the reading of only the sequence without the metadata. Choices are true or false (default).

Examples Retrieve sequence information from the Web, save to a file, and then read back into the MATLAB software.

	1 Use the getembl function and ToFile property to retrieve sequence information from the Web and save to an EMBL-formatted file.	
	<pre>getembl('X00558','ToFile','rat_protein.txt');</pre>	
	2 Read data from the EMBL-formatted file and create a MATLAB structure.	
	EMBLData = emblread('rat_protein.txt')	
See Also	Bioinformatics Toolbox functions: fastaread, genbankread, genpeptread, getembl, pdbread, seqtool	

evalrasmolscript

Purpose	Send RasMol script commands to Molecule Viewer window		
Syntax	evalrasmolscript(<i>FigureHandle, Command</i>) evalrasmolscript(<i>FigureHandle,</i> 'File', <i>FileValue</i>)		
Arguments	<i>FigureHandle</i> Figure handle to a molecule viewer returned by the molviewer function.		
	Command	Either of the following:	
		• String specifying one or more RasMol script commands. Use a ; to separate commands.	
		• Character array or cell array containing strings specifying RasMol script commands.	
		Note For a complete list of RasMol script commands, see	
		http://www.stolaf.edu/academics/chemapps/jmol/docs/	
	FileValue	String specifying a file name or a path and file name	
		of a text file containing Jmol script commands. If you specify only a file name, that file must be on the MATLAB search path or in the MATLAB Current Directory.	
Description	evalrasmolscript(<i>FigureHandle</i> , <i>Command</i>) sends the RasMol script commands specified by <i>Command</i> to <i>FigureHandle</i> , the figure handle of a Molecule Viewer window created using the molviewer function.		
	evalrasmolscript(<i>FigureHandle</i> , 'File', <i>FileValue</i>) sends the RasMol script commands specified by <i>FileValue</i> to <i>FigureHandle</i> , the		

figure handle of a Molecule Viewer window created using the $\verb"molviewer"$ function.

Examples 1 Use the molviewer function to create a figure handle to a Molecule Viewer window.

FH = molviewer('2DHB')

2 Use the evalrasmolscript function to send script commands to the molecule viewer that change the background to black and spin the molecule.

evalrasmolscript(FH, 'background white; spin')

See Also Bioinformatics Toolbox functions: getpdb, molviewer, pdbread, pdbwrite

exprprofrange

Purpose	Calculate range of gene expression profiles		
Syntax	Range = exprprofrange(Data) [Range, LogRange] = exprprofrange(Data) = exprprofrange(Data, 'ShowHist', ShowHistValue)		
Arguments	Data	DataMatrix object or numeric matrix of expression values, where each row corresponds to a gene.	
	ShowHistValue	Controls the display of a histogram with range data. Choices are true or false (default).	
Description	Range = exprprofrange(Data) calculates the range of each expression profile in Data, a DataMatrix object or numeric matrix of expression values, where each row corresponds to a gene.		
	[Range, LogRange] = exprprofrange(Data) returns the log range, that is, log(max(prof)) - log(min(prof)), of each expression profile. If you do not specify output arguments, exprprofrange displays a histogram bar plot of the range.		
	= exprprofrange(Data, 'ShowHist', ShowHistValue) controls the display of a histogram with range data. Choices for ShowHistValue are true or false (default).		
Examples		nge of expression profiles for yeast data as gene yes during the metabolic shift from fermentation to	
	load yeastda range = expr	ta profrange(yeastvalues,'ShowHist',true);	
See Also	Bioinformatics Toolbox functions: exprprofvar, generangefilter		

Purpose	Calculate variance of gene expression profiles		
Syntax	Variance = exprprofvar(Data) exprprofvar(, 'PropertyName', PropertyValue,) exprprofvar(, 'ShowHist', ShowHistValue)		
Arguments	ShowHistValue	DataMatrix object or numeric matrix of expression values, where each row corresponds to a gene. Property to control the display of a histogram with variance data. Enter either true or false (default).	
Description	<i>Variance</i> = exprprofvar(<i>Data</i>) calculates the variance of each expression profile in <i>Data</i> , a DataMatrix object or numeric matrix of expression values, where each row corresponds to a gene. If you do not specify output arguments, this function displays a histogram bar plot of the range.		
	optional propertie	, 'PropertyName', PropertyValue,) defines es using property name/value pairs. , 'ShowHist', ShowHistValue), when ShowHist is histogram of the range data.	
Examples	Calculate the variance of expression profiles for yeast data as gene expression changes during the metabolic shift from fermentation to respiration.		
	load yeastda [.] datavar = ex	ta prprofvar(yeastvalues,'ShowHist',true);	
See Also	Bioinformatics Toolbox functions: exprprofrange, generangefilter, genevarfilter		

fastaread

Purpose	Read data from FASTA file		
Syntax	<pre>FASTAData = fastaread(File) [Header, Sequence] = fastaread(File) = fastaread(File,'IgnoreGaps', IgnoreGapsValue,) = fastaread(File,'Blockread', BlockreadValue,)</pre>		
Arguments	File	FASTA-formatted file (ASCII text file). Enter a file name, a path and file name, or a URL pointing to a file. <i>File</i> can also be a MATLAB character array that contains the text for a file name.	
	IgnoreGapsValue	Property to control removing gap symbols. Enter either true or false (default).	
	BlockreadValue	Property to control reading a single entry or block of entries from a file containing multiple sequences. Enter a scalar N, to read the Nth entry in the file. Enter a 1-by-2 vector $[M1, M2]$, to read the block of entries starting at entry $M1$ and ending at entry $M2$. To read all remaining entries in the file starting at entry $M1$, enter a positive value for $M1$ and enter Inf for $M2$.	
Return Values		MATLAB structure with the fields Header and Sequence.	
Description	fastaread reads data from a FASTA-formatted file into a MATLAB structure with the following fields.		

Field			
Header			
Sequence			

A file with a FASTA format begins with a right angle bracket (>) and a single line description. Following this description is the sequence as a series of lines with fewer than 80 characters. Sequences are expected to use the standard IUB/IUPAC amino acid and nucleotide letter codes.

For a list of codes, see aminolookup and baselookup.

FASTAData = fastaread(File) reads a file with a FASTA format and returns the data in a structure. FASTAData.Header is the header information, while FASTAData.Sequence is the sequence stored as a string of letters.

[Header, Sequence] = fastaread(File) reads data from a file into separate variables. If the file contains more than one sequence, then header and sequence are cell arrays of header and sequence information.

... = fastaread(File, ...'PropertyName',

PropertyValue, ...) calls fastaread with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each **PropertyName** must be enclosed in single quotation marks and is case insensitive. The property name/value pairs can be in any format supported by the function set (for example, name-value string pairs, structures, and name-value cell array pairs). These property name/property value pairs are as follows:

... = fastaread(File, ...'IgnoreGaps', IgnoreGapsValue, ...), when IgnoreGapsValue is true, removes any gap symbol ('-' or '.') from the sequences. Default is false.

... = fastaread(*File*, ... 'Blockread', *BlockreadValue*, ...) lets you read in a single entry or block of entries from a file containing multiple sequences. If *BlockreadValue* is a scalar N, then fastaread reads the Nth entry in the file. If *BlockreadValue* is a 1-by-2 vector [*M1*, *M2*], then fastaread reads the block of entries starting at entry *M1* and

fastaread

	ending at entry $M2$. To read all remaining entries in the file starting at entry $M1$, enter a positive value for $M1$ and enter Inf for $M2$.
Examples	Read the sequence for the human p53 tumor gene. p53nt = fastaread('p53nt.txt')
	Read the sequence for the human p53 tumor protein. p53aa = fastaread('p53aa.txt')
	<pre>Read the human mitochondrion genome in FASTA format. entrezSite = 'http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?' textOptions = '&txt=on&view=fasta' genbankID = '&list_uids=NC_001807' mitochondrion = fastaread([entrezSite textOptions genbankID])</pre>
See Also	Bioinformatics Toolbox functions: emblread, fastawrite, genbankread, genpeptread, multialignread, seqprofile, seqtool

Purpose	Write to file using FASTA format	
Syntax		(File, Data) (File, Header, Sequence)
Arguments	File	String specifying either a file name or a path and file name for saving the FASTA-formatted data. If you specify only a file name, the file is saved to the MATLAB Current Directory.
	Data	Any of the following:
		• String containing a sequence
		• MATLAB structure containing the fields Header and Sequence
		• MATLAB structure containing sequence information from the GenBank or GenPept database, such as returned by genbankread, getgenbank, genpeptread, or getgenpept.
	Header	String or name of variable containing information about the sequence. This text will be included in the header of the FASTA-formatted file, <i>File</i> .
	Sequence	String or name of variable containing an amino acid or nucleotide sequence using the standard IUB/IUPAC letter or integer codes. For a list of valid characters, see Amino Acid Lookup on page 2-91 or Nucleotide Lookup on page 2-102.
Description	fastawrite FASTA-form	(File, Data) writes the contents of Data to File, a natted file.
		(File, Header, Sequence) writes the specified header ce information to File, a FASTA-formatted file.

fastawrite

Tip To append FASTA-formatted data to an existing file, simply specify that file name, and the data will be added to the end of the file.

If you are using fastawrite in a script, you can disable the append warning message by entering the following command lines before the fastawrite command:

```
warnState = warning %Save the current warning state
warning('off','Bioinfo:fastawrite:AppendToFile');
```

Then entering the following command line after the fastawrite command:

warning(warnState) %Reset warning state to previous settings

Examples Writing a Coding Region to a FASTA-Formatted File

1 Retrieve the sequence for the human p53 gene from the GenBank database.

seq = getgenbank('NM_000546');

2 Find the CDS line in the FEATURES information.

```
cdsline = strmatch('CDS',seq.Features)
```

```
cdsline =
```

```
23
```

3 Read the coordinates of the coding region in the CDS line.

```
[start,stop] = strread(seq.Features(cdsline,:),'%*s%d..%d')
```

start =

```
252
stop =
1433
```

4 Extract the coding region.

```
codingSeq = seq.Sequence(start:stop);
```

5 Write the coding region to a FASTA-formatted file, specifying Coding region for p53 for the Header in the file, and p53coding.txt for the file name.

```
fastawrite('p53coding.txt','Coding region for p53',codingSeq);
```

Saving Multiple Sequences to a FASTA-Formatted File

1 Write two nucleotide sequences to a MATLAB structure containing the fields Header and Sequence.

data(1).Sequence = 'ACACAGGAAA'; data(1).Header = 'First sequence'; data(2).Sequence = 'ACGTCAGGTC'; data(2).Header = 'Second sequence';

2 Write the sequences to a FASTA-formatted file, specifying my_sequences.txt for the file name.

fastawrite('my_sequences.txt', data)

3 Display the FASTA-formatted file, my_sequences.txt.

```
type('my_sequences.txt')
>First sequence
ACACAGGAAA
```

>Second sequence

ACGTCAGGTC

Appending Sequences to a FASTA-Formatted File

- 1 If you haven't already done so, create the FASTA-formatted file, my_sequences.txt, described in Saving Multiple Sequences to a FASTA-Formatted File on page 2-331.
- **2** Append a third sequence to the file.

fastawrite('my_sequences.txt','Third sequence','TACTGACTTC')

3 Display the FASTA-formatted file, my_sequences.txt.

type('my sequences.txt')

>First sequence ACACAGGAAA

>Second sequence ACGTCAGGTC

>Third sequence TACTGACTTC

See Also Bioinformatics Toolbox functions: fastaread, genbankread, genpeptread, getgenbank, getgenpept, multialignwrite, seqtool

Purpose Draw linear or circular map of features from GenBank structure

```
Syntax featuresmap(GBStructure)
featuresmap(GBStructure, FeatList)
featuresmap(GBStructure, FeatList, Levels)
featuresmap(GBStructure, Levels)
[Handles, OutFeatList] = featuresmap(...)
featuresmap(..., 'FontSize', FontSizeValue, ...)
featuresmap(..., 'ColorMap', ColorMapValue, ...)
featuresmap(..., 'ShowPositions', ShowPositionsValue, ...)
```

Arguments

GBStructure	GenBank structure, typically created using the getgenbank or the genbankread function.
FeatList	Cell array of features (from the list of all features in the GenBank structure) to include in or exclude from the map.
	• If <i>FeatList</i> is a cell array of features, these features are mapped. Any features in <i>FeatList</i> not found in the GenBank structure are ignored.
	• If <i>FeatList</i> includes '-' as the first string in the cell array, then the remaining strings (features) are not mapped.
	By default, <i>FeatList</i> is the a list of all features in the GenBank structure.

Levels	Vector of N integers, where N is the number of features. Each integer represents the level in the map for the corresponding feature. For example, if $Levels = [1, 1, 2, 3, 3]$, the first two features would appear on level 1, the third feature on level 2, and the fourth and fifth features on level 3. By default, $Levels = [1:N]$.
FontSizeValue	Scalar that sets the font size (points) for the annotations of the features. Default is 9 .
ColorMapValue	Three-column matrix, to specify a list of colors to use for each feature. This matrix replaces the default matrix, which specifies the following colors and order: blue, green, red, cyan, magenta, yellow, brown, light green, orange, purple, gold, and silver. In the matrix, each row corresponds to a color, and each column specifies red, green, and blue intensity respectively. Valid values for the RGB intensities are 0.0 to 1.0.

QualifiersValue Cell array of strings to specify an ordered list of qualifiers to search for in the structure and use as annotations. For each feature, the first matching qualifier found from the list is used for its annotation. If a feature does not include any of the qualifiers, no annotation displays for that feature. By default, QualifiersValue = {'gene', 'product', 'locus_tag', 'note', 'db xref', 'protein id'}. Provide your own QualifiersValue to limit or expand the list of qualifiers or change the search order. **Tip** Set *QualifiersValue* = {} to create a map with no annotations. **Tip** To determine all qualifiers available for a given feature, do either of the following: • Create the map, and then click a feature or its annotation to list all qualifiers for that feature. • Use the featuresparse command to parse all the features into a new structure, and then use the fieldnames command to list the qualifiers for a specific feature. See Determining Qualifiers for a Specific Feature on page 2-341.

ShowPositionsValue Property to add the sequence position to the annotation label for each feature. Enter true to add the sequence position. Default is false.

Description

featuresmap(*GBStructure*) creates a linear or circular map of all features from a GenBank structure, typically created using the getgenbank or the genbankread function.

featuresmap(GBStructure, FeatList) creates a linear or circular map of a subset of features from a GenBank structure. FeatList lets you specify features (from the list of all features in the GenBank structure) to include in or exclude from the map.

- If *FeatList* is a cell array of features, these features are mapped. Any features in *FeatList* not found in the GenBank structure are ignored.
- If *FeatList* includes '-' as the first string in the cell array, then the remaining strings (features) are not mapped.

By default, *FeatList* is a list of all features in the GenBank structure.

featuresmap(GBStructure, FeatList, Levels) or featuresmap(GBStructure, Levels) indicates which level on the map each feature is drawn. Level 1 is the left-most (linear map) or inner-most (circular map) level, and level N is the right-most (linear map) or outer-most (circular map) level, where N is the number of features.

Levels is a vector of N integers, where N is the number of features. Each integer represents the level in the map for the corresponding feature. For example, if *Levels* = [1, 1, 2, 3, 3], the first two features would appear on level 1, the third feature on level 2, and the fourth and fifth features on level 3. By default, *Levels* = [1:N].

[Handles, OutFeatList] = featuresmap(...) returns a list of handles for each feature in OutFeatList. It also returns OutFeatList, which is a cell array of the mapped features.

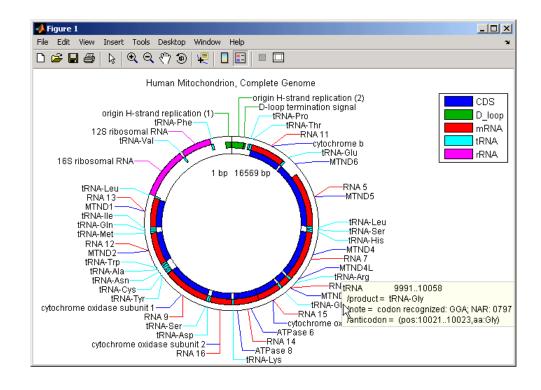
Tip Use *Handles* and *OutFeatList* with the legend command to create a legend of features.

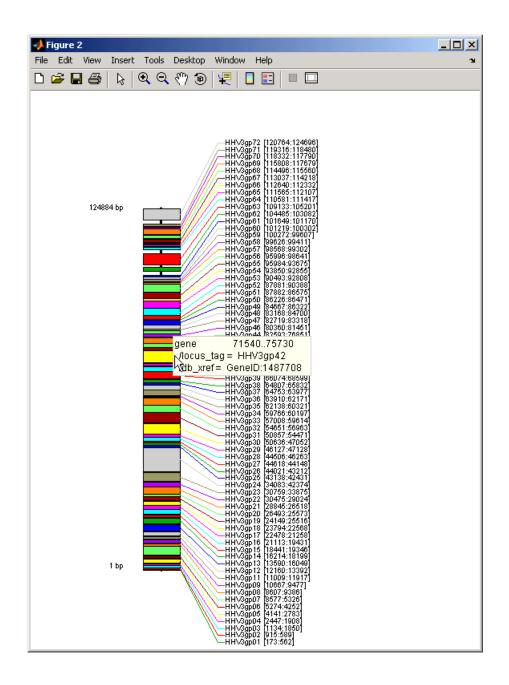
featuresmap(..., 'PropertyName', PropertyValue, ...) defines
optional properties that use property name/value pairs in any order.
These property name/value pairs are as follows:

featuresmap(..., 'FontSize', FontSizeValue, ...) sets the font size
(points) for the annotations of the features. Default FontSizeValue is 9.

featuresmap(..., 'ColorMap', ColorMapValue, ...) specifies a list of colors to use for each feature. This matrix replaces the default matrix, which specifies the following colors and order: blue, green, red, cyan, magenta, yellow, brown, light green, orange, purple, gold, and silver. ColorMapValue is a three-column matrix, where each row corresponds to a color, and each column specifies red, green, and blue intensity respectively. Valid values for the RGB intensities are 0.0 to 1.0.

featuresmap(..., 'Qualifiers', QualifiersValue, ...) lets you
specify an ordered list of qualifiers to search for and use as annotations.
For each feature, the first matching qualifier found from the list is used
for its annotation. If a feature does not include any of the qualifiers, no
annotation displays for that feature. QualifiersValue is a cell array
of strings. By default, QualifiersValue = {'gene', 'product',
'locus_tag', 'note', 'db_xref', 'protein_id'}. Provide your
own QualifiersValue to limit or expand the list of qualifiers or change
the search order.


Tip Set *QualifiersValue* = {} to create a map with no annotations.


Tip To determine all qualifiers available for a given feature, do either of the following:

- Create the map, and then click a feature or its annotation to list all qualifiers for that feature.
- Use the featuresparse command to parse all the features into a new structure, and then use the fieldnames command to list the qualifiers for a specific feature. See Determining Qualifiers for a Specific Feature on page 2-341.

featuresmap(..., 'ShowPositions', ShowPositionsValue, ...)
lets you add the sequence position to the annotation label. If
ShowPositionsValue is true, sequence positions are added to the
annotation labels. Default is false.

featuresmap

After creating a map:

- Click a feature or annotation to display a list of all qualifiers for that feature.
- Zoom the plot by clicking the following buttons:

Examples Creating a Circular Map with a Legend

The following example creates a circular map of five different features mapped on three levels. It also uses outputs from the featuresmap function as inputs to the legend function to add a legend to the map.

```
GBStructure = getgenbank('J01415');
[Handles, OutFeatList] = featuresmap(GBStructure, ...
{'CDS','D_loop','mRNA','tRNA','rRNA'}, [1 2 2 2 3])
legend(Handles, OutFeatList, 'interpreter', 'none', ...
'location','bestoutside')
title('Human Mitochondrion, Complete Genome')
```

Creating a Linear Map with Sequence Position Labels and Changed Font Size

The following example creates a linear map showing only the gene feature. It changes the font of the labels to seven points and includes the sequence position in the labels.

```
herpes = getgenbank('NC_001348');
featuresmap(herpes,{'gene'},'fontsize',7,'showpositions',true)
title('Genes in Human herpesvirus 3 (strain Dumas)')
```

Determining Qualifiers for a Specific Feature

The following example uses the getgenbank function to create a GenBank structure, GBStructure. It then uses the featuresparse function to parse the features in the GenBank structure into a new

structure, features. It then uses the fieldnames function to return all qualifiers for one of the features, D_loop .

```
GenBankStructure = getgenbank('J01415');
features = featuresparse (GenBankStructure)
features =
         source: [1x1 struct]
         D loop: [1x2 struct]
     rep origin: [1x3 struct]
    repeat unit: [1x4 struct]
    misc signal: [1x1 struct]
       misc RNA: [1x1 struct]
      variation: [1x17 struct]
           tRNA: [1x22 struct]
           rRNA: [1x2 struct]
           mRNA: [1x10 struct]
            CDS: [1x13 struct]
       conflict: [1x1 struct]
fieldnames(features.D loop)
ans =
    'Location'
    'Indices'
    'note'
    'citation'
```

See Also featuresparse, genbankread, getgenbank, seqtool

Purpose	Parse features from GenBank, GenPept, or EMBL data		
Syntax	FeatStruct = fea FeatureValue,	turesparse(<i>Features</i> ,'Sequence',	
Arguments	Features	Any of the following:String containing GenBank, GenPept, or EMBL features	
		• MATLAB character array including text describing GenBank, GenPept, or EMBL features	
		• MATLAB structure with fields corresponding to GenBank, GenPept, or EMBL data, such as those returned by genbankread, genpeptread, emblread, getgenbank, getgenpept, or getembl	
	FeatureValue	Name of a feature contained in <i>Features</i> . When specified, featuresparse returns only the substructure that corresponds to this feature. If there are multiple features with the same <i>FeatureValue</i> , then <i>FeatStruct</i> is an array of structures.	
	SequenceValue	Property to control the extraction, when possible, of the sequences respective to each feature, joining and complementing pieces of the source sequence and storing them in the Sequence field of the returned structure, <i>FeatStruct</i> . When extracting the sequence from an incomplete CDS feature, featuresparse uses the codon_start qualifier to adjust the frame of the sequence. Choices are true or false (default).	

featuresparse

Return Values	FeatStruct	Output structure containing a field for every database feature. Each field name in <i>FeatStruct</i> matches the corresponding feature name in the GenBank, GenPept, or EMBL database, with the exceptions listed in the table below. Fields in <i>FeatStruct</i> contain substructures with feature qualifiers as fields. In the GenBank, GenPept, and EMBL databases, for each feature, the only mandatory qualifier is its location, which featuresparse translates to the field Location. When possible, featuresparse also translates this location to numeric indices, creating an Indices field.
		ileit.

Note If you use the Indices field to extract sequence information, you may need to complement the sequences.

Description FeatStruct = featuresparse(Features) parses the features from Features, which contains GenBank, GenPept, or EMBL features. Features can be a:

- String containing GenBank, GenPept, or EMBL features
- MATLAB character array including text describing GenBank, GenPept, or EMBL features
- MATLAB structure with fields corresponding to GenBank, GenPept, or EMBL data, such as those returned by genbankread, genpeptread, emblread, getgenbank, getgenpept, or getembl

FeatStruct is the output structure containing a field for every database
feature. Each field name in FeatStruct matches the corresponding

Feature Name in GenBank, GenPept, or EMBL Database	Field Name in MATLAB Structure
-10_signal	minus_10_signal
-35_signal	minus_35_signal
3'UTR	three_prime_UTR
3'clip	three_prime_clip
5'UTR	five_prime_UTR
5'clip	five_prime_clip
D-loop	D_loop

feature name in the GenBank, GenPept, or EMBL database, with the following exceptions.

Fields in *FeatStruct* contain substructures with feature qualifiers as fields. In the GenBank, GenPept, and EMBL databases, for each feature, the only mandatory qualifier is its location, which featuresparse translates to the field Location. When possible, featuresparse also translates this location to numeric indices, creating an Indices field.

Note If you use the Indices field to extract sequence information, you may need to complement the sequences.

FeatStruct = featuresparse (Features, ...'PropertyName', PropertyValue, ...) calls featuresparse with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

FeatStruct = featuresparse(Features, ...'Feature', FeatureValue, ...) returns only the substructure that corresponds to FeatureValue, the name of a feature contained in *Features*. If there are multiple features with the same *FeatureValue*, then *FeatStruct* is an array of structures.

FeatStruct = featuresparse(Features, ...'Sequence', SequenceValue, ...) controls the extraction, when possible, of the sequences respective to each feature, joining and complementing pieces of the source sequence and storing them in the field Sequence. When extracting the sequence from an incomplete CDS feature, featuresparse uses the codon_start qualifier to adjust the frame of the sequence. Choices are true or false (default).

Examples Obtaining All Features from a GenBank File

The following example obtains all the features stored in the GenBank file nm175642.txt:

```
gbkStruct = genbankread('nm175642.txt');
features = featuresparse(gbkStruct)
```

features =

```
source: [1x1 struct]
gene: [1x1 struct]
CDS: [1x1 struct]
```

Obtaining a Subset of Features from a GenBank Record

The following example obtains only the coding sequences (CDS) feature of the *Caenorhabditis elegans* cosmid record (accession number Z92777) from the GenBank database:

```
worm = getgenbank('Z92777');
CDS = featuresparse(worm,'feature','cds')
CDS =
1x12 struct array with fields:
    Location
```

```
Indices
locus_tag
standard_name
note
codon_start
product
protein_id
db_xref
translation
```

Extracting Sequences for Each Feature

 Retrieve two nucleotide sequences from the GenBank database for the neuraminidase (NA) protein of two strains of the Influenza A virus (H5N1).

```
hk01 = getgenbank('AF509094');
vt04 = getgenbank('DQ094287');
```

2 Extract the sequence of the coding region for the neuraminidase (NA) protein from the two nucleotide sequences. The sequences of the coding regions are stored in the Sequence fields of the returned structures, hk01_cds and vt04_cds.

```
hk01_cds = featuresparse(hk01,'feature','CDS','Sequence',true);
vt04_cds = featuresparse(vt04,'feature','CDS','Sequence',true);
```

3 Once you have extracted the nucleotide sequences, you can use the nt2aa and nwalign functions to align the amino acids sequences converted from the nucleotide sequences.

```
[sc,al]=nwalign(nt2aa(hk01_cds),nt2aa(vt04_cds),'extendgap',1);
```

4 Then you can use the seqinsertgaps function to copy the gaps from the aligned amino acid sequences to their corresponding nucleotide sequences, thus codon-aligning them.

hk01_aligned = seqinsertgaps(hk01_cds,al(1,:))

featuresparse

vt04 aligned =	seqinsertgaps(vt04	cds,al(3,:))
----------------	--------------------	--------------

5 Once you have code aligned the two sequences, you can use them as input to other functions such as dnds, which calculates the synonymous and nonsynonymous substitutions rates of the codon-aligned nucleotide sequences. By setting Verbose to true, you can also display the codons considered in the computations and their amino acid translations.

[dn,ds] = dnds(hk01_aligned,vt04_aligned,'verbose',true)

See Also Bioinformatics Toolbox functions: emblread, genbankread, genpeptread, getgenbank, getgenpept

Purpose	Read microarray data from GenePix array list file		
Syntax	GALData = galread('File')		
Arguments	FileGenePix array list formatted file (GAL). Enter a file name, or enter a path and file name.		
Description	galread reads data from a GenePix formatted file into a MATLAB structure.		
	<pre>GALData = galread('File') reads in a GenePix array list formatted file (File) and creates a structure (GALData) containing the following fields.</pre>		
	Field		
	Header		
	BlockData		
	IDs		
	Names		
	The field BlockData is an N-by-3 array. The columns of this array are the block data, the column data, and the row data respectively. For more information on the GAL format, see		
	http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gal		
	For a list of supported file format versions, see		
	http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html		
See Also	Bioinformatics Toolbox functions: affyread, geoseriesread, geosoftread, gprread, ilmnbsread, imageneread, sptread		

Purpose	Perform GC Robust Multi-array Average (GCRMA) background adjustment, quantile normalization, and median-polish summarization on Affymetrix microarray probe-level data
Syntax	ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices, AffinPM, AffinMM)
	ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices, SequenceMatrix)
	<pre>ExpressionMatrix = gcrma(, 'ChipIndex',</pre>
	ChipIndexValue,)
	<pre>ExpressionMatrix = gcrma(, 'OpticalCorr',</pre>
	<pre>ExpressionMatrix = gcrma(, 'CorrConst', CorrConstValue,)</pre>
	<pre>ExpressionMatrix = gcrma(, 'Method', MethodValue,)</pre>
	<pre>ExpressionMatrix = gcrma(, 'TuningParam', TuningParamValue,)</pre>
	<pre>ExpressionMatrix = gcrma(, 'GSBCorr', GSBCorrValue,)</pre>
	<pre>ExpressionMatrix = gcrma(, 'Normalize', NormalizeValue,)</pre>
	ExpressionMatrix = gcrma(, 'Verbose', VerboseValue,)

Arguments		
	PMMatrix	Matrix of intensity values where each row corresponds to a perfect match (PM) probe and each column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.)
		Tip You can use the PMIntensities matrix returned by the celintensityread function.
	MMMatrix	Matrix of intensity values where each row corresponds to a mismatch (MM) probe and each column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.)
		Tip You can use the MMIntensities matrix returned by the celintensityread function.
	ProbeIndices	Column vector containing probe indices. Probes within a probe set are numbered 0 through N - 1, where N is the number of probes in the probe set.
		Tip You can use the affyprobeseqread function to generate this column vector.

AffinPM	Column vector of PM probe affinities.
	Tip You can use the affyprobeaffinities function to generate this column vector.
AffinMM	Column vector of MM probe affinities.
	Tip You can use the affyprobeaffinities function to generate this column vector.

SequenceMatrix An N-by-25 matrix of sequence information for the perfect match (PM) probes on the Affymetrix GeneChip array, where N is the number of probes on the array. Each row corresponds to a probe, and each column corresponds to one of the 25 sequence positions. Nucleotides in the sequences are represented by one of the following integers:

- 0 None
- 1 A
- 2 C
- 3 G
- 4 T

Tip You can use the affyprobeseqread
function to generate this matrix. If you
have this sequence information in letter
representation, you can convert it to integer
representation using the nt2int function.ChipIndexValuePositive integer specifying a column index
in MMMatrix, which specifies a chip. This

- *in MMMatrix*, which specifies a chip. This chip intensity data is used to compute probe affinities. Default is 1. *OpticalCorrValue* Controls the use of optical background
 - in *PMMatrix* and *MMMatrix*. Choices are true (default) or false.

CorrConstValue	Value that specifies the correlation constant, rho, for background intensity for each PM/MM probe pair. Choices are any value ≥ 0 and ≤ 1 . Default is 0.7.
MethodValue	String that specifies the method to estimate the signal. Choices are MLE, a faster, ad hoc Maximum Likelihood Estimate method, or EB, a slower, more formal, empirical Bayes method. Default is MLE.
TuningParamValue	Value that specifies the tuning parameter used by the estimate method. This tuning parameter sets the lower bound of signal values with positive probability. Choices are a positive value. Default is 5 (MLE) or 0.5 (EB).
	Tip For information on determining a setting for this parameter, see Wu et al., 2004.
GSBCorrValue	Specifies whether to perform gene-specific binding (GSB) correction using probe affinity data. Choices are true (default) or false. If there is no probe affinity information, this property is ignored.
NormalizeValue	Controls whether quantile normalization is performed on background adjusted data. Choices are true (default) or false.
VerboseValue	Controls the display of a progress report showing the number of each chip as it is completed. Choices are true (default) or false.

Return Values	ExpressionMatrix Matrix of \log_2 expression values where each row corresponds to a gene (probe set) and each column corresponds to an Affymetrix CEL file, which represents a single chip.		
Description	<pre>ExpressionMatrix = gcrma(PMMatrix, MMMatrix, ProbeIndices, AffinPM, AffinMM) performs GCRMA background adjustment, quantile normalization, and median-polish summarization on Affymetrix microarray probe-level data using probe affinity data. ExpressionMatrix is a matrix of log₂ expression values where each row corresponds to a gene (probe set) and each column corresponds to an Affymetrix CEL file, which represents a single chip.</pre>		
	Note There is no column in <i>ExpressionMatrix</i> that contains probe set or gene information.		
	<i>ExpressionMatrix</i> = gcrma(<i>PMMatrix</i> , <i>MMMatrix</i> , <i>ProbeIndices</i> , <i>SequenceMatrix</i>) performs GCRMA background adjustment, quantile normalization, and Robust Multi-array Average (RMA) summarization on Affymetrix microarray probe-level data using probe sequence data to compute probe affinity data. <i>ExpressionMatrix</i> is a matrix of log ₂ expression values where each row corresponds to a gene (probe set) and each column corresponds to an Affymetrix CEL file, which represents a single chip.		
	Note If <i>AffinPM</i> and <i>AffinMM</i> affinity data and <i>SequenceMatrix</i> sequence data are not available, you can still use the gcrma function by entering an empty matrix for these inputs in the syntax.		
	<pre>ExpressionMatrix = gcrma('PropertyName', PropertyValue,) calls gcrma with optional properties that use property</pre>		

name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

ExpressionMatrix = gcrma(..., 'ChipIndex', ChipIndexValue, ...) computes probe affinities from MM probe intensity data from the chip with the specified column index in MMMatrix. Default ChipIndexValue is 1. If AffinPM and AffinMM affinity data are provided, this property is ignored.

ExpressionMatrix = gcrma(..., 'OpticalCorr',
OpticalCorrValue, ...) controls the use of optical background
correction on the PM and MM intensity values in PMMatrix and
MMMatrix. Choices are true (default) or false.

ExpressionMatrix = gcrma(..., 'CorrConst', *CorrConstValue*, ...) specifies the correlation constant, rho, for background intensity for each PM/MM probe pair. Choices are any value \geq 0 and \leq 1. Default is 0.7.

ExpressionMatrix = gcrma(..., 'Method', *MethodValue*, ...) specifies the method to estimate the signal. Choices are MLE, a faster, ad hoc Maximum Likelihood Estimate method, or EB, a slower, more formal, empirical Bayes method. Default is MLE.

ExpressionMatrix = gcrma(..., 'TuningParam', TuningParamValue, ...) specifies the tuning parameter used by the estimate method. This tuning parameter sets the lower bound of signal values with positive probability. Choices are a positive value. Default is 5 (MLE) or 0.5 (EB).

Tip For information on determining a setting for this parameter, see Wu et al., 2004.

ExpressionMatrix = gcrma(..., 'GSBCorr', GSBCorrValue, ...)
pecifies whether to perform gene specific binding (GSB) correction using

probe affinity data. Choices are true (default) or false. If there is no probe affinity information, this property is ignored.

ExpressionMatrix = gcrma(..., 'Normalize', NormalizeValue, ...) controls whether quantile normalization is performed on background adjusted data. Choices are true (default) or false.

ExpressionMatrix = gcrma(..., 'Verbose', VerboseValue, ...)
controls the display of a progress report showing the number of each
chip as it is completed. Choices are true (default) or false.

Examples 1 Load the MAT-file, included with the Bioinformatics Toolbox software, that contains Affymetrix data from a prostate cancer study. The variables in the MAT-file include seqMatrix, a matrix containing sequence information for PM probes, pmMatrix and mmMatrix, matrices containing PM and MM probe intensity values, and probeIndices, a column vector containing probe indexing information.

load prostatecancerrawdata

2 Compute the Affymetrix PM and MM probe affinities from their sequences and MM probe intensities.

3 Perform GCRMA background adjustment, quantile normalization, and Robust Multi-array Average (RMA) summarization on the Affymetrix microarray probe-level data and create a matrix of expression values.

expdata = gcrma(pmMatrix, mmMatrix, probeIndices, seqMatrix);

The prostatecancerrawdata.mat file used in this example contains data from Best et al., 2005.

References	[1] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M., and Spencer, F. (2004). A Model Based Background Adjustment for Oligonucleotide Expression Arrays. Journal of the American Statistical Association <i>99(468)</i> , 909–917.
	[2] Wu, Z., and Irizarry, R.A. (2005). Stochastic Models Inspired by Hybridization Theory for Short Oligonucleotide Arrays. Proceedings of RECOMB 2004. J Comput Biol. <i>12(6)</i> , 882–93.
	[3] Wu, Z., and Irizarry, R.A. (2005). A Statistical Framework for the Analysis of Microarray Probe-Level Data. Johns Hopkins University, Biostatistics Working Papers 73.
	[4] Speed, T. (2006). Background models and GCRMA. Lecture 10, Statistics 246, University of California Berkeley. http://www.stat.berkeley.edu/users/terry/Classes/s246.2006/- Week10/Week10L1.pdf.
	[5] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research <i>11</i> , 6823–6834.
See Also	Bioinformatics Toolbox functions: affygcrma, affyprobeseqread, affyread, affyrma, celintensityread, gcrmabackadj, quantilenorm, rmabackadj, rmasummary

```
Purpose
                  Perform GC Robust Multi-array Average (GCRMA) background
                  adjustment on Affymetrix microarray probe-level data using sequence
                  information
Syntax
                  PMMatrix Adj = gcrmabackadj(PMMatrix, MMMatrix, AffinPM,
                     AffinMM)
                  [PMMatrix Adj, nsbStruct] = gcrmabackadj(PMMatrix,
                  MMMatrix,
                     AffinPM, AffinMM)
                  ... = gcrmabackadj( ... 'OpticalCorr',
                  OpticalCorrValue, ...)
                  ... = gcrmabackadj( ... 'CorrConst', CorrConstValue, ...)
                  ... = gcrmabackadj( ... 'Method', MethodValue, ...)
                  ... = gcrmabackadj( ... 'TuningParam',
                  TuningParamValue, ...)
                  ... = gcrmabackadj( ... 'AddVariance',
                  AddVarianceValue, ...)
                  ... = gcrmabackadj( ... 'Showplot', ShowplotValue, ...)
                  ... = gcrmabackadj( ... 'Verbose', VerboseValue, ...)
```

Arguments		
	PMMatrix	Matrix of intensity values where each row corresponds to a perfect match (PM) probe and each column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.)
		Tip You can use the PMIntensities matrix returned by the celintensityread function.
	MMMatrix	Matrix of intensity values where each row corresponds to a mismatch (MM) probe and each column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.)
		Tip You can use the MMIntensities matrix returned by the celintensityread function.
	AffinPM	Column vector of PM probe affinities, such as returned by the affyprobeaffinities function. Each row corresponds to a probe.
	AffinMM	Column vector of MM probe affinities, such as returned by the affyprobeaffinities function. Each row corresponds to a probe.
	<i>OpticalCorrValue</i>	Controls the use of optical background correction on the PM and MM probe intensity values in <i>PMMatrix</i> and <i>MMMatrix</i> . Choices are true (default) or false.

CorrConstValue	Value that specifies the correlation constant, rho, for log background intensity for each PM/MM probe pair. Choices are any value ≥ 0 and ≤ 1 . Default is 0.7.	
MethodValue	String that specifies the method to estimate the signal. Choices are MLE, a faster, ad hoc Maximum Likelihood Estimate method, or EB, a slower, more formal, empirical Bayes method. Default is MLE.	
TuningParamValue	Value that specifies the tuning parameter used by the estimate method. This tuning parameter sets the lower bound of signal values with positive probability. Choices are a positive value. Default is 5 (MLE) or 0.5 (EB).	
	Tip For information on determining a setting for this parameter, see Wu et al., 2004.	
AddVarianceValue	Controls whether the signal variance is added to the weight function for smoothing low signal edge. Choices are true or false (default).	

	ShowplotValue	Controls the display of a plot showing the \log_2 of probe intensity values from a specified column (chip) in <i>MMMatrix</i> , versus probe affinities in <i>AffinMM</i> . Choices are true, false, or <i>I</i> , an integer specifying a column in <i>MMMatrix</i> . If set to true, the first column in <i>MMMatrix</i> is plotted. Default is:
		• false — When return values are specified.
		• true — When return values are not specified.
	VerboseValue	Controls the display of a progress report showing the number of each chip as it is completed. Choices are true (default) or false.
Return		
Values	PMMatrix_Adj	Matrix of background adjusted PM (perfect match) intensity values.
	nsbStruct	Structure containing nonspecific binding background parameters, estimated from the intensities and affinities of probes on an Affymetrix GeneChip array. <i>nsbStruct</i> includes the following fields:
		• sigma
		• mu_pm
		• mu_mm

Description PMMatrix_Adj = gcrmabackadj(PMMatrix, MMMatrix, AffinPM, AffinMM) performs GCRMA background adjustment (including optical background correction and nonspecific binding correction) on Affymetrix microarray probe-level data, using probe sequence information and returns PMMatrix_Adj, a matrix of background adjusted PM (perfect match) intensity values. **Note** If *AffinPM* and *AffinMM* data are not available, you can still use the gcrmabackadj function by entering empty column vectors for both of these inputs in the syntax.

[PMMatrix_Adj, nsbStruct] = gcrmabackadj(PMMatrix, MMMatrix, AffinPM, AffinMM) returns nsbStruct, a structure containing nonspecific binding background parameters, estimated from the intensities and affinities of probes on an Affymetrix GeneChip array. nsbStruct includes the following fields:

- sigma
- mu_pm
- mu_mm

... = gcrmabackadj (... '*PropertyName*', *PropertyValue*, ...) calls gcrmabackadj with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = gcrmabackadj(... 'OpticalCorr', *OpticalCorrValue*, ...) controls the use of optical background correction on the PM and MM probe intensity values in *PMMatrix* and *MMMatrix*. Choices are true (default) or false.

... = gcrmabackadj(... 'CorrConst', CorrConstValue, ...) specifies the correlation constant, rho, for log background intensity for each PM/MM probe pair. Choices are any value \geq 0 and \leq 1. Default is 0.7.

... = gcrmabackadj(... 'Method', *MethodValue*, ...) specifies the method to estimate the signal. Choices are MLE, a faster, ad hoc Maximum Likelihood Estimate method, or EB, a slower, more formal, empirical Bayes method. Default is MLE. ... = gcrmabackadj(... 'TuningParam', *TuningParamValue*, ...) specifies the tuning parameter used by the estimate method. This tuning parameter sets the lower bound of signal values with positive probability. Choices are a positive value. Default is 5 (MLE) or 0.5 (EB).

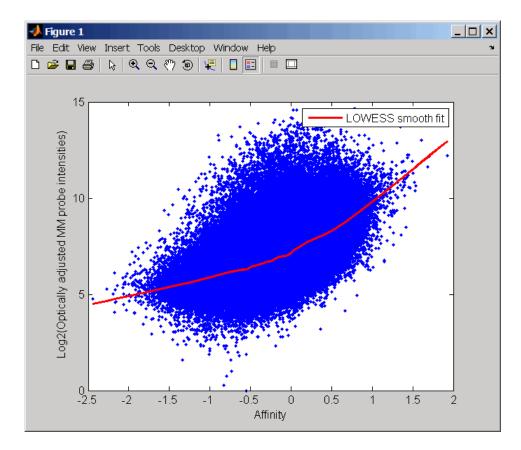
Tip For information on determining a setting for this parameter, see Wu et al., 2004.

... = gcrmabackadj(... 'AddVariance', *AddVarianceValue*, ...) controls whether the signal variance is added to the weight function for smoothing low signal edge. Choices are true or false (default).

... = gcrmabackadj(... 'Showplot', ShowplotValue, ...) controls the display of a plot showing the \log_2 of probe intensity values from a specified column (chip) in *MMMatrix*, versus probe affinities in *AffinMM*. Choices are true, false, or *I*, an integer specifying a column in *MMMatrix*. If set to true, the first column in *MMMatrix* is plotted. Default is:

- false When return values are specified.
- true When return values are not specified.

... = gcrmabackadj (... 'Verbose', VerboseValue, ...) controls the display of a progress report showing the number of each chip as it is completed. Choices are true (default) or false.


Examples Load the MAT-file, included with the Bioinformatics Toolbox software, that contains Affymetrix data from a prostate cancer study. The variables in the MAT-file include seqMatrix, a matrix containing sequence information for PM probes, pmMatrix and mmMatrix, matrices containing PM and MM probe intensity values, and probeIndices, a column vector containing probe indexing information.

load prostatecancerrawdata

2 Compute the Affymetrix PM and MM probe affinities from their sequences and MM probe intensities.

3 Perform GCRMA background adjustment on the Affymetrix microarray probe-level data, creating a matrix of background adjusted PM intensity values. Also, display a plot showing the log₂ of probe intensity values from column 3 (chip 3) in mmMatrix, versus probe affinities in amm.

pms_adj = gcrmabackadj(pmMatrix, mmMatrix, apm, amm, 'showplot', 3);

4 Perform GCRMA background adjustment again, using the slower, more formal, empirical Bayes method.

pms_adj2 = gcrmabackadj(pmMatrix, mmMatrix, apm, amm, 'method', 'EB');

The prostatecancerrawdata.mat file used in this example contains data from Best et al., 2005.

References [1] Wu, Z., Irizarry, R.A., Gentleman, R., Murillo, F.M., and Spencer, F. (2004). A Model Based Background Adjustment for Oligonucleotide

Expression Arrays. Journal of the American Statistical Association 99(468), 909–917.

[2] Wu, Z., and Irizarry, R.A. (2005). Stochastic Models Inspired by Hybridization Theory for Short Oligonucleotide Arrays. Proceedings of RECOMB 2004. J Comput Biol. *12(6)*, 882–93.

[3] Wu, Z., and Irizarry, R.A. (2005). A Statistical Framework for the Analysis of Microarray Probe-Level Data. Johns Hopkins University, Biostatistics Working Papers 73.

 [4] Wu, Z., and Irizarry, R.A. (2003). A Model Based Background Adjustment for Oligonucleotide Expression
 Arrays. RSS Workshop on Gene Expression, Wye, England, http://biosun01.biostat.jhsph.edu/%7Eririzarr/Talks/gctalk.pdf.

[5] Abd Rabbo, N.A., and Barakat, H.M. (1979). Estimation Problems in Bivariate Lognormal Distribution. Indian J. Pure Appl. Math 10(7), 815–825.

[6] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research 11, 6823–6834.

See Also Bioinformatics Toolbox functions: affygcrma, affyprobeseqread, affyread, celintensityread, probelibraryinfo

genbankread

Purpose	Read data from	GenBank file
Syntax	GenBankData = genbankread(File)	
Arguments	File	Either of the following:
		• String specifying a file name, a path and file name, or a URL pointing to a file. The referenced file is a GenBank-formatted file (ASCII text file). If you specify only a file name, that file must be on the MATLAB search path or in the MATLAB Current Directory.
		• MATLAB character array that contains the text of a GenBank-formatted file.
	GenBankData	MATLAB structure with fields corresponding to GenBank keywords.
Description	file, <i>File</i> , and c corresponding t	genbankread(File) reads in a GenBank-formatted creates a structure, GenBankData, containing fields to the GenBank keywords. Each separate sequence listed ructure GenBankData is stored as a separate element
Examples	-	aence information for a gene (HEXA), store data in a file, d back into the MATLAB software.
		nk('nm_000520', 'ToFile', 'TaySachs_Gene.txt') ankread('TaySachs_Gene.txt')
	s =	
		LocusName: 'NM_000520' cusSequenceLength: '2255' usNumberofStrands: ''

```
LocusTopology: 'linear'
    LocusMoleculeType: 'mRNA'
LocusGenBankDivision: 'PRI'
LocusModificationDate: '13-AUG-2006'
           Definition: [1x63 char]
            Accession: 'NM_000520'
              Version: 'NM 000520.2'
                   GI: '13128865'
              Project: []
             Keywords: []
              Segment: []
               Source: 'Homo sapiens (human)'
       SourceOrganism: [4x65 char]
            Reference: {1x58 cell}
              Comment: [15x67 char]
             Features: [74x74 char]
                  CDS: [1x1 struct]
             Sequence: [1x2255 char]
```

2 Display the source organism for this sequence.

	s.SourceOrganism
	ans =
	Homo sapiens
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
	Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
	Catarrhini; Hominidae; Homo.
See Also	Bioinformatics Toolbox functions: emblread, fastaread, genpeptread,
	getgenbank, scfread, seqtool

<u>geneentropyfilter</u>

Purpose	Remove genes with	low entropy expression values
Syntax	[Mask, FData, FN	pyfilter(Data) geneentropyfilter(Data) ames] = geneentropyfilter(Data, Names) r(, 'Percentile', PercentileValue)
Arguments	Data	DataMatrix object or numeric matrix where each row corresponds to the experimental results for one gene. Each column is the results for all genes from one experiment.
	Names	Cell array with the name of a gene for each row of experimental data. <i>Names</i> has same number of rows as <i>Data</i> with each row containing the name or ID of the gene in the data set.
	PercentileValue	Property to specify a percentile below which gene data is removed. Enter a value from 0 to 100.
Description	-	pyfilter(Data) identifies gene expression profiles by values less than the 10th percentile.
	<i>Mask</i> is a logical vector with one element for each row in <i>Data</i> . The elements of <i>Mask</i> corresponding to rows with a variance greater the threshold have a value of 1, and those with a variance less the the threshold are 0.	
		<pre>geneentropyfilter(Data) returns FData, a filtered an also create FData using FData = Data(Mask,:).</pre>
	returns <i>FNames</i> , a fit the names of the ge	<pre>ames] = geneentropyfilter(Data, Names) iltered names array, where Names is a cell array of ones corresponding to each row of Data. You can also g FNames = Names(Mask).</pre>

Note If *Data* is a DataMatrix object with specified row names, you do not need to provide the second input *Names* to return the third output *FNames*.

	geneentropyfilter(, 'Percentile', <i>PercentileValue</i>) removes from <i>Data</i> , the experimental data, gene expression profiles with entropy values less than <i>PercentileValue</i> , the specified percentile.
Examples	load yeastdata [fyeastvalues, fgenes] = geneentropyfilter(yeastvalues,genes);
References	[1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an Integrative Genomics, Cambridge, MA:MIT Press.
See Also	Bioinformatics Toolbox functions: exprprofrange, exprprofvar, genelowvalfilter, generangefilter, genevarfilter

<u>gen</u>elowvalfilter

Purpose	Remove gene profiles with low absolute values	
Syntax	<pre>Mask = genelowvalfilter(Data) [Mask, FData] = genelowvalfilter(Data) [Mask, FData, FNames] = genelowvalfilter(Data, Names) genelowvalfilter(, 'Percentile', PercentileValue,) genelowvalfilter(, 'AbsValue', AbsValueValue,) genelowvalfilter(, 'AnyVal', AnyValValue,)</pre>	
Arguments	Data	DataMatrix object or numeric matrix where each row corresponds to the experimental results for one gene. Each column is the results for all genes from one experiment.
	Names	Cell array with the same number of rows as <i>Data</i> . Each row contains the name or ID of the gene in the data set.
	PercentileValue	Property to specify a percentile below which gene expression profiles are removed. Enter a value from 0 to 100.
	AbsValueValue	Property to specify an absolute value below which gene expression profiles are removed.
	AnyValValue	Property to select the minimum or maximum absolute value for comparison with AbsValueValue. If AnyValValue is true, selects the minimum absolute value. If AnyValValue is false, selects the maximum absolute value. The default value is false.
Description	values are very low	ofile experiments have data where the absolute . The quality of this type of data is often bad due to errors or simply poor spot hybridization.
	-	lfilter(<i>Data</i>) identifies gene expression profiles in ute values less than the 10th percentile.

Mask is a logical vector with one element for each row in *Data*. The elements of *Mask* corresponding to rows with absolute expression levels greater than the threshold have a value of 1, and those with absolute expression levels less then the threshold are 0.

[Mask, FData] = genelowvalfilter(Data) returns FData, a filtered data matrix. You can also create FData using FData = Data(Mask,:).

[Mask, FData, FNames] = genelowvalfilter(Data, Names) returns FNames, a filtered names array, where Names is a cell array of the names of the genes corresponding to each row of Data. You can also create FNames using FNames = Names(Mask).

Note If *Data* is a DataMatrix object with specified row names, you do not need to provide the second input *Names* to return the third output *FNames*.

genelowvalfilter(..., 'PropertyName', PropertyValue, ...) calls genelowvalfilter with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

genelowvalfilter(..., 'Percentile', *PercentileValue*, ...) removes from *Data*, the experimental data, the gene expression profiles with all absolute values less than *PercentileValue*, the specified percentile.

genelowvalfilter(..., 'AbsValue', *AbsValueValue*, ...) calculates the maximum absolute value for each gene expression profile and removes the profiles with maximum absolute values less than *AbsValValue*.

genelowvalfilter(..., 'AnyVal', AnyValValue, ...), when AnyValValue is true, calculates the minimum absolute value for

<u>gen</u>elowvalfilter

	each gene expression profile and removes the profiles with minimum absolute values less than <i>AnyValValue</i> .
Examples	<pre>[data, labels, I, FI] = genelowvalfilter(data,labels,'AbsValue',5);</pre>
References	[1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an Integrative Genomics, Cambridge, MA:MIT Press.
See Also	Bioinformatics Toolbox functions: exprprofrange, exprprofvar, geneentropyfilter, generangefilter, genevarfilter

Purpose	Create geneon	t object
Syntax	GeneontObj =	<pre>geneont('File', FileValue) geneont('Live', LiveValue) geneont('Live', LiveValue, 'ToFile',</pre>
Arguments	FileValue	String specifying the file name of an OBO-formatted file that is on the MATLAB search path.
	LiveValue	Controls the creation of the most up-to-date geneont object. Enter true to create <i>GeneontObj</i> , a geneont object, from the most recent version of the Gene Ontology database. Default is false.
	ToFileValue	String specifying a file name or path and file name to which to save the contents of the current version of the Gene Ontology database.
Return Values	GeneontObj	MATLAB object containing gene ontology information.
Description		geneont creates <i>GeneontObj</i> , a geneont object, from the y.obo file in the MATLAB current directory.
	geneont object,	geneont('File', <i>FileValue</i>) creates <i>GeneontObj</i> , a from <i>FileValue</i> , a string specifying the file name of an d file that is on the MATLAB search path.
	GeneontObj,a	geneont('Live', <i>LiveValue</i>) controls the creation of geneont object, from the current version of the Gene base, which is the file at:
	http://www	.geneontology.org/ontology/gene_ontology.obo

Choices are true or false (default).

Note The full Gene Ontology database may take several minutes to download when you run this function using the 'Live' property.

```
GeneontObj = geneont('Live', LiveValue, 'ToFile',
ToFileValue), when LiveValue is true, creates GeneontObj, a geneont
object, from the most recent version of the Gene Ontology database,
which is the file at:
```

http://www.geneontology.org/ontology/gene_ontology.obo

and saves the contents of this file to *ToFileValue*, a string specifying a file name or a path and file name.

Examples 1 Download the current version of the Gene Ontology database from the Web into a geneont object in the MATLAB software.

GO = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of terms in the database.

Gene Ontology object with 24316 Terms.

2 Display information about the geneont object.

```
get(GO)
```

```
default_namespace: 'gene_ontology'
date: '12:06:2007 19:30'
format_version: '1.0'
version: '4.256'
subsetdef: {5x1 cell}
Terms: [24316x1 geneont.term]
```

3 Search for all GO terms in the geneont object that contain the string ribosome in the field name and create a MATLAB structure containing those terms.

```
comparison = regexpi(get(GO.Terms, 'name'), 'ribosome');
                       indices = find(~cellfun('isempty',comparison));
                       terms with ribosmome = GO.Term(indices)
                       22x1 struct array with fields:
                           id
                           name
                           ontology
                           definition
                           comment
                           synonym
                           is a
                           part of
                           obsolete
See Also
                  Bioinformatics Toolbox functions: goannotread, num2goid
                  Bioinformatics Toolbox object: geneont object
                  Bioinformatics Toolbox methods of geneont object: getancestors,
                  getdescendants, getmatrix, getrelatives
```

<u>generange</u>filter

Purpose	Remove gene profiles w	ith small profile ranges
Syntax	<pre>generangefilter(, generangefilter(, generangefilter(,)</pre>	erangefilter(Data) e] = generangefilter(Data, Names) 'Percentile', PercentileValue,) 'AbsValue', AbsValueValue,)
Arguments	Data	DataMatrix object or numeric matrix where each row corresponds to the experimental results for one gene. Each column is the results for all genes from one experiment.
	Names	Cell array with the name of a gene for each row of experimental data. <i>Names</i> has same number of rows as <i>Data</i> with each row containing the name or ID of the gene in the data set.
	PercentileValue	Property to specify a percentile below which gene expression profiles are removed. Enter a value from 0 to 100.
	AbsValueValue	Property to specify an absolute value below which gene expression profiles are removed.
	LogPercentileValue	Property to specify the logarithm of a percentile.
	LogValueValue	Property to specify the logarithm of an absolute value.
Description		ter(Data) calculates the range for each gene ta, a DataMatrix object or matrix of the

experimental data, and then identifies the expression profiles with ranges less than the 10th percentile.

Mask is a logical vector with one element for each row in *Data*. The elements of *Mask* corresponding to rows with a range greater then the threshold have a value of 1, and those with a range less then the threshold are 0.

[Mask, FData] = generangefilter(Data) returns FData, a filtered data matrix. You can also create FData using FData = Data(Mask,:).

[Mask, FData, FNames] = generangefilter(Data, Names) returns FNames, a filtered names array, where Names is a cell array of the names of the genes corresponding to each row in Data. You can also create FNames using FNames = Names(Mask).

Note If *Data* is a DataMatrix object with specified row names, you do not need to provide the second input *Names* to return the third output *FNames*.

generangefilter(..., 'PropertyName', PropertyValue, ...) calls generangefilter with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

generangefilter(..., 'Percentile', *PercentileValue*, ...) removes from the experimental data (*Data*) gene expression profiles with ranges less than a specified percentile (*PercentileValue*).

generangefilter(..., 'AbsValue', AbsValueValue, ...)
removes from Data gene expression profiles with ranges less than
AbsValueValue.

generangefilter(..., 'LogPercentile', LogPercentileValue, ...) filters genes with profile ranges in the lowest percent of the log range (LogPercentileValue).

<u>generang</u>efilter

	<pre>generangefilter(, 'LogValue', LogValueValue,) filters genes with profile log ranges lower than LogValueValue.</pre>
Examples	load yeastdata [mask, fyeastvalues, fgenes] = generangefilter(yeastvalues,genes);
References	[1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an Integrative Genomics, Cambridge, MA:MIT Press.
See Also	Bioinformatics Toolbox functions: exprprofrange, exprprofvar, geneentropyfilter, genelowvalfilter, genevarfilter

Purpose	Return nucleotide codon to amino acid mapping for genetic code		
Syntax		<pre>Map = geneticcode Map = geneticcode(GeneticCode)</pre>	
Arguments	GeneticCode	Integer or string specifying a genetic code number or code name from the table Genetic Code on page 2-382. Default is 1 or 'Standard'.	
		Tip If you use a code name, you can truncate the name to the first two letters of the name.	
Return Values	Мар	Structure containing the mapping of nucleotide codons to amino acids for the standard genetic code. The <i>Map</i> structure contains a field for each nucleotide codon.	
Description	 Map = geneticcode returns a structure containing the mapping of nucleotide codons to amino acids for the standard genetic code. The Map structure contains a field for each nucleotide codon. Map = geneticcode(GeneticCode) returns a structure containing the mapping of nucleotide codons to amino acids for the specified genetic code. GeneticCode is either: 		
		or string specifying a code number or code name from the ic Code on page 2-382	
		_table (code) number from the NCBI Web page enetic codes:	
	http://w	ww.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c	

Tip If you use a code name, you can truncate the name to the first two letters of the name.

Genetic Code

Code Number	Code Name
1	Standard
2	Vertebrate Mitochondrial
3	Yeast Mitochondrial
4	Mold, Protozoan, Coelenterate Mitochondrial, and Mycoplasma/Spiroplasma
5	Invertebrate Mitochondrial
6	Ciliate, Dasycladacean, and Hexamita Nuclear
9	Echinoderm Mitochondrial
10	Euplotid Nuclear
11	Bacterial and Plant Plastid
12	Alternative Yeast Nuclear
13	Ascidian Mitochondrial
14	Flatworm Mitochondrial
15	Blepharisma Nuclear
16	Chlorophycean Mitochondrial
21	Trematode Mitochondrial
22	Scenedesmus Obliquus Mitochondrial
23	Thraustochytrium Mitochondrial

Examples	Return the mapping of nucleotide codons to amino acids for the Flatworm Mitochondrial genetic code.		
	<pre>wormmap = geneticcode('Flatworm Mitochondrial');</pre>		
References	[1] NCBI Web page describing genetic codes:		
	http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c		
See Also	Bioinformatics Toolbox functions: aa2nt, aminolookup, baselookup, codonbias, dnds, dndsml, nt2aa, revgeneticcode, seqshoworfs, seqtool		

genevarfilter

Purpose	Filter genes with small profile variance	
Syntax	<pre>Mask = genevarfilter(Data) [Mask, FData] = genevarfilter(Data) [Mask, FData, FNames] = genevarfilter(Data, Names) genevarfilter(, 'Percentile', PercentileValue,) genevarfilter(, 'AbsValue', AbsValueValue,)</pre>	
Arguments	Data	DataMatrix object or numeric matrix where each row corresponds to a gene. If a matrix, the first column is the names of the genes, and each additional column is the results from an experiment.
	Names	Cell array with the name of a gene for each row of experimental data. <i>Names</i> has same number of rows as <i>Data</i> with each row containing the name or ID of the gene in the data set.
	PercentileValue	Specifies a percentile below which gene expression profiles are removed. Enter a value from 0 to 100.
	AbsValueValue	Property to specify an absolute value below which gene expression profiles are removed.
Description	the profile and are g	riments have genes that exhibit little variation in generally not of interest in the experiment. These y removed from the data.
	<i>Mask</i> = genevarfilter(<i>Data</i>) calculates the variance for each gene expression profile in <i>Data</i> and then identifies the expression profiles with a variance less than the 10th percentile.	
	<i>Mask</i> is a logical vector with one element for each row in <i>Data</i> . The elements of <i>Mask</i> corresponding to rows with a variance greater than the threshold have a value of 1, and those with a variance less than the threshold are 0 .	

[Mask, FData] = genevarfilter(Data) returns FData, a filtered data matrix. You can also create FData using FData = Data(Mask,:).

[Mask, FData, FNames] = genevarfilter(Data, Names) returns FNames, a filtered names array, where Names is a cell array of the names of the genes corresponding to each row in Data. You can also create FNames using FNames = Names(Mask).

Note If *Data* is a DataMatrix object with specified row names, you do not need to provide the second input *Names* to return the third output *FNames*.

genevarfilter(..., 'PropertyName', PropertyValue, ...) calls genevarfilter with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:.

genevarfilter(..., 'Percentile', *PercentileValue*, ...) removes from the experimental data (*Data*) gene expression profiles with a variance less than the percentile (*PercentileValue*).

genevarfilter(..., 'AbsValue', AbsValueValue, ...) removes
from Data gene expression profiles with a variance less than
AbsValueValue.

Examples	load yeastdata [fyeastvalues, fgenes] = genevarfilter(yeastvalues,genes);
References	[1] Kohane I.S., Kho A.T., Butte A.J. (2003), Microarrays for an Integrative Genomics, Cambridge, MA:MIT Press.
See Also	Bioinformatics Toolbox functions: exprprofrange, exprprofvar, generangefilter, geneentropyfilter, genelowvalfilter

genpeptread

Purpose	Read data from GenPept file	
Syntax	<pre>GenPeptData = genpeptread('File')</pre>	
Arguments	<i>File</i> GenPept formatted file (ASCII text file). Enter a file name, a path and file name, or a URL pointing to a file. <i>File</i> can also be a MATLAB character array that contains the text of a GenPept file.	
Description	genpeptread reads data from a GenPept formatted file into a MATLAB structure.	
	Note NCBI has changed the name of their protein search engine from GenPept to Entrez Protein. However, the function names in the Bioinformatics Toolbox software (getgenpept and genpeptread) are unchanged representing the still-used GenPept report format.	
	GenPeptData = genpeptread(' <i>File</i> ') reads in the GenPept formatted sequence from <i>File</i> and creates a structure GenPeptData, containing fields corresponding to the GenPept keywords. Each separate sequence listed in <i>File</i> is stored as a separate element of the structure. GenPeptDATA contains these fields:	
	Field	
	LocusName	
	LocusSequenceLength	
	LocusMoleculeType	
	LocusGenBankDivision	
	LocusModificationDate	
	Definition	

Field		
Accession		
PID		
Version		
GI		
DBSource		
Keywords		
Source		
SourceDatabase		
SourceOrganism		
Reference.Number		
Reference.Author	3	
Reference.Title		
Reference.Journa	L	
Reference.MedLin	9	
Reference.PubMed		
Reference.Remark		
Comment		
Features		
Weight		
Length		
Sequence		

Examples Retrieve sequence information for the protein coded by the gene HEXA, save to a file, and then read back into the MATLAB software.

getgenpept('p06865', 'ToFile', 'TaySachs_Protein.txt')
genpeptread('TaySachs_Protein.txt')

See Also Bioinformatics Toolbox functions: fastaread, genbankread, getgenpept, pdbread, seqtool

Purpose	Read Gene Expression Omnibus (GEO) Series (GSE) format data	
Syntax	GEOData = geoseriesread(File)	
Arguments	File	 Either of the following: String specifying a file name, a path and file name, or a URL pointing to a file. The referenced file is a Gene Expression Omnibus (GEO) Series (GSE) format file. If you specify only a file name, that file must be on the MATLAB search path or in the current directory. MATLAB character array that contains the text of a GEO Series (GSE) format file. Tip You can use the getgeodata function with the 'ToFile' property to retrieve GEO Series (GSE) format data from the GEO database and create a GEO Series (GSE) format file.
Return Values	GEOData	 MATLAB structure containing the following fields: Header — Header text from the GEO Series (GSE) format file, typically containing a description of the data or experiment information. Data — DataMatrix object containing the data from a GEO Series (GSE) format file. The columns and rows of the DataMatrix object correspond to the sample IDs and Ref IDs, respectively, from the GEO Series (GSE) format file.

Description

GEOData = geoseriesread(File) reads a Gene Expression Omnibus (GEO) Series (GSE) format file, and then creates a MATLAB structure, GEOData, with the following fields.

Fields	Description
Header	Header text from the GEO Series (GSE) format file, typically containing a description of the data or experiment information.
Data	DataMatrix object containing the data from a GEO Series (GSE) format file. The columns and rows of the DataMatrix object correspond to the sample IDs and Ref IDs, respectively, from the GEO Series (GSE) format file.

Examples 1 Retrieve Series (GSE) data from the GEO Web site and save it to a file.

```
geodata = getgeodata('GSE11287','ToFile','GSE11287.txt');
```

2 In a subsequent MATLAB session, you can access the Series (GSE) data from your local file, instead of retrieving it from the GEO Web site.

```
geodata = geoseriesread('GSE11287.txt')
```

```
geodata =
```

```
Header: [1x1 struct]
Data: [45101x6 bioma.data.DataMatrix]
```

3 Access the sample IDs using the **colnames** property of a DataMatrix object.

```
sampleIDs = geodata.Data.colnames
sampleIDs =
```

'GSM284935' 'GSM284936' 'GSM284937' 'GSM284938' 'GSM284939' 'GSM284940'

See Also Bioinformatics Toolbox functions: affyread, agferead, galread, geosoftread, getgeodata, gprread, ilmnbsread, sptread Bioinformatics Toolbox object: DataMatrix object

geosoftread

Purpose	Read Gene Expression Omnibus (GEO) SOFT format data	
Syntax	GEOSOFTData = geosoftread(File)	
Arguments	File	 Either of the following: String specifying a file name, a path and file name, or a URL pointing to a file. The referenced file is a Gene Expression Omnibus (GEO) SOFT format Sample file (GSM), Data Set file (GDS), or Platform (GPL) file. If you specify only a file name, that file must be on the MATLAB search path or in the current directory. MATLAB character array that contains the text of a GEO SOFT format file.
		Tip You can use the getgeodata function with the 'ToFile' property to retrieve GEO SOFT format data from the GEO database and create a GEO SOFT format file.
Return Values	GEOSOFTData	MATLAB structure containing information from a GEO SOFT format file.
Description	<i>GEOSOFTData</i> = geosoftread(<i>File</i>) reads a Gene Expression Omnibus (GEO) SOFT format Sample file (GSM), Data Set file (GDS), or Platform (GPL) file, and then creates a MATLAB structure, <i>GEOSOFTData</i> , with the following fields.	

Fields	Description
Scope	Type of file read (SAMPLE, DATASET, or PLATFORM)
Accession	Accession number for record in GEO database.
Header	Microarray experiment information.
ColumnDescriptions	Cell array containing descriptions of columns in the data.
ColumnNames	Cell array containing names of columns in the data.
Data	Array containing microarray data.
Identifier (GDS files only)	Cell array containing probe IDs.
IDRef (GDS files only)	Cell array containing indices to probes.

Note Currently, the geosoftread function supports Sample (GSM), Data Set (GDS), and Platform (GPL) records.

Examples Retrieve GSM data from the GEO Web site and save it to a file.

geodata = getgeodata('GSM3258','ToFile','GSM3258.txt');

Use geosoftread to read a local copy of the GSM file, instead of accessing it from the GEO Web site.

```
geodata = geosoftread('GSM3258.txt')
```

geodata =

Scope: 'SAMPLE' Accession: 'GSM3258'

```
Header: [1x1 struct]
ColumnDescriptions: {6x1 cell}
ColumnNames: {6x1 cell}
Data: {5355x6 cell}
```

Read the GDS file for photosynthesis in proteobacteria.

gdsdata = geosoftread('GDS329.soft')

gdsdata =

- Scope: 'DATASET' Accession: 'GDS329' Header: [1x1 struct] ColumnDescriptions: {6x1 cell} ColumnNames: {6x1 cell} IDRef: {5355x1 cell} Identifier: {5355x1 cell} Data: [5355x6 double]
- **See Also** Bioinformatics Toolbox functions: galread, getgeodata, geoseriesread, gprread, ilmnbsread, sptread

Purpose	Retrieve BLAST report from NCBI Web site	
Syntax	<pre>Data = getblast(RID) Data = getblast(RID,'Descriptions', DescriptionsValue,) Data = getblast(RID,'Alignments', AlignmentsValue,) Data = getblast(RID,'ToFile', ToFileValue,) Data = getblast(RID,'FileFormat', FileFormatValue,) Data = getblast(RID,'WaitTime', WaitTimeValue,)</pre>	
Arguments	RID	Request ID for the NCBI BLAST report, such as returned by the blastncbi function.
	DescriptionsValue	Integer that specifies the number of descriptions in a report. Choices are any value \geq 1 and \leq 500. Default is 100.
	AlignmentsValue	Integer that specifies the number of alignments to include in the report. Choices are any value ≥ 1 and ≤ 500 . Default is 50.
		Note This value must be \leq the value you specified for the 'Alignments' property when creating <i>RID</i> using the blastncbi function.
	ToFileValue	String specifying a file name for saving report data.

	FileFormatValue	String specifying the format of the file. Choices are 'text' (default) or 'html'.
	WaitTimeValue	Positive value that specifies a time (in minutes) for the MATLAB software to wait for a report from the NCBI Web site to be available. If the report is still not available after the wait time, getblast returns an error message. Default behavior is to not wait for a report.
		Tip Use the <i>RTOE</i> returned by the blastncbi function as the <i>WaitTimeValue</i> .
Return Values	Data	MATLAB structure or array of structures (if multiple query sequences) containing fields corresponding to BLAST keywords and data from an NCBI BLAST report.
Description	powerful comparative against known sequen	ment Search Tool (BLAST) offers a fast and analysis of protein and nucleotide sequences ces in online databases. getblast parses NCBI ing blastn, blastp, psiblast, blastx, tblastn, st reports.
	report, and returns the	P) reads <i>RID</i> , the Request ID for the NCBI BLAST e report data in <i>Data</i> , a MATLAB structure or he Request ID, <i>RID</i> , must be recently generated reports after 24 hours.
	$\operatorname{calls} \operatorname{getblast} \operatorname{with} \operatorname{op}$), ' <i>PropertyName</i> ', <i>PropertyValue</i> ,) tional properties that use property name/property pecify one or more properties in any order. Each

PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

Data = getblast(RID, ... 'Descriptions', DescriptionsValue, ...) specifies the number of descriptions in a report. Choices are any integer ≥ 1 and ≤ 500 . Default is 100.

Data = getblast(RID, ... 'Alignments', AlignmentsValue, ...)specifies the number of alignments to include in the report. Choices are any integer ≥ 1 and ≤ 500 . Default is 50.

Note This value must be \leq the value you specified for the 'Alignments' property when creating *RID* using the blastncbi function.

Data = getblast(RID, ...'ToFile', ToFileValue, ...) saves the NCBI BLAST report data to a specified file. The default format for the file is 'text', but you can specify 'html' with the 'FileFormat' property.

Data = getblast(RID, ...'FileFormat', FileFormatValue, ...)
specifies the format for the report. Choices are 'text' (default) or
'html'.

Data = getblast(*RID*, ... 'WaitTime', *WaitTimeValue*, ...) pauses the MATLAB software and waits a specified time (in minutes) for a report from the NCBI Web site to be available. If the report is still unavailable after the wait time, getblast returns an error message. Choices are any positive value. Default behavior is to not wait for a report.

Tip Use the *RTOE* returned by the blastncbi function as the *WaitTimeValue*.

For more information about reading and interpreting BLAST reports, see:

getblast

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/tut1.html

Data contains the following fields.

Field	Description
RID	Request ID for retrieving results for a specific NCBI BLAST search.
Algorithm	NCBI algorithm used to do a BLAST search.
Query	Identifier of the query sequence submitted to a BLAST search.
Database	All databases searched.
Hits.Name	Name of a database sequence (subject sequence) that matched the query sequence.
Hits.Length	Length of a subject sequence.
Hits.HSPs.Score	Pairwise alignment score for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Expect	Expectation value for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Identities	Identities (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.

Field	Description
Hits.HSPs.Positives	Identical or similar residues (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject amino acid sequence.
	Note This field applies only to translated nucleotide or amino acid query sequences and/or databases.
Hits.HSPs.Gaps	Nonaligned residues (match, possible, and percent) for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.Frame	Reading frame of the translated nucleotide sequence for a high-scoring sequence pair between the query sequence and a subject sequence.
	Note This field applies only when performing translated searches, that is, when using tblastx, tblastn, and blastx.

getblast

Field	Description
Hits.HSPs.Strand	Sense (Plus = 5' to 3' and Minus = 3' to 5') of the DNA strands for a high-scoring sequence pair between the query sequence and a subject sequence.
	Note This field applies only when using a nucleotide query sequence and database.
Hits.HSPs.Alignment	Three-row matrix showing the alignment for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.QueryIndices	Indices of the query sequence residue positions for a high-scoring sequence pair between the query sequence and a subject sequence.
Hits.HSPs.SubjectIndices	Indices of the subject sequence residue positions for a high-scoring sequence pair between the query sequence and a subject sequence.
Statistics	Summary of statistical details about the performed search, such as lambda values, gap penalties, number of sequences searched, and number of hits.

Examples 1 Create an NCBI BLAST report request using a GenPept accession number.

RID = blastncbi('AAA59174', 'blastp', 'expect', 1e-10)

RID =

'1175088155-31624-126008617054.BLASTQ3'

2 Pass the Request ID for the report to the getblast function to parse the report, and return the report data in a MATLAB structure, and save the report data to a text file.

Note You may need to wait for the report to become available on the NCBI Web site before you can run the preceding command.

References [1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410. [2] Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z.,

[2] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. *25*, 3389–3402.

For more information about reading and interpreting NCBI BLAST reports, see:

http://www.ncbi.nlm.nih.gov/Education/BLASTinfo/Blast_output.html

See Also Bioinformatics Toolbox functions: blastformat, blastlocal, blastncbi, blastread, blastreadlocal

Purpose	Retrieve sequence info	ormation from EMBL database
Syntax		(AccessionNumber) (, 'ToFile', <i>ToFileValue</i> ,) , 'SequenceOnly', <i>SequenceOnlyValue</i> ,
Arguments	AccessionNumber	Unique identifier for a sequence record. Enter a unique combination of letters and numbers.
	ToFileValue	String specifying a file name or a path and file name to which to save the data. If you specify only a file name, the file is stored in the current directory.
	SequenceOnlyValue	Controls the retrieving of only the sequence without the metadata. Choices are true or false (default).
Return Values	EMBLData	MATLAB structure with fields corresponding to EMBL data.
	EMBLSeq	MATLAB character string representing the sequence.
Description	getembl retrieves information from the European Molecular Biology Laboratory (EMBL) database for nucleotide sequences. This database is maintained by the European Bioinformatics Institute (EBI). For more details about the EMBL database, see	
	http://www.ebi.a	c.uk/embl/Documentation/index.html
	<pre>EMBLData = getembl(AccessionNumber) searches for the accession number in the EMBL database (http://www.ebi.ac.uk/embl) and returns EMBLData, a MATLAB structure with fields corresponding to</pre>	

the EMBL two-character line type code. Each line type code is stored as a separate element in the structure.

EMBLData contains the following fields.

Field
Identification
Accession
SequenceVersion
DateCreated
DateUpdated
Description
Keyword
OrganismSpecies
OrganismClassification
Organelle
Reference
DatabaseCrossReference
Comments
Assembly
Feature
BaseCount
Sequence

EMBLData = getembl(..., '*PropertyName*', *PropertyValue*, ...) calls getembl with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

	<i>EMBLData</i> = getembl(, 'ToFile', <i>ToFileValue</i> ,) saves the information to an EMBL-formatted file. <i>ToFileValue</i> is a string specifying a file name or a path and file name to which to save the data. If you specify only a file name, the file is stored in the current directory.		
	Tip Read an EMBL-formatted file back into the MATLAB software using the emblread function.		
	<pre>EMBLSeq = getembl(, 'SequenceOnly', SequenceOnlyValue,) controls the retrieving of only the sequence without the metadata. Choices are true or false (default).</pre>		
Examples	Retrieve data for the rat liver apolipoprotein A-I.		
	<pre>emblout = getembl('X00558')</pre>		
	Retrieve data for the rat liver apolipoprotein A-I and save it to the file rat_protein. If you specify a file name without a path, the file is stored in the current directory.		
	<pre>emblout = getembl('X00558','ToFile','c:\project\rat_protein.txt')</pre>		
	Retrieve only the sequence for the rat liver apolipoprotein A-I.		
	<pre>Seq = getembl('X00558','SequenceOnly',true)</pre>		
See Also	Bioinformatics Toolbox functions: emblread, getgenbank, getgenpept, getpdb, seqtool		

getgenbank

Purpose	Retrieve sequence inf	formation from GenBank database
Syntax	getgenbank(, 'T getgenbank(, 'F	
Arguments	AccessionNumber	String specifying a unique alphanumeric identifier for a sequence record.
	PartialSeqValue	Two-element array of integers containing the start and end positions of the subsequence [StartBP, EndBP] that specifies a subsequence to retrieve. StartBP is an integer between 1 and EndBP; EndBP is an integer between StartBP and the length of the sequence.
	ToFileValue	String specifying either a file name or a path and file name for saving the GenBank data. If you specify only a file name, the file is saved to the MATLAB Current Directory.
	FileFormatValue	String specifying the format for the file specified with the 'ToFile' property. Choices are 'GenBank' (default) or 'FASTA'.
	SequenceOnlyValue	Controls the return of only the sequence as a character array. Choices are true or false (default).
Description		nucleotide information from the GenBank ase is maintained by the National Center for

database. This database is maintained by the National Center for Biotechnology Information (NCBI). For more details about the GenBank database, see http://www.ncbi.nlm.nih.gov/Genbank/

Data = getgenbank(AccessionNumber) searches for the accession number in the GenBank database and returns a MATLAB structure containing information for the sequence.

Tip If an error occurs while retrieving the GenBank-formatted information, try rerunning the query. Errors can occur due to Internet connectivity issues that are unrelated to the GenBank record.

getgenbank(AccessionNumber) displays the information in the MATLAB Command Window without returning data to a variable. The displayed information includes hyperlinks to the URLs used to search for and retrieve the data.

getgenbank(..., 'PropertyName', PropertyValue, ...) calls getgenbank with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

getgenbank(..., 'PartialSeq', PartialSeqValue, ...) returns the specified subsequence in the Sequence field of the MATLAB structure. PartialSeqValue is a two-element array of integers containing the start and end positions of the subsequence [StartBP, EndBP]. StartBP is an integer between 1 and EndBP; EndBP is an integer between StartBP and the length of the sequence.

getgenbank(..., 'ToFile', *ToFileValue*, ...) saves the data returned from the GenBank database to a file. *ToFileValue* is a string specifying either a file name or a path and file name for saving the GenBank data. If you specify only a file name, the file is saved to the MATLAB Current Directory. **Tip** You can read a GenBank-formatted file back into MATLAB using the genbankread function.

Tip To append GenBank data to an existing file, specify that file name, and the data will be added to the end of the file.

If you are using getgenbank in a script, you can disable the append warning message by entering the following command lines before the getgenbank command:

warnState = warning %Save the current warning state warning('off','Bioinfo:getncbidata:AppendToFile');

Then enter the following command line after the getgenbank command:

warning(warnState) %Reset warning state to previous settings

getgenbank(..., 'FileFormat', *FileFormatValue*, ...) returns the sequence in the specified format. Choices are 'GenBank' (default) or 'FASTA'.

getgenbank(..., 'SequenceOnly', SequenceOnlyValue, ...) controls the return of only the sequence as a character array. Choices are true or false (default).

Note When the 'SequenceOnly' and 'ToFile' properties are used together, the output is a FASTA-formatted file.

Examples Retrieving an RNA Sequence

To retrieve the sequence from chromosome 19 that codes for the human insulin receptor and store it in a structure, S, in the MATLAB Command Window, type:

```
S = getgenbank('M10051')
```

```
S =
```

LocusName:	'HUMINSR'
LocusSequenceLength:	' 4723 '
LocusNumberofStrands:	11
LocusTopology:	'linear'
LocusMoleculeType:	'mRNA'
LocusGenBankDivision:	'PRI'
LocusModificationDate:	'06-JAN-1995'
Definition:	'Human insulin receptor mRNA, complete cds.'
Accession:	'M10051 '
Version:	'M10051.1'
GI:	' 186439 '
Project:	[]
Keywords:	'insulin receptor; tyrosine kinase.'
Segment:	[]
Source:	'Homo sapiens (human)'
SourceOrganism:	[4x65 char]
Reference:	<pre>{[1x1 struct]}</pre>
Comment:	[14x67 char]
Features:	[51x74 char]
CDS:	[1x1 struct]
Sequence:	[1x4723 char]
SearchURL:	[1x105 char]
RetrieveURL:	[1x95 char]

Retrieving a Partial RNA Sequence

By looking at the Features field of the structure returned in Retrieving an RNA Sequence on page 2-409, you can determine that the coding

sequence is positions 139 through 4287. To retrieve only the coding sequence from chromosome 19 that codes for the human insulin receptor and store it in a structure, CDS, in the MATLAB Command Window, type:

```
CDS = getgenbank('M10051', 'PARTIALSEQ', [139, 4287]);
```

See Also Bioinformatics Toolbox functions: genbankread, getembl, getgenpept, getpdb, seqtool

Purpose	Retrieve sequence inf	ormation from GenPept database
Syntax	getgenpept(, 'T getgenpept(, 'F	
Arguments	AccessionNumber	String specifying a unique alphanumeric identifier for a sequence record.
	PartialSeqValue	Two-element array of integers containing the start and end positions of the subsequence [StartAA, EndAA] that specifies a subsequence to retrieve. StartAA is an integer between 1 and EndAA; EndAA is an integer between StartAA and the length of the sequence.
	ToFileValue	String specifying either a file name or a path and file name for saving the GenPept data. If you specify only a file name, the file is saved to the MATLAB Current Directory.
	FileFormatValue	String specifying the format for the file specified with the 'ToFile' property. Choices are 'Genpept' (default) or 'FASTA'.
	SequenceOnlyValue	Controls the return of only the sequence as a character array. Choices are true or false (default).
Description	from the GenPept dat sequences in the Gen	a protein (amino acid) sequence information cabase, which is a translation of the nucleotide Bank database and is maintained by the National ogy Information (NCBI).

Note NCBI has changed the name of their protein search engine from GenPept to Entrez Protein. However, the function names in the Bioinformatics Toolbox software (getgenpept and genpeptread) are unchanged representing the still-used GenPept report format.

Data = getgenpept(AccessionNumber) searches for the accession number in the GenPept database and returns a MATLAB structure containing information for the sequence.

Tip If an error occurs while retrieving the GenPept-formatted information, try rerunning the query. Errors can occur due to Internet connectivity issues that are unrelated to the GenPept record.

getgenpept (AccessionNumber) displays the information in the MATLAB Command Window without returning data to a variable. The displayed information includes hyperlinks to the URLs used to search for and retrieve the data.

getgenpept(..., 'PropertyName', PropertyValue, ...) calls getgenpept with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

getgenpept(..., 'PartialSeq', PartialSeqValue, ...) returns the specified subsequence in the Sequence field of the MATLAB structure. PartialSeqValue is a two-element array of integers containing the start and end positions of the subsequence [StartAA, EndAA]. StartAA is an integer between 1 and EndAA; EndAA is an integer between StartAA and the length of the sequence.

getgenpept(..., 'ToFile', *ToFileValue*, ...) saves the data returned from the GenPept database to a file. *ToFileValue* is a string specifying either a file name or a path and file name for saving the

GenPept data. If you specify only a file name, the file is saved to the MATLAB Current Directory.

Tip You can read a GenPept-formatted file back into MATLAB using the genpeptread function.

Tip To append GenPept data to an existing file, specify that file name, and the data will be added to the end of the file.

If you are using getgenpept in a script, you can disable the append warning message by entering the following command lines before the getgenpept command:

warnState = warning %Save the current warning state warning('off','Bioinfo:getncbidata:AppendToFile');

Then enter the following command line after the getgenpept command:

warning(warnState) %Reset warning state to previous settings

getgenpept(..., 'FileFormat', *FileFormatValue*, ...) returns the sequence in the specified format. Choices are 'GenPept' (default) or 'FASTA'.

getgenpept(..., 'SequenceOnly', SequenceOnlyValue, ...) controls the return of only the sequence as a character array. Choices are true or false (default).

Note When the 'SequenceOnly' and 'ToFile' properties are used together, the output is a FASTA-formatted file.

Examples Retrieving a Peptide Sequence

To retrieve the sequence for the human insulin receptor and store it in a structure, Seq, in the MATLAB Command Window, type:

```
Seq = getgenpept('AAA59174')
```

Seq =

LocusName:	
LocusSequenceLength:	
LocusNumberofStrands:	1.1
LocusTopology:	'linear'
LocusMoleculeType:	1.1
LocusGenBankDivision:	'PRI'
LocusModificationDate:	'06-JAN-1995'
Definition:	'insulin receptor precursor.'
Accession:	'AAA59174'
Version:	'AAA59174.1'
GI:	'307070'
Project:	[]
DBSource:	'locus HUMINSR accession M10051.1'
Keywords:	1.1
Source:	'Homo sapiens (human)'
SourceOrganism:	[4x65 char]
Reference:	<[1x1 struct]}
Comment:	[14x67 char]
Features:	[40x64 char]
Sequence:	[1x1382 char]
SearchURL:	[1x104 char]
RetrieveURL:	[1x92 char]

Retrieving a Partial Peptide Sequence

By looking at the Features field of the structure returned in Retrieving a Peptide Sequence on page 2-414, you can determine that the furin-like repeats domain is positions 234 through 281. To retrieve only the furin-like repeats domain from the sequence for the human insulin

	receptor and store it in a structure, Fur, in the MATLAB Command Window, type:	
	<pre>Fur = getgenpept('AAA59174','PARTIALSEQ',[234,281]);</pre>	
See Also	Bioinformatics Toolbox functions: genpeptread, getembl, getgenbank, getpdb	

getgeodata

Purpose	Retrieve Gene Expression Omnibus (GEO) format data	
Syntax	GEOData = getgeodata(AccessionNumber) getgeodata(AccessionNumber, 'ToFile', ToFileValue)	
Arguments	S	tring specifying a unique identifier for a GEO ample (GSM), Data Set (GDS), Platform (GPL), r Series (GSE) record in the GEO database.
	n fi	tring specifying a file name or path and file ame for saving the data. If you specify only a le name, that file will be saved in the MATLAB current Directory.
Return Values		IATLAB structure containing information for a EO record retrieved from the GEO database.
Description	GEOData = getgeodata(AccessionNumber) searches the Gene Expression Omnibus database for the specified accession number of a Sample (GSM), Data Set (GDS), Platform (GPL), or Series (GSE) record and returns a MATLAB structure containing the following fields:	
	Field	Description
	Scope	Type of data retrieved (SAMPLE, DATASET, PLATFORM, or SERIES)
	Accession	Accession number for record in GEO database.
	Header	Microarray experiment information.
	ColumnDescriptions	Cell array containing descriptions of columns in the data.

	in the data.
ColumnNames	Cell array containing names of columns in the data.

Field	Description
Data	Array containing microarray data.
Identifier (GDS files only)	Cell array containing probe IDs.
IDRef (GDS files only)	Cell array containing indices to probes.

Note Currently, the getgeodata function supports Sample (GSM), Data Set (GDS), Platform (GPL), and Series (GSE) records.

getgeodata(AccessionNumber, 'ToFile', ToFileValue) saves the data returned from the database to a file.

Note You can read a GEO SOFT-formatted file back into the MATLAB software using the geosoftread function. You can read a GEO SERIES-formatted file back into the MATLAB software using the geoseriesread function.

For more information, see

http://www.ncbi.nlm.nih.gov/About/disclaimer.html

Examples geoStruct = getgeodata('GSM1768')

See Also Bioinformatics Toolbox functions: geoseriesread, geosoftread, getgenbank, getgenpept

gethmmalignment

Purpose	Retrieve multiple sequence alignment associated with hidden Markov model (HMM) profile from PFAM database
Syntax	<pre>AlignStruct = gethmmalignment(PFAMName) AlignStruct = gethmmalignment(PFAMAccessNumber) AlignStruct = gethmmalignment(PFAMNumber) AlignStruct = gethmmalignment(, 'ToFile', ToFileValue,) AlignStruct = gethmmalignment(, 'Type', TypeValue,) AlignStruct = gethmmalignment(, 'Mirror', MirrorValue,) AlignStruct = gethmmalignment(, 'IgnoreGaps', IgnoreGaps,)</pre>

Arguments

PFAMName	String specifying a protein family name (unique identifier) of an HMM profile record in the PFAM database. For example, 7tm_2.
PFAMAccessNumber	String specifying a protein family accession number of an HMM profile record in the PFAM database. For example, PF00002 .
PFAMNumber	Integer specifying a protein family number of an HMM profile record in the PFAM database. For example, 2 is the protein family number for the protein family PF0002.
ToFileValue	String specifying a file name or a path and file name for saving the data. If you specify only a file name, that file will be saved in the MATLAB Current Directory.

	TypeValue	String that specifies the set of alignments returned. Choices are:
		• full — Default. Returns all alignments that fit the HMM profile.
		• seed — Returns only the alignments used to generate the HMM profile.
	MirrorValue	String that specifies a Web database. Choices are:
		• Sanger (default)
		• Janelia
	IgnoreGapsValue	Controls the removal of the symbols - and . from the sequence. Choices are true or false (default).
Return Values	AlignStruct	MATLAB structure array containing the multiple sequence alignment associated with an HMM profile.
Description	AlignStruct = gethmmalignment(<i>PFAMName</i>) searches the PFAM database for the HMM profile record represented by <i>PFAMName</i> , a protein family name, retrieves the multiple sequence alignment associated with the HMM profile, and returns <i>AlignStruct</i> , a MATLAB structure array, with each structure containing the following fields:	
	Field	Description
	Header	Protein name
	Sequence	Protein sequence

AlignStruct = gethmmalignment(PFAMAccessNumber) searches
the PFAM database for the HMM profile record represented by
PFAMAccessNumber, a protein family accession number, retrieves the

multiple sequence alignment associated with the HMM profile, and returns *AlignStruct*, a MATLAB structure array.

AlignStruct = gethmmalignment(*PFAMNumber*) determines a protein family accession number from *PFAMNumber*, an integer, searches the PFAM database for the associated HMM profile record, retrieves the multiple sequence alignment associated with the HMM profile, and returns *AlignStruct*, a MATLAB structure array.

AlignStruct = gethmmalignment(..., 'PropertyName', PropertyValue, ...) calls gethmmalignment with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

AlignStruct = gethmmalignment(..., 'ToFile', ToFileValue, ...) saves the data returned from the PFAM database to a file specified by ToFileValue.

Note You can read a FASTA-formatted file containing PFAM data back into the MATLAB software using the fastaread function.

AlignStruct = gethmmalignment(..., 'Type', TypeValue, ...)
specifies the set of alignments returned. Choices are:

- full Default. Returns all sequences that fit the HMM profile.
- **seed** Returns only the sequences used to generate the HMM profile.

AlignStruct = gethmmalignment(..., 'Mirror', MirrorValue, ...) specifies a Web database. Choices are:

- Sanger (default)
- Janelia

You can reach other mirror sites by passing the complete URL to the fastaread function.

Note These mirror sites are maintained separately and may have slight variations.

For more information about the PFAM database, see:

```
http://pfam.sanger.ac.uk
http://pfam.janelia.org/
```

AlignStruct = gethmmalignment(..., 'IgnoreGaps', IgnoreGaps, ...) controls the removal of the symbols - and . from the sequence. Choices are true or false (default).

Examples To retrieve a multiple alignment of the sequences used to train the HMM profile for global alignment to the 7-transmembrane receptor protein in the secretin family, enter either of the following:

```
pfamalign = gethmmalignment(2,'Type','seed')
pfamalign = gethmmalignment('PF00002','Type','seed')
pfamalign =
32x1 struct array with fields:
    Header
    Sequence
```

See Also Bioinformatics Toolbox functions: fastaread, gethmmprof, gethmmtree, multialignread, multialignwrite, pfamhmmread

gethmmprof

Purpose	Retrieve hidden Markov model (HMM) profile from PFAM database	
Syntax	<pre>HMMStruct = gethmmprof(PFAMName) HMMStruct = gethmmprof(PFAMNumber) HMMStruct = gethmmprof(, 'ToFile', ToFileValue,) HMMStruct = gethmmprof(, 'Mode', ModeValue,) HMMStruct = gethmmprof(, 'Mirror', MirrorValue,)</pre>	
Arguments	PFAMName	String specifying a protein family name (unique identifier) of an HMM profile record in the PFAM database. For example, 7tm_2.
	PFAMNumber	Integer specifying a protein family number of an HMM profile record in the PFAM database. For example, 2 is the protein family number for the protein family PF00002.
	ToFileValue	String specifying a file name or a path and file name for saving the data. If you specify only a file name, that file will be saved in the MATLAB Current Directory.
	ModeValue	String that specifies the returned alignment mode. Choices are:
		 1s — Default. Global alignment mode. fs — Local alignment mode.
	MirrorValue	String that specifies a Web database. Choices are:
		• Sanger (default)
		• Janelia
Return Values	HMMStruct	MATLAB structure containing information for an HMM profile retrieved from the PFAM database.

Description *HMMStruct* = gethmmprof(*PFAMName*) searches the PFAM database for the record represented by *PFAMName*, a protein family name, retrieves the HMM profile information, and stores it in *HMMStruct*, a MATLAB structure containing the following fields corresponding to parameters of an HMM profile.

Field	Description	
Name	The protein family name (unique identifier) of the HMM profile record in the PFAM database.	
PfamAccessionNumber	The protein family accession number of the HMM profile record in the PFAM database.	
ModelDescription	Description of the HMM profile.	
ModelLength	The length of the profile (number of MATCH states).	
Alphabet	The alphabet used in the model, 'AA' or 'NT'.	
	Note AlphaLength is 20 for 'AA' and 4 for 'NT'.	
MatchEmission	Symbol emission probabilities in the MATCH states.	
	The format is a matrix of size	
	ModelLength-by-AlphaLength, where each row	
	corresponds to the emission distribution for a specific MATCH state.	
InsertEmission	Symbol emission probabilities in the INSERT state.	
	The format is a matrix of size ModelLength-by-AlphaLength, where each row corresponds to the emission distribution for a specific INSERT state.	

Field	Description	
NullEmission	Symbol emission probabilities in the MATCH and INSERT states for the NULL model.	
	The format is a 1-by-AlphaLength row vector.	
	Note NULL probabilities are also known as the background probabilities.	
BeginX	BEGIN state transition probabilities.	
	Format is a 1-by-(ModelLength + 1) row vector:	
	[B->D1 B->M1 B->M2 B->M3 B->Mend]	
MatchX	MATCH state transition probabilities.	
	Format is a 4-by-(ModelLength - 1) matrix:	
	[M1->M2 M2->M3 M[end-1]->Mend;	
	M1->I1 M2->I2 M[end-1]->I[end-1]; M1->D2 M2->D3 M[end-1]->Dend;	
	M1->E M2->E M[end-1]->E]	
InsertX	INSERT state transition probabilities.	
	Format is a 2-by-(ModelLength - 1) matrix:	
	[I1->M2 I2->M3 I[end-1]->Mend; I1->I1 I2->I2 I[end-1]->I[end-1]]	
DeleteX	DELETE state transition probabilities.	
	Format is a 2-by-(ModelLength - 1) matrix:	
	<pre>[D1->M2 D2->M3 D[end-1]->Mend ; D1->D2 D2->D3 D[end-1]->Dend]</pre>	

Field	Description	
FlankingInsertX	Flanking insert states (N and C) used for LOCAL profile alignment.	
	Format is a 2-by-2 matrix:	
	[N->B C->T ; N->N C->C]	
LoopX	Loop states transition probabilities used for multiple hits alignment.	
	Format is a 2-by-2 matrix:	
	[E->C J->B;	
	E->J J->J]	
NullX	Null transition probabilities used to provide scores with log-odds values also for state transitions.	
	Format is a 2-by-1 column vector:	
	[G->F ; G->G]	

HMMStruct = gethmmprof (*PFAMNumber*) determines a protein family accession number from *PFAMNumber*, an integer, searches the PFAM database for the associated record, retrieves the HMM profile information, and stores it in *HMMStruct*, a MATLAB structure.

HMMStruct = gethmmprof(..., 'PropertyName', PropertyValue, ...) calls gethmmprof with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows: *HMMStruct* = gethmmprof(..., 'ToFile', *ToFileValue*, ...) saves the data returned from the PFAM database in a file specified by *ToFileValue*.

Note You can read an HMM-formatted file back into the MATLAB software using the pfamhmmread function.

HMMStruct = gethmmprof(..., 'Mode', *ModeValue*, ...) specifies the returned alignment mode. Choices are:

- 1s (default) Global alignment mode.
- fs Local alignment mode.

HMMStruct = gethmmprof(..., 'Mirror', MirrorValue, ...)
specifies a Web database. Choices are:

- Sanger (default)
- Janelia

You can reach other mirror sites by passing the complete URL to the pfamhmmread function.

Note These mirror sites are maintained separately and may have slight variations.

For more information about the PFAM database, see:

```
http://pfam.sanger.ac.uk
http://pfam.janelia.org/
```

For more information on HMM profile models, see "HMM Profile Model" on page 2-536.

Examples To retrieve a hidden Markov model (HMM) profile for the global alignment of the 7-transmembrane receptor protein in the secretin family, enter either of the following:

```
hmm = aethmmprof(2)
hmm = gethmmprof('7tm 2')
hmm =
                   Name: '7tm 2'
    PfamAccessionNumber: 'PF00002.14'
       ModelDescription: [1x42 char]
            ModelLength: 296
               Alphabet: 'AA'
          MatchEmission: [296x20 double]
         InsertEmission: [296x20 double]
           NullEmission: [1x20 double]
                 BeginX: [297x1 double]
                 MatchX: [295x4 double]
                InsertX: [295x2 double]
                DeleteX: [295x2 double]
        FlankingInsertX: [2x2 double]
                  LoopX: [2x2 double]
                  NullX: [2x1 double]
```

See Also Bioinformatics Toolbox functions: gethmmalignment, hmmprofalign, hmmprofstruct, pfamhmmread, showhmmprof

gethmmtree

Purpose	Retrieve phylogenetic tree data from PFAM database		
Syntax	<pre>Tree = gethmmtree(PFAMName) Tree = gethmmtree(PFAMAccessionNumber) Tree = gethmmtree(PFAMNumber) Tree = gethmmtree(AccessionNumber,'ToFile', ToFileValue,) Tree = gethmmtree(AccessionNumber,'Type', TypeValue,)</pre>		

Arguments

PFAMName	String specifying a protein family name (unique identifier) of an HMM profile record in the PFAM database. For example, 7tm_2.
PFAMAccessionNumber	String specifying a protein family accession number of an HMM profile record in the PFAM database. For example, PF00002.
PFAMNumber	Integer specifying a protein family number of an HMM profile record in the PFAM database. For example, 2 is the protein family number for the protein family PF0002.
ToFileValue	Property to specify the location and file name for saving data. Enter either a file name or a path and file name supported by your system (ASCII text file).
TypeValue	 String that specifies which alignments to include in the tree. Choices are: 'seed' — Returns a tree with only the alignments used to generate the HMM model.
	• 'full' (default) — Returns a tree with all of the alignments that match the model.

Return Values	Tree	An object containing a phylogenetic tree representative of the protein family.
Description	<i>Tree</i> = gethmmtree(<i>PFAMName</i>) searches the PFAM database for the record represented by <i>PFAMName</i> , a protein family name, retrieves information, and returns Tree, an object containing a phylogenetic tree representative of the protein family.	
	 Tree = gethmmtree(PFAMAccessionNumber) searches the PFAM database for the record represented by PFAMAccessionNumber, a protei family accession number, retrieves information, and returns Tree, an object containing a phylogenetic tree representative of the protein family. Tree = gethmmtree(PFAMNumber) determines a protein family accession number from PFAMNumber, an integer, searches the PFAM database for the associated record, retrieves information, and returns Tree, an object containing a phylogenetic tree representative of the protein family. 	
Tree = gethmmtree(AccessionNumber,'Proper PropertyValue,) calls gethmmtree with optiona use property name/property value pairs. You can spec properties in any order. Each PropertyName must be o quotation marks and is case insensitive. These proper value pairs are as follows:		alls gethmmtree with optional properties that rty value pairs. You can specify one or more Each <i>PropertyName</i> must be enclosed in single ase insensitive. These property name/property
		essionNumber,'ToFile', es the data returned from the PFAM database
		ressionNumber,'Type', TypeValue, gnments to include in the tree. Choices for
	• 'seed' — Returns a tr the HMM model.	ree with only the alignments used to generate

gethmmtree

	• 'full' (default) — Returns a tree with all of the alignments that match the model.
Examples	Enter either of the following to retrieve phylogenetic tree data from the multiple-aligned sequences used to train the HMM profile model for global alignment. The PFAM accession number PF00002 is for the 7-transmembrane receptor protein in the secretin family.
	<pre>tree = gethmmtree(2, 'type', 'seed') tree = gethmmtree('PF00002', 'type', 'seed')</pre>
	Phylogenetic tree object with 32 leaves (31 branches)
See Also	Bioinformatics Toolbox functions: gethmmalignment, phytreeread

Purpose	Retrieve protein structure data from Protein Data Bank (PDB) database	
Syntax	<pre>PDBStruct = getpdb(PDBid) PDBStruct = getpdb(PDBid,'ToFile', ToFileValue,) PDBStruct = getpdb(PDBid,'SequenceOnly', SequenceOnlyValue,)</pre>	
Arguments	PDBid	String specifying a unique identifier for a protein structure record in the PDB database.
		Note Each structure in the PDB database is represented by a four-character alphanumeric identifier. For example, 4hhb is the identifier for hemoglobin.
	ToFileValue	String specifying a file name or a path and file name for saving the PDB-formatted data. If you specify only a file name, that file will be saved in the MATLAB Current Directory.
		Tip After you save the protein structure record to a local PDB-formatted file, you can use the pdbread function to read the file into the MATLAB software offline or use the molviewer function to display and manipulate a 3-D image of the structure.
	SequenceOnlyValue	Controls the return of the protein sequence only. Choices are true or false (default). If there is one sequence, it is returned as a character array. If there are multiple sequences, they are returned as a cell array.

<u>getpd</u>b

Return Values	PDBStruct	MATLAB structure containing a field for each PDB record.	
Description	The Protein Data Bank (PDB) database is an archive of experimentally determined 3-D biological macromolecular structure data. For more information about the PDB format, see:		
	http://www.wwpdb.org/documentation/format23/v2.3.html		
	getpdb retrieves protein structure data from the Protein Data Bank (PDB) database, which contains 3-D biological macromolecular structure data.		
	<pre>PDBStruct = getpdb(PDBid) searches the PDB database for the protein structure record specified by the identifier PDBid and returns the MATLAB structure PDBStruct, which contains a field for each PDB record. The following table summarizes the possible PDB records and the corresponding fields in the MATLAB structure PDBStruct:</pre>		

PDB Database Record	Field in the MATLAB Structure
HEADER	Header
OBSLTE	Obsolete
TITLE	Title
CAVEAT	Caveat
COMPND	Compound
SOURCE	Source
KEYWDS	Keywords
EXPDTA	ExperimentData
AUTHOR	Authors
REVDAT	RevisionDate
SPRSDE	Superseded

PDB Database Record	Field in the MATLAB Structure
JRNL	Journal
REMARK 1	Remark1
REMARK N	Remark <i>n</i>
Note N equals 2 through 999.	Note <i>n</i> equals 2 through 999.
DBREF	DBReferences
SEQADV	SequenceConflicts
SEQRES	Sequence
FTNOTE	Footnote
MODRES	ModifiedResidues
HET	Heterogen
HETNAM	HeterogenName
HETSYN	HeterogenSynonym
FORMUL	Formula
HELIX	Helix
SHEET	Sheet
TURN	Turn
SSBOND	SSBond
LINK	Link
HYDBND	HydrogenBond
SLTBRG	SaltBridge
CISPEP	CISPeptides
SITE	Site

PDB Database Record	Field in the MATLAB Structure
CRYST1	Cryst1
ORIGXn	OriginX
SCALEn	Scale
MTRIXn	Matrix
TVECT	TranslationVector
MODEL	Model
ATOM	Atom
SIGATM	AtomSD
ANISOU	AnisotropicTemp
SIGUIJ	AnisotropicTempSD
TER	Terminal
НЕТАТМ	HeterogenAtom
CONECT	Connectivity

PDBStruct = getpdb(PDBid, ...'PropertyName',

PropertyValue, ...) calls getpdb with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

PDBStruct = getpdb(PDBid, ...'ToFile', ToFileValue, ...)
saves the data returned from the database to a PDB-formatted file,
ToFileValue.

Tip After you save the protein structure record to a local PDB-formatted file, you can use the pdbread function to read the file into the MATLAB software offline or use the molviewer function to display and manipulate a 3-D image of the structure.

```
PDBStruct = getpdb(PDBid, ...'SequenceOnly',
SequenceOnlyValue, ...) controls the return of the protein
sequence only. Choices are true or false (default). If there is one
sequence, it is returned as a character array. If there are multiple
sequences, they are returned as a cell array.
```

The Sequence Field

The Sequence field is also a structure containing sequence information in the following subfields:

- NumOfResidues
- ChainID
- ResidueNames Contains the three-letter codes for the sequence residues.
- Sequence Contains the single-letter codes for the sequence residues.

Note If the sequence has modified residues, then the ResidueNames subfield might not correspond to the standard three-letter amino acid codes. In this case, the Sequence subfield will contain the modified residue code in the position corresponding to the modified residue. The modified residue code is provided in the ModifiedResidues field.

The Model Field

The Model field is also a structure or an array of structures containing coordinate information. If the MATLAB structure contains one model, the Model field is a structure containing coordinate information for that model. If the MATLAB structure contains multiple models, the Model field is an array of structures containing coordinate information for each model. The Model field contains the following subfields:

- Atom
- AtomSD

- AnisotropicTemp
- AnisotropicTempSD
- Terminal
- HeterogenAtom

The Atom Field

The $\ensuremath{\mathsf{Atom}}$ field is also an array of structures containing the following subfields:

- AtomSerNo
- AtomName
- altLoc
- resName
- chainID
- resSeq
- iCode
- Х
- Y
- Z
- occupancy
- tempFactor
- segID
- element
- charge
- AtomNameStruct Contains three subfields: chemSymbol, remoteInd, and branch.

Examples	Retrieve the structure information for the electron transport (heme) protein that has a PDB identifier of 5CYT, read the information into a MATLAB structure pdbstruct, and save the information to a PDB-formatted file electron_transport.pdb in the MATLAB Current Directory.			
	pdbstruct = getpdb('5CYT', 'ToFile', 'electron_transport.pdb')			
See Also	Bioinformatics Toolbox functions: getembl, getgenbank, getgenpept, molviewer, pdbdistplot, pdbread, pdbsuperpose, pdbtransform, pdbwrite			

goannotread

Purpose	Read annotations from Gene Ontology annotated file					
Syntax	Annotation =)	<pre>goannotread(File) goannotread(File,'Fields', FieldsValue, goannotread(File,'Aspect', AspectValue,</pre>				
Arguments	File	String specifying a file name of a Gene Ontology (GO) annotated file.				
	FieldsValue	String or cell array of strings specifying one or more fields to read from the Gene Ontology annotated file. Default is to read all fields. Valid fields are listed below.				
	AspectValue	Character array specifying one or more characters. Valid aspects are:				
		• P — Biological process				
		• F — Molecular function				
		• C — Cellular component				
		Default is 'CFP', which specifies to read all aspects.				
Return Values	Annotation	MATLAB array of structures containing annotations from a Gene Ontology annotated file.				
Description	Gene Ontology	goannotread(<i>File</i>) converts the contents of <i>File</i> , a annotated file, into <i>Annotation</i> , an array of structures. ve the structure specified in:				
	http://www.geneontology.org/GO.annotation.shtml#file					

A list with some annotated files can be found at:

http://www.geneontology.org/GO.current.annotations.shtml

Annotation = goannotread(File, ... 'PropertyName', PropertyValue, ...) calls goannotread with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

Annotation = goannotread(File, ... 'Fields', FieldsValue, ...) specifies the fields to read from the Gene Ontology annotated file. FieldsValue is a string or cell array of strings specifying one or more fields. Default is to read all fields. Valid fields are:

- Database
- DB_Object_ID
- DB_Object_Symbol
- Qualifier
- GOid
- DBReference
- Evidence
- WithFrom
- Aspect
- DB_Object_Name
- Synonym
- DB_Object_Type
- Taxon
- Date
- Assigned_by

For more information on these fields, see:

http://www.geneontology.org/GO.format.annotation.shtml

Annotation = goannotread(File, ... 'Aspect', AspectValue, ...) specifies the aspects to read from the Gene Ontology annotated file. AspectValue is a character array specifying one or more characters. Valid aspects are:

- P Biological process
- F Molecular function
- C Cellular component

Default is 'CFP', which specifies to read all aspects.

Examples Reading All Annotations from a Gene Ontology Annotated File

1 Open a Web browser to

http://www.geneontology.org/GO.current.annotations.shtml

- **2** Download gene_association.sgd.gz, the file containing GO annotations for the gene products of *Saccharomyces cerevisiae*, to your MATLAB Current Directory.
- **3** Uncompress the file using the gunzip function.

gunzip('gene_association.sgd.gz')

4 Read the file into the MATLAB software.

SGDGenes = goannotread('gene_association.sgd');

5 Create a structure with **GO** annotations and display a list of the genes.

S = struct2cell(SGDGenes);
genes = S(3,:)'

Reading a Subset of Annotations from a Gene Ontology Annotated File

1 Open a Web browser to

```
http://www.geneontology.org/GO.current.annotations.shtml
```

- **2** Download gene_association.goa_human.gz, the file containing GO annotations for the gene products of *Homo sapiens*, to your MATLAB Current Directory.
- **3** Uncompress the file using the gunzip function.

```
gunzip('gene_association.goa_human.gz')
```

4 Read the file into the MATLAB software, but limit the annotations to genes related to molecular function (F), and to the fields for the gene symbol and the associated ID, that is, DB_Object_Symbol and GOid.

```
HumanStruct = goannotread('gene_association.goa_human', ...
'Aspect','F','Fields',{'DB_Object_Symbol','GOid'});
```

5 Create a list of the *Homo sapiens* genes and a list of the associated GO terms.

```
Humangenes = {HumanStruct.DB_Object_Symbol};
HumanGO = [HumanStruct.GOid];
```

See Also Bioinformatics Toolbox functions: geneont (object constructor), num2goid

Bioinformatics Toolbox object: geneont object

Bioinformatics Toolbox methods of geneont object: getancestors, getdescendants, getmatrix, getrelatives

gonnet

Purpose	Return Gonnet scoring matrix			
Syntax	gonnet			
Description	<pre>gonnet returns the Gonnet matrix. The Gonnet matrix is the recommended mutation matrix for initially aligning protein sequences. Matrix elements are ten times the logarithmic of the probability that the residues are aligned divided by the probability that the residues are aligned by chance, and then matrix elements are normalized to 250 PAM units. Expected score = -0.6152, Entropy = 1.6845 bits Lowest score = -8, Highest score = 14.2 Order:</pre>			
References	A R N D C Q E G H I L K M F P S T W Y V B Z X * [1] Gaston, H., Gonnet, M., Cohen, A., and Benner, S. (1992). Exhaustive matching of the entire protein sequence database. Science. 256, 1443–1445.			
See Also	Bioinformatics Toolbox functions: blosum, dayhoff, pam			

Purpose	Read microarray data from GenePix Results (GPR) file					
Syntax	<i>GPRData</i> = gprread(' <i>File</i> ') gprread(, ' <i>PropertyName</i> ', <i>PropertyValue</i> ,) gprread(, 'CleanColNames', <i>CleanColNamesValue</i>)					
Arguments	File	GenePix Results (GPR) formatted file. Enter a file name or a path and file name.				
	CleanColNamesValue	Controls the creation of column names that can be used as variable names.				
Description	Description GPRData = gprread('File') reads GenePix results data from File and creates a MATLAB structure (GPRData) with the following fields. Field					
	Header					
	Data					
	Blocks					
	Columns					
	Rows					
	Names					
	IDs					
	ColumnNames					
	Indices					
	Shape					

gprread(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

gprread(..., 'CleanColNames', *CleanColNamesValue*) controls the creation of column names that can be used as variable names. A

	GPR file may contain column names with spaces and some characters that the MATLAB software cannot use in MATLAB variable names. If <i>CleanColNamesValue</i> is true, gprread returns names in the field ColumnNames that are valid MATLAB variable names and names that you can use in functions. By default, <i>CleanColNamesValue</i> is false and the field ColumnNames may contain characters that are invalid for MATLAB variable names.
	The field Indices of the structure contains indices that can be used for plotting heat maps of the data.
	For more details on the GPR format, see
	http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html#gpr
	http://www.moleculardevices.com/pages/software/gn_gpr_format_history.html
	For a list of supported file format versions, see
	http://www.moleculardevices.com/pages/software/gn_genepix_file_formats.html
Examples	% Read in a sample GPR file and plot the median foreground % intensity for the 635 nm channel. gprStruct = gprread('mouse_a1pd.gpr') maimage(gprStruct,'F635 Median');
	% Alternatively you can create a similar plot using % more basic graphics commands. F635Median = magetfield(gprStruct,'F635 Median'); imagesc(F635Median(gprStruct.Indices)); colormap bone colorbar;
See Also	Bioinformatics Toolbox functions: affyread, agferead, celintensityread, galread, geoseriesread, geosoftread, ilmnbsread, imageneread, magetfield, sptread

Purpose	Find all shortest paths in graph					
Syntax	<pre>[dist] = graphallshortestpaths(G) [dist] = graphallshortestpaths(G,'Directed', DirectedValue,) [dist] = graphallshortestpaths(G,'Weights', WeightsValue,)</pre>					
Arguments	G	N-by-N sparse matrix that represents a graph. Nonzero entries in matrix G represent the weights of the edges.				
	DirectedValue Property that indicates whether the graph is directed or undirected. Enter false for an undirected graph. This results in the upper trian of the sparse matrix being ignored. Default is tr					
	WeightsValue	Column vector that specifies custom weights for the edges in matrix G. It must have one entry for every nonzero value (edge) in matrix G. The order of the custom weights in the vector must match the order of the nonzero values in matrix G when it is traversed column-wise. This property lets you use zero-valued weights. By default, graphallshortestpaths gets weight information from the nonzero entries in matrix G.				
Description	Theory Functions	ory information on graph theory functions, see "Graph " in the <i>Bioinformatics Toolbox User's Guide</i> .				

[dist] = graphallshortestpaths(G) finds the shortest paths between every pair of nodes in the graph represented by matrix G, using Johnson's algorithm. Input G is an N-by-N sparse matrix that represents a graph. Nonzero entries in matrix G represent the weights of the edges.

Output dist is an N-by-N matrix where dist(S,T) is the distance of the shortest path from source node S to target node T. Elements in the diagonal of this matrix are always 0, indicating the source node and target node are the same. A 0 not in the diagonal indicates that the distance between the source node and target node is 0. An Inf indicates there is no path between the source node and the target node.

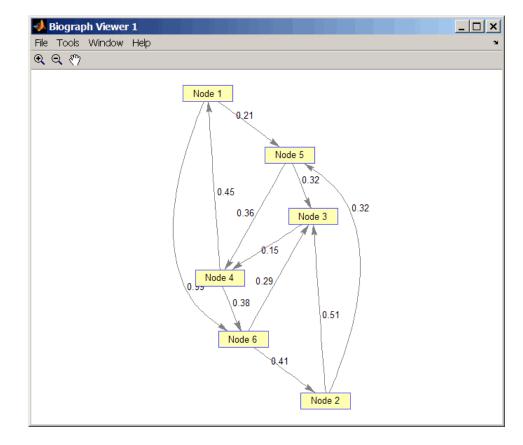
Johnson's algorithm has a time complexity of O(N*log(N)+N*E), where N and E are the number of nodes and edges respectively.

[...] = graphallshortestpaths (G, 'PropertyName', PropertyValue, ...) calls graphallshortestpaths with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

[dist] = graphallshortestpaths(G, ...'Directed', DirectedValue, ...) indicates whether the graph is directed or undirected. Set DirectedValue to false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.

[dist] = graphallshortestpaths(G, ... 'Weights', WeightsValue, ...) lets you specify custom weights for the edges. WeightsValue is a column vector having one entry for every nonzero value (edge) in matrix G. The order of the custom weights in the vector must match the order of the nonzero values in matrix G when it is traversed column-wise. This property lets you use zero-valued weights. By default, graphallshortestpaths gets weight information from the nonzero entries in matrix G.

Examples Finding All Shortest Paths in a Directed Graph


1 Create and view a directed graph with 6 nodes and 11 edges.

W = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21]; DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W)

DG	=
----	---

(4,1) (6,2)	0.4500 0.4100
(2,3)	0.5100
(5,3)	0.3200
(6,3)	0.2900
(3,4)	0.1500
(5,4)	0.3600
(1,5)	0.2100
(2,5)	0.3200
(1,6)	0.9900
(4,6)	0.3800

view(biograph(DG,[],'ShowWeights','on'))

2 Find all the shortest paths between every pair of nodes in the directed graph.

```
graphallshortestpaths(DG)
```

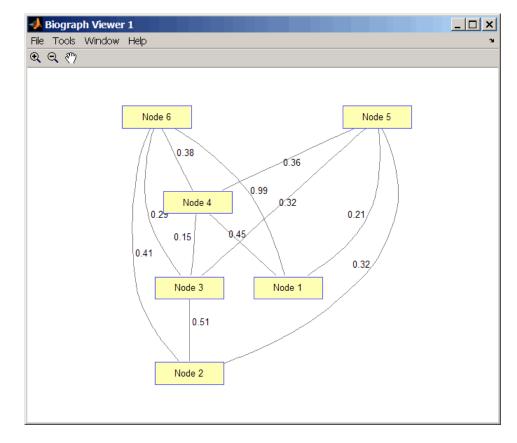
```
ans =
```

0	1.3600	0.5300	0.5700	0.2100	0.9500
1.1100	0	0.5100	0.6600	0.3200	1.0400
0.6000	0.9400	0	0.1500	0.8100	0.5300

0.4500	0.7900	0.6700	0	0.6600	0.3800
0.8100	1.1500	0.3200	0.3600	0	0.7400
0.8900	0.4100	0.2900	0.4400	0.7300	0

The resulting matrix shows the shortest path from node 1 (first row) to node 6 (sixth column) is 0.95. You can see this in the graph by tracing the path from node 1 to node 5 to node 4 to node 6 (0.21 + 0.36 + 0.38 = 0.95).

Finding All Shortest Paths in an Undirected Graph


1 Create and view an undirected graph with 6 nodes and 11 edges.

```
UG = tril(DG + DG')
```

UG =

(4,1)	0.4500
(5,1)	0.2100
(6,1)	0.9900
(3,2)	0.5100
(5,2)	0.3200
(6,2)	0.4100
(4,3)	0.1500
(5,3)	0.3200
(6,3)	0.2900
(5,4)	0.3600
(6,4)	0.3800

view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'))

2 Find all the shortest paths between every pair of nodes in the undirected graph.

```
graphallshortestpaths(UG, 'directed', false)
```

```
ans =
```

0	0.5300	0.5300	0.4500	0.2100	0.8300
0.5300	0	0.5100	0.6600	0.3200	0.7000
0.5300	0.5100	0	0.1500	0.3200	0.5300

0.4500	0.6600	0.1500	0	0.3600	0.3800
0.2100	0.3200	0.3200	0.3600	0	0.7400
0.8300	0.7000	0.5300	0.3800	0.7400	0

The resulting matrix is symmetrical because it represents an undirected graph. It shows the shortest path from node 1 (first row) to node 6 (sixth column) is 0.83. You can see this in the graph by tracing the path from node 1 to node 4 to node 6 (0.45 + 0.38 = 0.83). Because UG is an undirected graph, we can use the edge between node 1 and node 4, which we could not do in the directed graph DG.

References [1] Johnson, D.B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM *24(1)*, 1-13.

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphconncomp, graphisdag, graphisomorphism, graphisspantree, graphmaxflow, graphminspantree, graphpred2path, graphshortestpath, graphtopoorder, graphtraverse

 $Bioinformatics \, Toolbox \, method \, of \, {\tt biograph} \ {\tt object: all shortest paths}$

graphconncomp

Purpose	Find strongly or weakly connected components in graph		
Syntax	<pre>[S, C] = graphconncomp(G) [S, C] = graphconncomp(G,'Directed', DirectedValue,) [S, C] = graphconncomp(G,'Weak', WeakValue,)</pre>		
Arguments	G	N-by-N sparse matrix that represents a graph. Nonzero entries in matrix <i>G</i> indicate the presence of an edge.	
	DirectedValue	Property that indicates whether the graph is directed or undirected. Enter false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true. A DFS-based algorithm computes the connected components. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.	
	WeakValue	Property that indicates whether to find weakly connected components or strongly connected components. A weakly connected component is a maximal group of nodes that are mutually reachable by violating the edge directions. Set <i>WeakValue</i> to true to find weakly connected components. Default is false, which finds strongly connected components. The state of this parameter has no effect on undirected graphs because weakly and strongly connected components are the same in undirected graphs. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.	

Description

Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the *Bioinformatics Toolbox User's Guide*.

[S, C] = graphconncomp(G) finds the strongly connected components of the graph represented by matrix G using Tarjan's algorithm. A strongly connected component is a maximal group of nodes that are mutually reachable without violating the edge directions. Input G is an N-by-N sparse matrix that represents a graph. Nonzero entries in matrix G indicate the presence of an edge.

The number of components found is returned in S, and C is a vector indicating to which component each node belongs.

Tarjan's algorithm has a time complexity of O(N+E), where N and E are the number of nodes and edges respectively.

[S, C] = graphconncomp(G, ...'PropertyName', PropertyValue, ...) calls graphconncomp with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

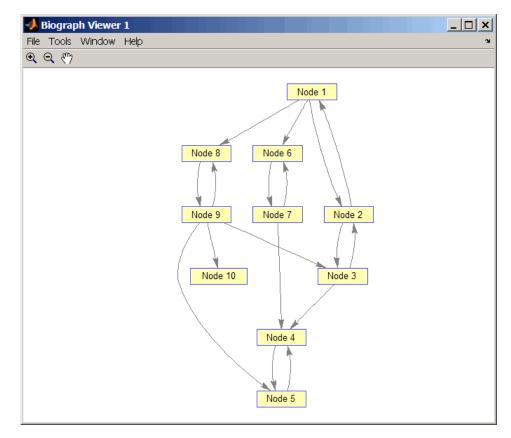
[S, C] = graphconncomp(G, ... 'Directed', DirectedValue, ...) indicates whether the graph is directed or undirected. Set *directedValue* to false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true. A DFS-based algorithm computes the connected components. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.

[S, C] = graphconncomp(G, ... 'Weak', WeakValue, ...) indicates whether to find weakly connected components or strongly connected components. A weakly connected component is a maximal group of nodes that are mutually reachable by violating the edge directions. Set WeakValue to true to find weakly connected components. Default is false, which finds strongly connected components. The state of this parameter has no effect on undirected graphs because weakly and strongly connected components are the same in undirected graphs. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.

Note By definition, a single node can be a strongly connected component.

Note A directed acyclic graph (DAG) cannot have any strongly connected components larger than one.

Examples 1 Create and view a directed graph with 10 nodes and 17 edges.

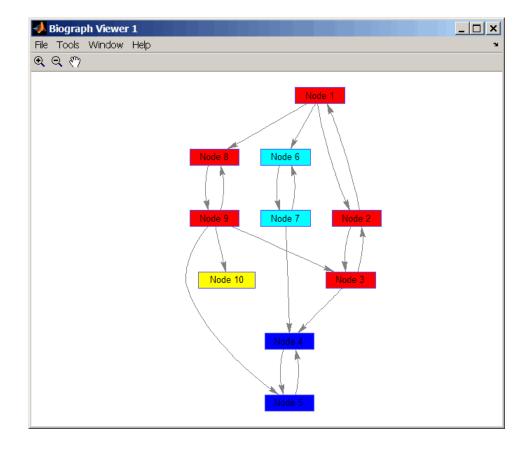

DG = sparse([1 1 1 2 2 3 3 4 5 6 7 7 8 9 9 9 9], ... [2 6 8 3 1 4 2 5 4 7 6 4 9 8 10 5 3],true,10,10)

DG =

(2,1)	1
(1,2)	1
(3,2)	1
(2,3)	1
(9,3)	1
(3,4)	1
(5,4)	1
(7,4)	1
(4,5)	1
(9,5)	1
(1,6)	1
(7,6)	1
(6,7)	1
(1,8)	1
(9,8)	1

(8,9)	1
(9,10)	1

h = view(biograph(DG));


2 Find the number of strongly connected components in the directed graph and determine to which component each of the 10 nodes belongs.

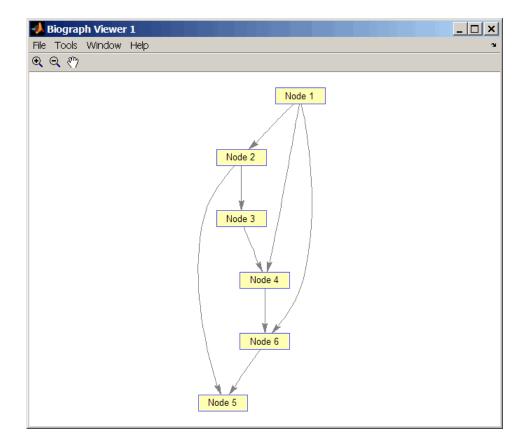
[S,C] = graphconncomp(DG)

```
S =
4
C =
4 4 4 1 1 2 2 4 4 3
```

3 Color the nodes for each component with a different color.

```
colors = jet(S);
for i = 1:numel(h.nodes)
    h.Nodes(i).Color = colors(C(i),:);
end
```


References [1] Tarjan, R.E., (1972). Depth first search and linear graph algorithms. SIAM Journal on Computing *1(2)*, 146–160.


[2] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms (Addison-Wesley).

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education). See Also Bioinformatics Toolbox functions: graphallshortestpaths, graphisdag, graphisomorphism, graphisspantree, graphmaxflow, graphminspantree, graphpred2path, graphshortestpath, graphtopoorder, graphtraverse

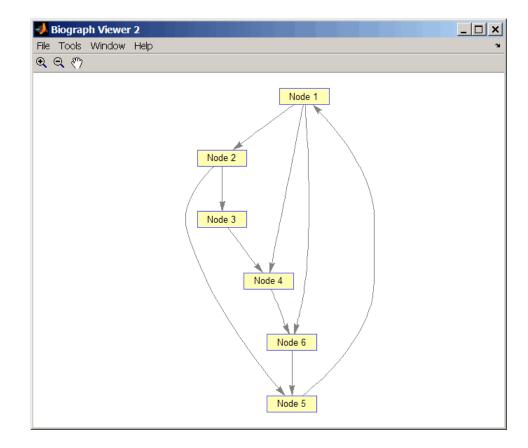
Bioinformatics Toolbox method of biograph object: conncomp

Purpose	Test for cycles in directed graph		
Syntax	graphisdag(G)		
Arguments	 G N-by-N sparse matrix that represents a directed graph. Nonzero entries in matrix G indicate the presence of an edge. 		
Description	Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the <i>Bioinformatics Toolbox User's Guide</i> .		
	graphisdag(G) returns logical 1 (true) if the directed graph represented by matrix G is a directed acyclic graph (DAG) and logical 0 (false) otherwise. G is an N-by-N sparse matrix that represents a directed graph. Nonzero entries in matrix G indicate the presence of an edge.		
Examples	Testing for Cycles in Directed Graphs		
	1 Create and view a directed acyclic graph (DAG) with six nodes and eight edges.		
	DG = sparse([1 1 1 2 2 3 4 6],[2 4 6 3 5 4 6 5],true,6,6)		
	DG =		

view(biograph(DG))

2 Test for cycles in the DAG.

graphisdag(DG)


ans =

1

3 Add an edge to the DAG to make it cyclic, and then view the directed graph.

DG(5,1) = trueDG = (5,1) 1 (1,2) 1 (2,3) 1 (1,4) 1 (3,4) 1 (2,5) 1 (6,5) 1 (1,6) 1 (4,6) 1

>> view(biograph(DG))

4 Test for cycles in the new graph.

graphisdag(DG)

```
ans =
```

0

Testing for Cycles in a Very Large Graph (Greater Than 20,000 Nodes and 30,000 Edges)

1 Download the Gene Ontology database to a geneont object.

GO = geneont('live',true);

2 Convert the geneont object to a matrix.

CM = getmatrix(GO);

3 Test for cycles in the graph.

graphisdag(CM)

Creating a Random DAG

1 Create and view a random directed acyclic graph (DAG) with 15 nodes and 20 edges.

```
g = sparse([],[],true,15,15);
while nnz(g) < 20
edge = randsample(15*15,1); % get a random edge
g(edge) = true;
g(edge) = graphisdag(g);
end
view(biograph(g))
```

2 Test for cycles in the graph.

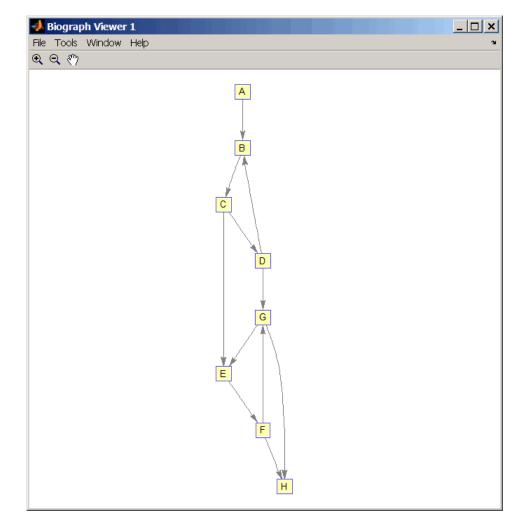
```
graphisdag(g)
```

- **References** [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).
- **See Also** Bioinformatics Toolbox functions: graphallshortestpaths, graphconncomp, graphisomorphism, graphisspantree, graphmaxflow,

graphminspantree, graphpred2path, graphshortestpath, graphtopoorder, graphtraverse

Bioinformatics Toolbox method of biograph object: isdag

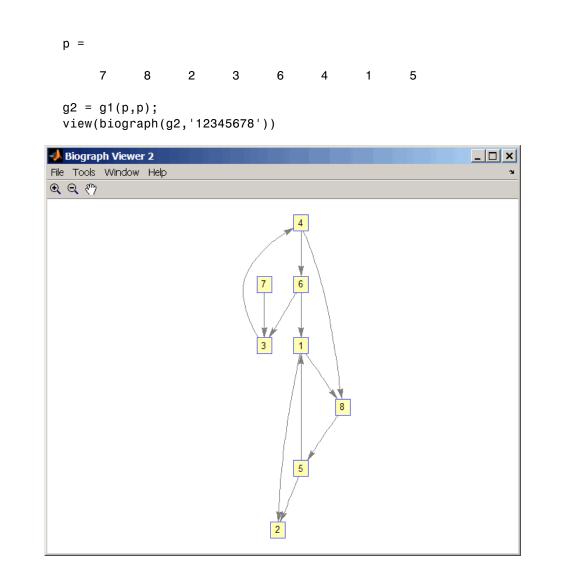
Purpose	Find isomorphism between two graphs		
Syntax	[Isomorphic, Map] = graphisomorphism(G1, G2) [Isomorphic, Map] = graphisomorphism(G1, G2,'Directed', DirectedValue)		
Arguments	G1	N-by-N sparse matrix that represents a directed or undirected graph. Nonzero entries in matrix <i>G1</i> indicate the presence of an edge.	
	G2	N-by-N sparse matrix that represents a directed or undirected graph. <i>G2</i> must be the same (directed or undirected) as <i>G1</i> .	
	DirectedValue	Property that indicates whether the graphs are directed or undirected. Enter false when both $G1$ and $G2$ are undirected graphs. In this case, the upper triangles of the sparse matrices $G1$ and $G2$ are ignored. Default is true, meaning that both graphs are directed.	
Description			


Description

Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the *Bioinformatics Toolbox User's Guide*.

[Isomorphic, Map] = graphisomorphism(G1, G2) returns logical 1 (true) in Isomorphic if G1 and G2 are isomorphic graphs, and logical 0 (false) otherwise. A graph isomorphism is a 1-to-1 mapping of the nodes in the graph G1 and the nodes in the graph G2 such that adjacencies are preserved. G1 and G2 are both N-by-N sparse matrices that represent directed or undirected graphs. Return value Isomorphic is Boolean. When Isomorphic is true, Map is a row vector containing the node indices that map from G2 to G1. When Isomorphic is false, the worst-case time complexity is O(N!), where N is the number of nodes.

	G2, 'Directed', Di directed or undirected and G2 are undirected	<pre>= graphisomorphism(G1, rectedValue) indicates whether the graphs are ed. Set DirectedValue to false when both G1 ed graphs. In this case, the upper triangles of G1 and G2 are ignored. Default is true, meaning e directed.</pre>
Examples	1 Create and view a	a directed graph with 8 nodes and 11 edges.
	-) = [1 2 3 4 5 6 7 8]; m('ABDCDCGEFFG'),m('BCBDGEEFHGH'),true,8,8)
	(1,2)	1
	(4,2)	1
	(2,3)	
	(3,4)	1
	(3,5)	1
	(7,5)	1
	(5,6)	1
	(4,7)	1
	(6,7)	1
	(6,8)	1
	(7,8)	1

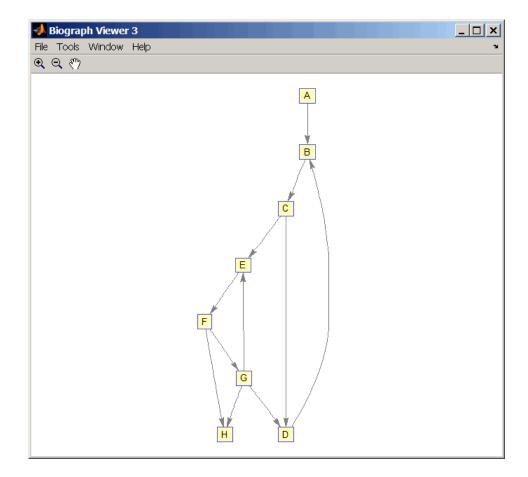

view(biograph(g1,'ABCDEFGH'))

2 Set a random permutation vector and then create and view a new permuted graph.

p = randperm(8)

graphisomorphism

3 Check if the two graphs are isomorphic.


[F,Map] = graphisomorphism(g2,g1)

F = 1 Map = 7 8 2 3 6 4 1 5

Note that the Map row vector containing the node indices that map from g2 to g1 is the same as the permutation vector you created in step 2.

4 Reverse the direction of the D-G edge in the first graph, and then check for isomorphism again.

g1(m('DG'),m('GD')) = g1(m('GD'),m('DG')); view(biograph(g1,'ABCDEFGH'))

[F,M] = graphisomorphism(g2,g1)

М =

```
[]
                   5 Convert the graphs to undirected graphs, and then check for
                     isomorphism.
                        [F,M] = graphisomorphism(g2+g2',g1+g1','directed',false)
                        F =
                              1
                        M =
                             7
                                    8
                                           2
                                                 3
                                                        6
                                                               4
                                                                     1
                                                                            5
References
                   [1] Fortin, S. (1996). The Graph Isomorphism Problem. Technical
                   Report, 96-20, Dept. of Computer Science, University of Alberta,
                   Edomonton, Alberta, Canada.
                   [2] McKay, B.D. (1981). Practical Graph Isomorphism. Congressus
                   Numerantium 30, 45-87.
                   [3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph
                   Library User Guide and Reference Manual, (Upper Saddle River,
                   NJ:Pearson Education).
See Also
                   Bioinformatics Toolbox functions: graphallshortestpaths,
                   graphconncomp, graphisdag, graphisspantree, graphmaxflow,
                   graphminspantree, graphpred2path, graphshortestpath,
                   graphtopoorder, graphtraverse
                   Bioinformatics Toolbox methods of biograph object: isomorphism
```

graphisspantree

Purpose	Determine if tree is spanning tree		
Syntax	<pre>TF = graphisspantree(G)</pre>		
Arguments	 <i>G</i> N-by-N sparse matrix whose lower triangle represents an undirected graph. Nonzero entries in matrix <i>G</i> indicate the presence of an edge. 		
Description	Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the <i>Bioinformatics Toolbox User's Guide</i> .		
	TF = graphisspantree(G) returns logical 1 (true) if G is a spanning tree, and logical 0 (false) otherwise. A spanning tree must touch all the nodes and must be acyclic. G is an N-by-N sparse matrix whose lower triangle represents an undirected graph. Nonzero entries in matrix G indicate the presence of an edge.		
Examples	1 Create a phytree object from a phylogenetic tree file.		
	tr = phytreeread('pf00002.tree') Phylogenetic tree object with 33 leaves (32 branches)		
	2 Create a connection matrix from the phytree object.		
	[CM,labels,dist] = getmatrix(tr);		
	3 Determine if the connection matrix is a spanning tree.		
	graphisspantree(CM)		
	ans =		
	1		

4 Add an edge between the root and the first leaf in the connection matrix.

CM(end, 1) = 1;

5 Determine if the modified connection matrix is a spanning tree.

graphisspantree(CM)

ans =	
-------	--

0
-

- **References** [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).
- See Also Bioinformatics Toolbox functions: graphallshortestpaths, graphconncomp, graphisdag, graphisomorphism, graphmaxflow, graphminspantree, graphpred2path, graphshortestpath, graphtopoorder, graphtraverse

Bioinformatics Toolbox methods of biograph object: isspantree

graphmaxflow

Purpose	Calculate maximum flow in directed graph			
Syntax	<pre>[MaxFlow, FlowMatrix, Cut] = graphmaxflow(G, SNode, TNode) [] = graphmaxflow(G, SNode, TNode,'Capacity', CapacityValue,) [] = graphmaxflow(G, SNode, TNode,'Method', MethodValue,)</pre>			
Arguments	G	N-by-N sparse matrix that represents a directed graph. Nonzero entries in matrix G represent the capacities of the edges.		
	SNode	Node in G.		
	TNode	Node in G.		
	CapacityValue	Column vector that specifies custom capacities for the edges in matrix G . It must have one entry for every nonzero value (edge) in matrix G . The order of the custom capacities in the vector must match the order of the nonzero values in matrix G when it is traversed column-wise. By default, graphmaxflow gets capacity information from the nonzero entries in matrix G .		
MethodValue		 String that specifies the algorithm used to find the minimal spanning tree (MST). Choices are: 'Edmonds' — Uses the Edmonds and Karp algorithm, the implementation of which is based on a variation called the <i>labeling algorithm</i>. Time complexity is O(N*E^2), where N and E are the number of nodes and edges respectively. 		
		 'Goldberg' — Default algorithm. Uses the Goldberg algorithm, which uses the generic method known as <i>preflow-push</i>. Time complexity is O(N^2*sqrt(E)), where N and E are the number of nodes and edges respectively. 		

Description

Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the *Bioinformatics Toolbox User's Guide*.

[MaxFlow, FlowMatrix, Cut] = graphmaxflow(G, SNode, TNode) calculates the maximum flow of directed graph G from node SNode to node TNode. Input G is an N-by-N sparse matrix that represents a directed graph. Nonzero entries in matrix G represent the capacities of the edges. Output MaxFlow is the maximum flow, and FlowMatrix is a sparse matrix with all the flow values for every edge. FlowMatrix(X,Y) is the flow from node X to node Y. Output Cut is a logical row vector indicating the nodes connected to SNode after calculating the minimum cut between SNode and TNode. If several solutions to the minimum cut problem exist, then Cut is a matrix.

Tip The algorithm that determines Cut, all minimum cuts, has a time complexity of $O(2^N)$, where N is the number of nodes. If this information is not needed, use the graphmaxflow function without the third output.

[...] = graphmaxflow(G, SNode, TNode, ...'PropertyName', PropertyValue, ...) calls graphmaxflow with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

[...] = graphmaxflow(G, SNode, TNode, ...'Capacity', CapacityValue, ...) lets you specify custom capacities for the edges. CapacityValue is a column vector having one entry for every nonzero value (edge) in matrix G. The order of the custom capacities in the vector must match the order of the nonzero values in matrix G when it is traversed column-wise. By default, graphmaxflow gets capacity information from the nonzero entries in matrix G. [...] = graphmaxflow(G, SNode, TNode, ...'Method', MethodValue, ...) lets you specify the algorithm used to find the minimal spanning tree (MST). Choices are:

- 'Edmonds' Uses the Edmonds and Karp algorithm, the implementation of which is based on a variation called the *labeling algorithm*. Time complexity is $O(N*E^2)$, where N and E are the number of nodes and edges respectively.
- 'Goldberg' Default algorithm. Uses the Goldberg algorithm, which uses the generic method known as *preflow-push*. Time complexity is O(N^2*sqrt(E)), where N and E are the number of nodes and edges respectively.

Examples 1 Create a directed graph with six nodes and eight edges.

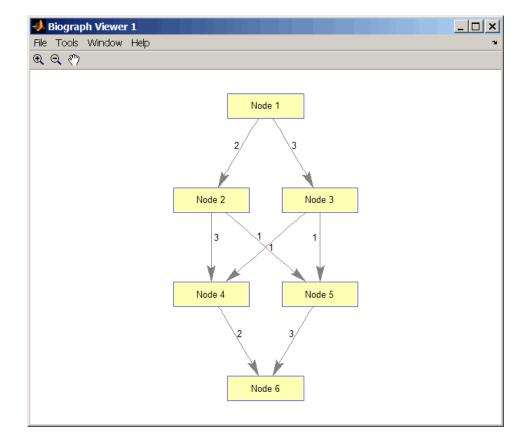
cm = sparse([1 1 2 2 3 3 4 5],[2 3 4 5 4 5 6 6],... [2 3 3 1 1 1 2 3], 6, 6)cm = 2 (1, 2)3 (1,3)(2, 4)3 (3, 4)1 (2, 5)1 (3, 5)1 (4, 6)2 3 (5, 6)

2 Calculate the maximum flow in the graph from node 1 to node 6.

```
[M,F,K] = graphmaxflow(cm,1,6)
```

```
M =
```

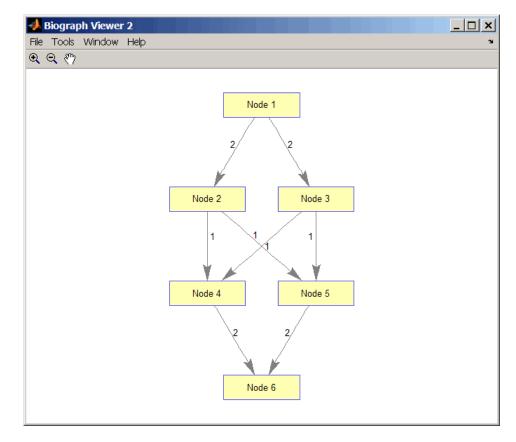
4


F =

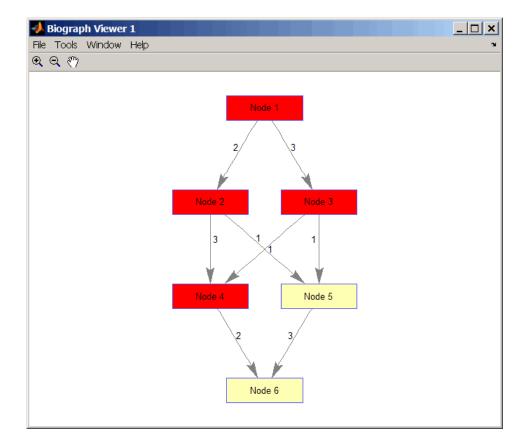
(1,2)		2			
(1,3)		2			
(2,4)		1			
(3,4)		1			
(2,5)		1			
(3,5)		1			
(4,6)		2			
(5,6)		2			
K =					
1	1	1	1	0	0
1	0	1	0	0	0

Notice that K is a two-row matrix because there are two possible solutions to the minimum cut problem.

3 View the graph with the original capacities.


h = view(biograph(cm,[],'ShowWeights','on'))

4 View the graph with the calculated maximum flows.


view(biograph(F,[],'ShowWeights','on'))

graphmaxflow

5 Show one solution to the minimum cut problem in the original graph.

set(h.Nodes(K(1,:)), 'Color',[1 0 0])

Notice that in the three edges that connect the source nodes (red) to the destination nodes (yellow), the original capacities and the calculated maximum flows are the same.

References [1] Edmonds, J. and Karp, R.M. (1972). Theoretical improvements in the algorithmic efficiency for network flow problems. Journal of the ACM *19*, 248-264.

[2] Goldberg, A.V. (1985). A New Max-Flow Algorithm. MIT Technical Report MIT/LCS/TM-291, Laboratory for Computer Science, MIT.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: graphallshortestpaths, graphconncomp, graphisdag, graphisomorphism, graphisspantree, graphminspantree, graphpred2path, graphshortestpath, graphtopoorder, graphtraverse

Bioinformatics Toolbox method of biograph object: maxflow

graphminspantree

Purpose	Find minimal spanning tree in graph				
Syntax	<pre>[Tree, pred] = graphminspantree(G) [Tree, pred] = graphminspantree(G, R) [Tree, pred] = graphminspantree(, 'Method', MethodValue,) [Tree, pred] = graphminspantree(, 'Weights', WeightsValue,)</pre>				
Arguments	 G N-by-N sparse matrix that represents an undirected graph. Nonzero entries in matrix G represent the weights of the edges. R Scalar between 1 and the number of nodes. 				
Description	Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the <i>Bioinformatics Toolbox User's Guide</i> .				

[Tree, pred] = graphminspantree(G) finds an acyclic subset of edgesthat connects all the nodes in the undirected graph G and for which thetotal weight is minimized. Weights of the edges are all nonzero entriesin the lower triangle of the N-by-N sparse matrix G. Output*Tree*is aspanning tree represented by a sparse matrix. Output*pred*is a vectorcontaining the predecessor nodes of the minimal spanning tree (MST),with the root node indicated by 0. The root node defaults to the firstnode in the largest connected component. This computation requiresan extra call to the graphconncomp function.

[Tree, pred] = graphminspantree(G, R) sets the root of the minimal spanning tree to node R.

[Tree,

pred] = graphminspantree(..., 'PropertyName', PropertyValue, ...)
calls graphminspantree with optional properties that use property
name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotes

and is case insensitive. These property name/property value pairs are as follows:

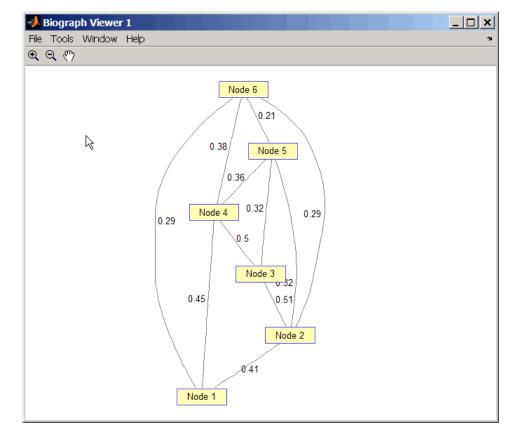
[Tree, pred] = graphminspantree(..., 'Method', MethodValue, ...) lets you specify the algorithm used to find the minimal spanning tree (MST). Choices are:

- 'Kruskal' Grows the minimal spanning tree (MST) one edge at a time by finding an edge that connects two trees in a spreading forest of growing MSTs. Time complexity is O(E+X*log(N)), where X is the number of edges no longer than the longest edge in the MST, and N and E are the number of nodes and edges respectively.
- 'Prim' Default algorithm. Grows the minimal spanning tree (MST) one edge at a time by adding a minimal edge that connects a node in the growing MST with any other node. Time complexity is O(E*log(N)), where N and E are the number of nodes and edges respectively.

Note When the graph is unconnected, Prim's algorithm returns only the tree that contains R, while Kruskal's algorithm returns an MST for every component.

	[<i>Tree, pred</i>] = graphminspantree(, 'Weights', <i>WeightsValue</i> ,) lets you specify custom weights for the
	edges. WeightsValue is a column vector having one entry for every
	nonzero value (edge) in matrix G. The order of the custom weights in the vector must match the order of the nonzero values in matrix G when it is traversed column-wise. By default, graphminspantree gets weight
	information from the nonzero entries in matrix G .
Examples	1 Create and view an undirected graph with 6 nodes and 11 edges.

W = [.41 .29 .51 .32 .50 .45 .38 .32 .36 .29 .21]; DG = sparse([1 1 2 2 3 4 4 5 5 6 6],[2 6 3 5 4 1 6 3 4 2 5],W);


graphminspantree

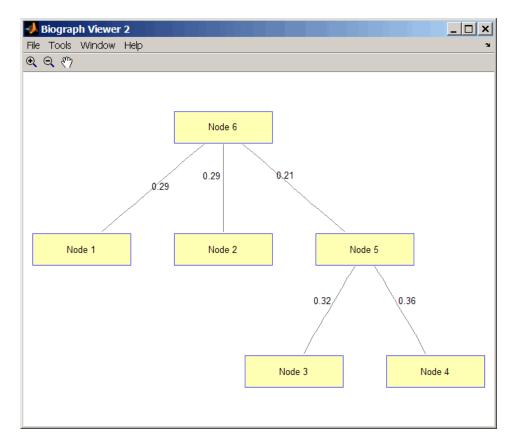
UG = tril(DG + DG')

UG =

(2,1) (4,1)	0.4100 0.4500
(6,1)	0.2900
(3,2)	0.5100
(5,2)	0.3200
(6,2)	0.2900
(4,3)	0.5000
(5,3)	0.3200
(5,4)	0.3600
(6,4)	0.3800
(6,5)	0.2100

view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'))

2 Find and view the minimal spanning tree of the undirected graph.


[ST,pred] = graphminspantree(UG)

ST =

(6,1)	0.2900
(6,2)	0.2900
(5,3)	0.3200
(5,4)	0.3600

(6,5) 0.2100 pred = 0 6 5 5 6 1

view(biograph(ST,[],'ShowArrows','off','ShowWeights','on'))

References [1] Kruskal, J.B. (1956). On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proceedings of the American Mathematical Society 7, 48-50. [2] Prim, R. (1957). Shortest Connection Networks and Some Generalizations. Bell System Technical Journal *36*, 1389-1401. [3] Siek, J.G. Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education). See Also Bioinformatics Toolbox functions: graphallshortestpaths, graphconncomp, graphisdag, graphisomorphism, graphisspantree, graphmaxflow, graphpred2path, graphshortestpath, graphtopoorder, graphtraverse Bioinformatics Toolbox method of biograph object: minspantree

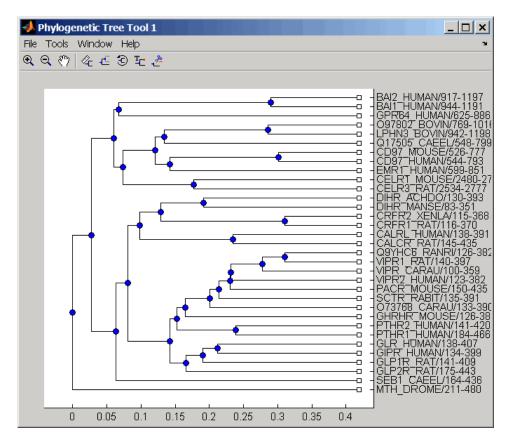
graphpred2path

Purpose	Convert predecessor indices to paths					
Syntax	path =	<pre>path = graphpred2path(pred, D)</pre>				
Arguments	pred D	Row vector or matrix of predecessor node indices. The value of the root (or source) node in <i>pred</i> must be 0. Destination node in <i>pred</i> .				
Description		introductory information on graph theory functions, see "Graph Functions" in the <i>Bioinformatics Toolbox User's Guide</i> .				

path = graphpred2path(pred, D) traces back a path by following the
predecessor list in pred starting at destination node D.

The value of the root (or source) node in *pred* must be 0. If a NaN is found when following the predecessor nodes, graphpred2path returns an empty path.

lf pred is a	And D is a	Then path is a
row vector of predecessor	scalar	row vector listing the nodes from the root (or source) to <i>D</i> .
node indices	row vector	row cell array with every column containing the path to the destination for every element in <i>D</i> .


If pred is a	And D is a	Then path is a
matrix	scalar	column cell array with every row containing the path for every row in <i>pred</i> .
	row vector	matrix cell array with every row containing the paths for the respective row in <i>pred</i> , and every column containing the paths to the respective destination in <i>D</i> .

Note If *D* is omitted, the paths to all the destinations are calculated for every predecessor listed in *pred*.

Examples 1 Create a phytree object from the phylogenetic tree file for the GLR_HUMAN protein.

2 View the phytree object.

view(tr)

3 From the phytree object, create a connection matrix to represent the phylogenetic tree.

[CM,labels,dist] = getmatrix(tr);

4 Find the nodes from the root to one leaf in the phylogenetic tree created from the phylogenetic tree file for the GLR_HUMAN protein.

root_loc = size(CM,1)
root loc =

	65								
	glr_loc	= strm	atch('	GLR',1	abels)				
	glr_loc	=							
	28								
	[T,PRED] PATH = g	• ·		•		_ '	;		
	PATH =								
	65	64	53	52	46	45	44	43	28
References	[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).								
See Also	Bioinformatics Toolbox functions: graphallshortestpaths, graphconncomp, graphisdag, graphisomorphism, graphisspantree, graphmaxflow, graphminspantree, graphshortestpath, graphtopoorder, graphtraverse								

graphshortestpath

Purpose	Solve shortest path problem in graph	
Syntax	<pre>[dist, path, pred] = graphshortestpath(G, S) [dist, path, pred] = graphshortestpath(G, S, T) [] = graphshortestpath(, 'Directed', DirectedValue,) [] = graphshortestpath(, 'Method', MethodValue,) [] = graphshortestpath(, 'Weights', WeightsValue,)</pre>	
Arguments	G	N-by-N sparse matrix that represents a graph. Nonzero entries in matrix G represent the weights of the edges.
	S	Node in G.
	Т	Node in G.
	DirectedValue	Property that indicates whether the graph is directed or undirected. Enter false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.

MethodValue String that specifies the algorithm used to find the shortest path. Choices are: • 'Bellman-Ford' — Assumes weights of the edges to be nonzero entries in sparse matrix G. Time complexity is O(N*E), where N and E are the number of nodes and edges respectively. • 'BFS' — Breadth-first search. Assumes all weights to be equal, and nonzero entries in sparse matrix G to represent edges. Time complexity is O(N+E), where N and E are the number of nodes and edges respectively. • 'Acyclic' — Assumes G to be a directed acyclic graph and that weights of the edges are nonzero entries in sparse matrix G. Time complexity is O(N+E), where N and E are the number of nodes and edges respectively. • 'Dijkstra' — Default algorithm. Assumes weights of the edges to be positive values in sparse matrix G. Time complexity is O(log(N)*E), where N and E are the number of nodes and edges respectively. WeightsValue Column vector that specifies custom weights for the edges in matrix G. It must have one entry for every nonzero value (edge) in matrix G. The order of the custom weights in the vector must match the order of the nonzero values in matrix G when it is traversed column-wise. This property lets you use zero-valued weights. By default, graphshortestpaths gets weight information from the nonzero entries in matrix G.

Description

Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the *Bioinformatics Toolbox User's Guide*.

[dist, path, pred] = graphshortestpath(G, S) determines the single-source shortest paths from node S to all other nodes in the graph represented by matrix G. Input G is an N-by-N sparse matrix that represents a graph. Nonzero entries in matrix G represent the weights of the edges. dist are the N distances from the source to every node (using Infs for nonreachable nodes and O for the source node). path contains the winning paths to every node. pred contains the predecessor nodes of the winning paths.

[dist, path, pred] = graphshortestpath(G, S, T) determines the single source-single destination shortest path from node S to node T.

[...] = graphshortestpath(..., '*PropertyName*', *PropertyValue*, ...) calls graphshortestpath with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

[...] = graphshortestpath(..., 'Directed', DirectedValue, ...) indicates whether the graph is directed or undirected. Set DirectedValue to false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.

[...] = graphshortestpath(..., 'Method', MethodValue, ...) lets you specify the algorithm used to find the shortest path. Choices are:

- 'Bellman-Ford' Assumes weights of the edges to be nonzero entries in sparse matrix G. Time complexity is O(N*E), where N and E are the number of nodes and edges respectively.
- 'BFS' Breadth-first search. Assumes all weights to be equal, and nonzero entries in sparse matrix G to represent edges. Time

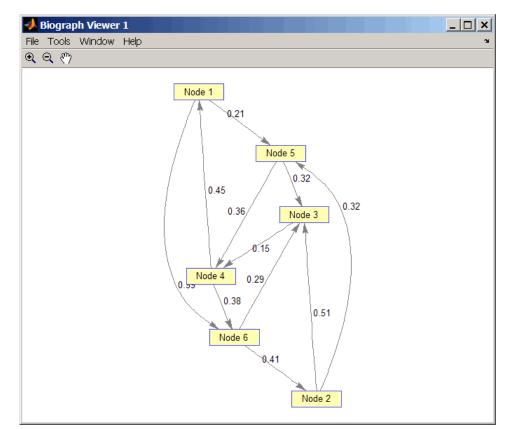
complexity is $O(N\!+\!E),$ where N and E are the number of nodes and edges respectively.

- 'Acyclic' Assumes G to be a directed acyclic graph and that weights of the edges are nonzero entries in sparse matrix G. Time complexity is O(N+E), where N and E are the number of nodes and edges respectively.
- 'Dijkstra' Default algorithm. Assumes weights of the edges to be positive values in sparse matrix G. Time complexity is O(log(N)*E), where N and E are the number of nodes and edges respectively.

 $[\ldots]$ = graphshortestpath(..., 'Weights', WeightsValue, ...) lets you specify custom weights for the edges. WeightsValue is a column vector having one entry for every nonzero value (edge) in matrix G. The order of the custom weights in the vector must match the order of the nonzero values in matrix G when it is traversed column-wise. This property lets you use zero-valued weights. By default, graphshortestpath gets weight information from the nonzero entries in matrix G.

Examples Finding the Shortest Path in a Directed Graph

1 Create and view a directed graph with 6 nodes and 11 edges.

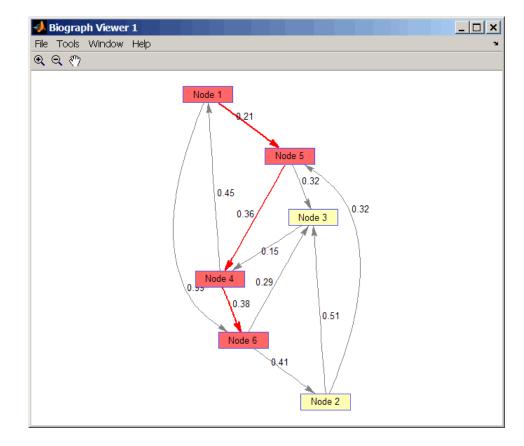

W = [.41 .99 .51 .32 .15 .45 .38 .32 .36 .29 .21]; DG = sparse([6 1 2 2 3 4 4 5 5 6 1],[2 6 3 5 4 1 6 3 4 3 5],W)

DG =

(4,1)	0.4500
(6,2)	0.4100
(2,3)	0.5100
(5,3)	0.3200
(6,3)	0.2900
(3,4)	0.1500
(5,4)	0.3600
(1,5)	0.2100

(2,5)	0.3200
(1,6)	0.9900
(4,6)	0.3800

h = view(biograph(DG,[],'ShowWeights','on'))
Biograph object with 6 nodes and 11 edges.

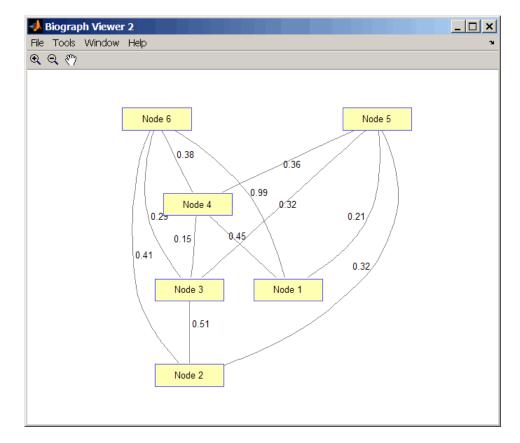

2 Find the shortest path in the graph from node 1 to node 6.

[dist,path,pred] = graphshortestpath(DG,1,6)

```
dist =
0.9500
path =
1 5 4 6
pred =
0 6 5 5 1 4
```

3 Mark the nodes and edges of the shortest path by coloring them red and increasing the line width.

```
set(h.Nodes(path), 'Color',[1 0.4 0.4])
edges = getedgesbynodeid(h,get(h.Nodes(path), 'ID'));
set(edges, 'LineColor',[1 0 0])
set(edges, 'LineWidth',1.5)
```



Finding the Shortest Path in an Undirected Graph

1 Create and view an undirected graph with 6 nodes and 11 edges.

UG = tril(DG + DG') UG = (4,1) 0.4500 (5,1) 0.2100

(6,1)	0.9900
(3,2)	0.5100
(5,2)	0.3200
(6,2)	0.4100
(4,3)	0.1500
(5,3)	0.3200
(6,3)	0.2900
(5,4)	0.3600
(6,4)	0.3800

h = view(biograph(UG,[],'ShowArrows','off','ShowWeights','on'))
Biograph object with 6 nodes and 11 edges.

2 Find the shortest path in the graph from node 1 to node 6.

```
[dist,path,pred] = graphshortestpath(UG,1,6,'directed',false)
dist =
```

0.8200

path =

```
1 5 3 6
pred =
0 5 5 1 1 3
```

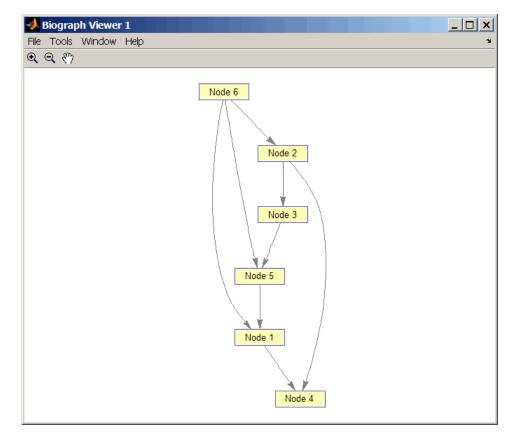
3 Mark the nodes and edges of the shortest path by coloring them red and increasing the line width.

```
set(h.Nodes(path), 'Color',[1 0.4 0.4])
fowEdges = getedgesbynodeid(h,get(h.Nodes(path), 'ID'));
revEdges = getedgesbynodeid(h,get(h.Nodes(fliplr(path)), 'ID'));
edges = [fowEdges;revEdges];
set(edges, 'LineColor',[1 0 0])
set(edges, 'LineWidth',1.5)
```


References [1] Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik *1*, 269-271.

[2] Bellman, R. (1958). On a Routing Problem. Quarterly of Applied Mathematics 16(1), 87-90.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).


See Also Bioinformatics Toolbox functions: graphallshortestpaths, graphconncomp, graphisdag, graphisomorphism, graphisspantree, graphmaxflow, graphminspantree, graphpred2path, graphtopoorder, graphtraverse

Bioinformatics Toolbox method of biograph object: shortestpath

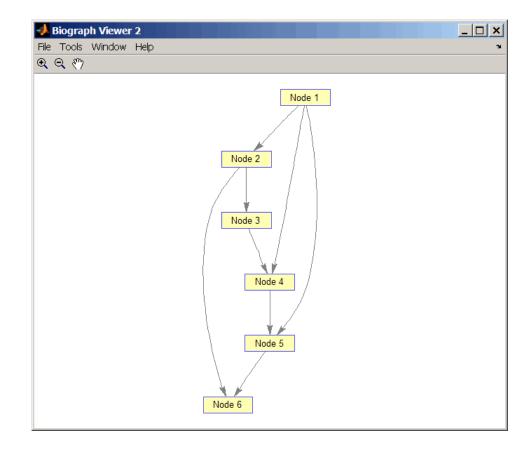
graphtopoorder

Purpose	Perform topological sort of directed acyclic graph		
Syntax	order = graphtopoorder(G)		
Arguments	G N-by-N sparse matrix that represents a directed acyclic graph.Nonzero entries in matrix G indicate the presence of an edge.		
Description	Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the <i>Bioinformatics Toolbox User's Guide</i> .		
	order = graphtopoorder(G) returns an index vector with the order of the nodes sorted topologically. In topological order, an edge can exist between a source node u and a destination node v, if and only if u appears before v in the vector <i>order</i> . G is an N-by-N sparse matrix that represents a directed acyclic graph (DAG). Nonzero entries in matrix G indicate the presence of an edge.		
Examples	Create and view a directed acyclic graph (DAG) with six nodes and eight edges.		
	DG = sparse([6 6 6 2 2 3 5 1],[2 5 1 3 4 5 1 4],true,6,6)		
	DG =		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

view(biograph(DG))

2 Find the topological order of the DAG.

```
order = graphtopoorder(DG)
order =
6 2 3 5 1 4
```


3 Permute the nodes so that they appear ordered in the graph display.

DG = DG(order,order)

DG =

(1,2)	1
(2,3)	1
(1,4)	1
(3,4)	1
(1,5)	1
(4,5)	1
(2,6)	1
(5,6)	1

view(biograph(DG))

- **References** [1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).
- See Also Bioinformatics Toolbox functions: graphallshortestpaths, graphconncomp, graphisdag, graphisomorphism, graphisspantree, graphmaxflow, graphminspantree, graphpred2path, graphshortestpath, graphtraverse

Bioinformatics Toolbox method of biograph object: topoorder

graphtraverse

Purpose	Traverse graph by following adjacent nodes	
Syntax	<pre>[disc, pred, closed] = graphtraverse(G, S) [] = graphtraverse(G, S,'Depth', DepthValue,) [] = graphtraverse(G, S,'Directed', DirectedValue,) [] = graphtraverse(G, S,'Method', MethodValue,)</pre>	
Arguments	G	N-by-N sparse matrix that represents a directed graph. Nonzero entries in matrix G indicate the presence of an edge.
	S	Integer that indicates the source node in graph G.
	DepthValue	Integer that indicates a node in graph G that specifies the depth of the search. Default is Inf (infinity).
	DirectedValue	Property that indicates whether graph G is directed or undirected. Enter false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.
	MethodValue	 String that specifies the algorithm used to traverse the graph. Choices are: 'BFS' — Breadth-first search. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.
		• 'DFS' — Default algorithm. Depth-first search. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.
D		

Description

Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the *Bioinformatics Toolbox User's Guide*.

[disc, pred, closed] = graphtraverse(G, S) traverses graph G starting from the node indicated by integer S. G is an N-by-N sparse matrix that represents a directed graph. Nonzero entries in matrix G indicate the presence of an edge. disc is a vector of node indices in the order in which they are discovered. pred is a vector of predecessor node indices (listed in the order of the node indices) of the resulting spanning tree. closed is a vector of node indices in the order in which they are closed.

[...] = graphtraverse(G, S, ...'PropertyName', PropertyValue, ...) calls graphtraverse with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

[...] = graphtraverse(G, S, ...'Depth', DepthValue, ...) specifies the depth of the search. DepthValue is an integer indicating a node in graph G. Default is Inf (infinity).

[...] = graphtraverse(G, S, ...'Directed', DirectedValue, ...) indicates whether the graph is directed or undirected. Set DirectedValue to false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.

[...] = graphtraverse(G, S, ...'Method', MethodValue, ...) lets you specify the algorithm used to traverse the graph. Choices are:

- 'BFS' Breadth-first search. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.
- 'DFS' Default algorithm. Depth-first search. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.

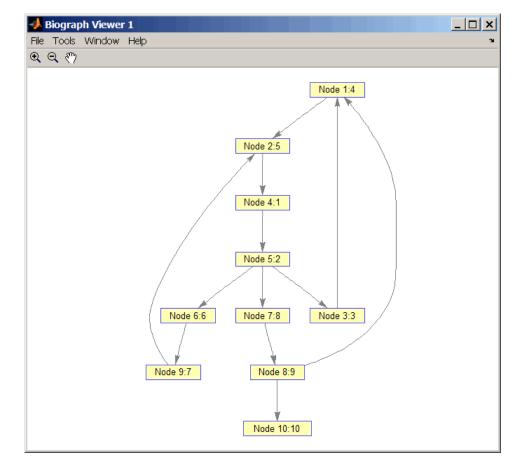

Examples 1 Create a directed graph with 10 nodes and 12 edges.

DG = sparse([1 2 3 4 5 5 5 6 7 8 8 9],... [2 4 1 5 3 6 7 9 8 1 10 2],true,10,10) DG =

(3,1) (8,1) (1,2) (9,2) (5,3) (2,4) (4,5) (5,6) (5,7) (7,8) (6,9)	1 1 1 1 1 1 1 1 1
(7,8) (6,9)	1
(8,10)	1

h = view(biograph(DG)) Biograph object with 10 nodes and 12 edges.

graphtraverse

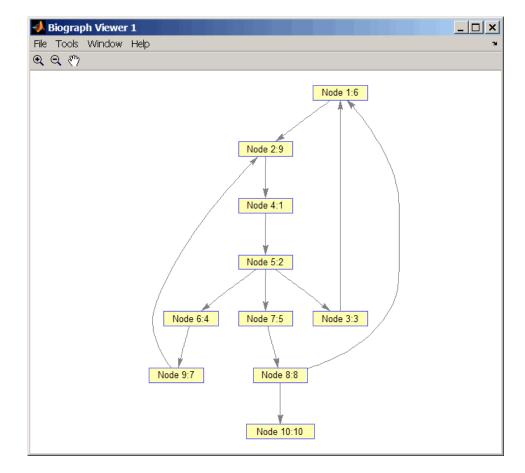


2 Traverse the graph to find the depth-first search (DFS) discovery order starting at node 4.

```
order = graphtraverse(DG,4)
order =
4 5 3 1 2 6 9 7 8 10
```

3 Label the nodes with the DFS discovery order.

```
for i = 1:10
    h.Nodes(order(i)).Label =...
    sprintf('%s:%d',h.Nodes(order(i)).ID,i);
end
h.ShowTextInNodes = 'label'
dolayout(h)
```

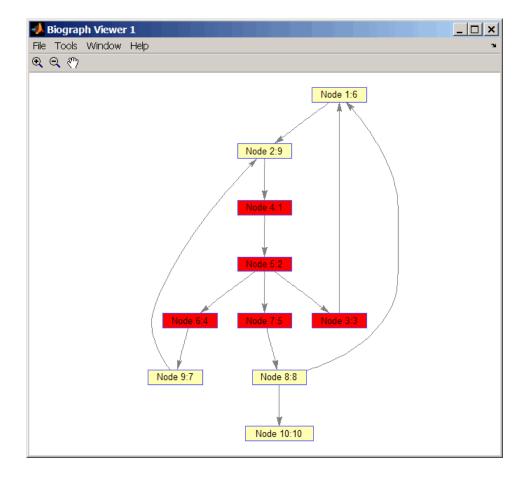


4 Traverse the graph to find the breadth-first search (BFS) discovery order starting at node 4.

```
order = graphtraverse(DG,4,'Method','BFS')
order =
    4   5   3   6   7   1   9   8   2   10
```

5 Label the nodes with the BFS discovery order.

```
for i = 1:10
    h.Nodes(order(i)).Label =...
    sprintf('%s:%d',h.Nodes(order(i)).ID,i);
end
h.ShowTextInNodes = 'label'
dolayout(h)
```



6 Find and color nodes that are close to (within two edges of) node 4.

```
node_idxs = graphtraverse(DG,4,'depth',2)
node_idxs =
        4   5   3   6   7
```

set(h.nodes(node_idxs),'Color',[1 0 0])

graphtraverse

References [1] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms (Addison-Wesley).

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education). See Also Bioinformatics Toolbox functions: graphallshortestpaths, graphconncomp, graphisdag, graphisomorphism, graphisspantree, graphmaxflow, graphminspantree, graphpred2path, graphshortestpath, graphtopoorder

Bioinformatics Toolbox method of biograph object: traverse

Purpose	Align query sequence to profil	le using hidden Markov model alignment
Syntax	hmmprofalign(, 'ShowSo hmmprofalign(, 'Flanks	orofalign(Model, Seq) er] = hmmprofalign(Model, Seq) core', ShowScoreValue,) s', FlanksValue,) Flanks', ScoreFlanksValue,) WullTransitions',
Arguments	Model	Hidden Markov model created with the function hmmprofstruct.
	Seq	Amino acid or nucleotide sequence. You can also enter a structure with the field Sequence.
	ShowScoreValue	Controls the display of the scoring space and the winning path. Choices are true or false (default).
	FlanksValue	Controls the inclusion of the symbols generated by the FLANKING INSERT states in the output sequence. Choices are true or false (default).
	ScoreFlanksValue	Controls the inclusion of the transition probabilities for the flanking states in the raw score. Choices are true or false (default).
	ScoreNullTransitionsValu	<pre>ve Controls the adjustment of the raw score using the null model for transitions (Model.NullX). Choices are true or false (default).</pre>

Description

Score = hmmprofalign(Model, Seq) returns the score for the optimal
alignment of the query amino acid or nucleotide sequence (Seq) to the
profile hidden Markov model (Model). Scores are computed using
log-odd ratios for emission probabilities and log probabilities for state
transitions.

[Score, Alignment] = hmmprofalign(Model, Seq) also returns a string showing the optimal profile alignment.

Uppercase letters and dashes correspond to MATCH and DELETE states respectively (the combined count is equal to the number of states in the model). Lowercase letters are emitted by the INSERT states. For more information about the HMM profile, see hmmprofstruct.

[Score, Alignment, Pointer] = hmmprofalign(Model, Seq) also returns a vector of the same length as the profile model with indices pointing to the respective symbols of the query sequence. Null pointers (NaN) mean that such states did not emit a symbol in the aligned sequence because they represent model jumps from the BEGIN state of a MATCH state, model jumps from the from a MATCH state to the END state, or because the alignment passed through DELETE states.

hmmprofalign(..., '*PropertyName*', *PropertyValue*, ...) calls hmmprofalign with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

hmmprofalign(..., 'ShowScore', ShowScoreValue, ...), when ShowScoreValue is true, displays the scoring space and the winning path.

hmmprofalign(..., 'Flanks', *FlanksValue*, ...), when *FlanksValue* is true, includes the symbols generated by the FLANKING INSERT states in the output sequence.

hmmprofalign(..., 'ScoreFlanks', ScoreFlanksValue, ...), when ScoreFlanksValue is true, includes the transition probabilities for the flanking states in the raw score.

hmmprofalign(..., 'ScoreNullTransitions', ScoreNullTransitionsValue, ...), when ScoreNullTransitionsValue is true, adjusts the raw score using the null model for transitions (Model.NullX). Note Multiple target alignment is not supported in this implementation. All the Model.LoopX probabilities are ignored.

Examples	load('hmm_model_examples','model_7tm_2') % load a model example load('hmm_model_examples','sequences') % load a sequence example SCCR_RABIT=sequences(2).Sequence;
	[a,s]=hmmprofalign(model_7tm_2,SCCR_RABIT,'showscore',true)
See Also	Bioinformatics Toolbox functions gethmmprof, hmmprofestimate, hmmprofgenerate, hmmprofgenerate, hmmprofstruct, pfamhmmread, showhmmprof, multialign, profalign

hmmprofestimate

Purpose	Estimate profile hidden pseudocounts	Markov model (HMM) parameters using
Syntax	hmmprofestimate(Model, MultipleAlignment, 'PropertyName', PropertyValue)	
	<pre>hmmprofestimate(, hmmprofestimate(, hmmprofestimate(, hmmprofestimate(,</pre>	'Ax', AxValue) 'BE', BEValue)
Arguments	Model	Hidden Markov model created with the function hmmprofstruc.
	MultipleAlignment	Array of sequences. Sequences can also be a structured array with the aligned sequences in a field Aligned or Sequences, and the optional names in a field Header or Name.
	Α	Property to set the pseudocount weight A. Default value is 20.
	Ax	Property to set the pseudocount weight Ax. Default value is 20.
	BE	Property to set the background symbol emission probabilities. Default values are taken from Model.NullEmission.
	ВМх	Property to set the background transition probabilities from any MATCH state ([M->M M->I M->D]). Default values are taken from hmmprofstruct.
	BDx	Property to set the background transition probabilities from any DELETE state ([D->M D->D]). Default values are taken from hmmprofstruct.

Description

hmmprofestimate(Model, MultipleAlignment, 'PropertyName', PropertyValue...) returns a structure with the fields containing the updated estimated parameters of a profile HMM. Symbol emission and state transition probabilities are estimated using the real counts and weighted pseudocounts obtained with the background probabilities. Default weight is A=20, the default background symbol emission for match and insert states is taken from Model.NullEmission, and the default background transition probabilities are the same as default transition probabilities returned by hmmprofstruct.

Model Construction: Multiple aligned sequences should contain uppercase letters and dashes indicating the model MATCH and DELETE states agreeing with Model.ModelLength. If model state annotation is missing, but MultipleAlignment is space aligned, then a "maximum entropy" criteria is used to select Model.ModelLength states.

Note Insert and flank insert transition probabilities are not estimated, but can be modified afterwards using hmmprofstruct.

hmmprofestimate(..., 'A', AValue) sets the pseudocount weight A
= Avalue when estimating the symbol emission probabilities. Default
value is 20.

hmmprofestimate(..., 'Ax', AxValue) sets the pseudocount weight Ax = Axvalue when estimating the transition probabilities. Default value is 20.

hmmprofestimate(..., 'BE', *BEValue*) sets the background symbol emission probabilities. Default values are taken from Model.NullEmission.

hmmprofestimate(..., 'BMx', BMxValue) sets the background transition probabilities from any MATCH state ([M->M M->I M->D]). Default values are taken from hmmprofstruct.

hmmprofestimate

hmmprofestimate(..., 'BDx', BDxValue) sets the background transition probabilities from any DELETE state ([D->M D->D]). Default values are taken from hmmprofstruct.

See Also Bioinformatics Toolbox functions: hmmprofalign, hmmprofstruct, showhmmprof

Purpose	Generate random sequence drawn from profile hidden Markov model (HMM)	
Syntax	<pre>Sequence = hmmprofgenerate(Model) [Sequence, Profptr] = hmmprofgenerate(Model) = hmmprofgenerate(Model,'Align', AlignValue,) = hmmprofgenerate(Model,'Flanks', FlanksValue,) = hmmprofgenerate(Model,'Signature', SignatureValue,)</pre>	
Arguments	Model	Hidden Markov model created with the hmmprofstruct function.
	AlignValue	Controls the use of uppercase letters for matches and lowercase letters for inserted letters. Choices are true or false (default).
	FlanksValue	Controls the inclusion of the symbols generated by the FLANKING INSERT states in the output sequence. Choices are true or false (default).
	SignatureValue	Controls the return of the most likely path and symbols. Choices are true or false (default).
Description	<pre>Sequence = hmmprofgenerate(Model) returns the string Sequence showing a sequence of amino acids or nucleotides drawn from the profile Model. The length, alphabet, and probabilities of the Model are stored in a structure. For more information about this structure, see hmmprofstruct.</pre>	
	[Sequence, Profptr] = hmmprofgenerate(Model) returns a vector of the same length as the profile model pointing to the respective states in the output sequence. Null pointers (0) mean that such states do not exist in the output sequence, either because they are never touched (i.e., jumps from the BEGIN state to MATCH states or from MATCH states to the	

END state), or because DELETE states are not in the output sequence (not aligned output; see below).

... = hmmprofgenerate(Model, ... 'PropertyName', PropertyValue, ...) calls hmmprofgenerate with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

... = hmmprofgenerate(Model, ...'Align', AlignValue, ...) if Align is true, the output sequence is aligned to the model as follows: uppercase letters and dashes correspond to MATCH and DELETE states respectively (the combined count is equal to the number of states in the model). Lowercase letters are emitted by the INSERT or FLANKING INSERT states. If AlignValue is false, the output is a sequence of uppercase symbols. The default value is true.

... = hmmprofgenerate(*Model*, ... 'Flanks', *FlanksValue*, ...) if Flanks is true, the output sequence includes the symbols generated by the FLANKING INSERT states. The default value is false.

... = hmmprofgenerate(Model, ...'Signature', SignatureValue, ...) if SignatureValue is true, returns the most likely path and symbols. The default value is false.

- **Examples** load('hmm_model_examples','model_7tm_2') % load a model example rand_sequence = hmmprofgenerate(model_7tm_2)
- See Also Bioinformatics Toolbox functions: hmmprofalign, hmmprofstruct, showhmmprof

Purpose	Concatenate Markov mode	prealigned strings of several sequences to profile hidden el (HMM)
Syntax	hmmprofmerg	e(Sequences) e(Sequences, Names) e(Sequences, Names, Scores)
Arguments	Sequences	Array of sequences. <i>Sequences</i> can also be a structured array with the aligned sequences in a field Aligned or Sequences, and the optional names in a field Header or Name.
	Names	Names for the sequences. Enter a vector of names.
	Scores	Pairwise alignment scores from the function hmmprofalign. Enter a vector of values with the same length as the number of sequences in <i>Sequences</i> .
Description		e(Sequences) displays a set of prealigned sequences to del profile. The output is aligned corresponding to the
	• Match stat	es — Uppercase letters
	• Insert stat	es — Lowercase letters or asterisks (*)
	• Delete states — Dashes	
	Periods (.) are added at positions corresponding to inserts in other sequences. The input sequences must have the same number of profile states, that is, the joint count of capital letters and dashes must be the same.	
	hmmprofmerg	e(Sequences, Names) labels the sequences with Names.
	hmmprofmerg sequences us	e(Sequences, Names, Scores) sorts the displayed ing Scores.

hmmprofmerge

Examples	<pre>load('hmm_model_examples','model_7tm_2') %load model load('hmm_model_examples','sequences') %load sequences</pre>
	<pre>for ind =1:length(sequences) [scores(ind),sequences(ind).Aligned] = hmmprofalign(model_7tm_2,sequences(ind).Sequence); end hmmprofmerge(sequences, scores)</pre>
See Also	Bioinformatics Toolbox functions: hmmprofalign, hmmprofstruct

Purpose	Create or edit hidden Markov model (HMM) profile structure	
Syntax	<pre>Model = hmmprofstruct(Length) Model = hmmprofstruct(Length, Field1, Field1Value, Field2,</pre>	
Arguments	Length	Number of match states in the model.
	Model	MATLAB structure containing fields for the parameters of an HMM profile created with the hmmprofstruct function.
	Field	String containing a field name in the structure <i>Mode1</i> . See the table below for field names.
	FieldValue	Value associated with <i>Field</i> . See the table below for descriptions.
Return Values	Model	MATLAB structure containing fields for the parameters of an HMM profile.
Description	containing fie the number o	profstruct(<i>Length</i>) returns <i>Model</i> , a MATLAB structure elds for the parameters of an HMM profile. <i>Length</i> specifies f match states in the model. All other required parameters default values.
	Field2Value	profstruct(<i>Length</i> , <i>Field1</i> , <i>Field1Value</i> , <i>Field2</i> , ,) returns an HMM profile structure using the ameters. All other required parameters are set to default
	<pre>NewModel = hmmprofstruct(Model, Field1, Field1Value, Field2, Field2Value,) returns an updated HMM profile</pre>	

structure using the specified parameters. All other parameters are taken from the input *Model*.

HMM Profile Structure

The MATLAB structure *Model* contains the following fields, which are the required and optional parameters of an HMM profile. All probability values are in the [0 1] range.

Field	Description	
ModelLength	Integer specifying the length of the profile (number of MATCH states).	
Alphabet	String specifying the alphabet used in the model. Choices are 'AA' (default) or 'NT'.	
	Note AlphaLength is 20 for 'AA' and 4 for 'NT'.	
MatchEmission	Symbol emission probabilities in the MATCH states.	
	Either of the following:	
	• A matrix of size ModelLength-by-AlphaLength, where each row corresponds to the emission distribution for a specific MATCH state. Defaults to uniform distributions.	
	• A structure containing residue counts, such as returned by aacount or basecount.	

Field	Description
InsertEmission	Symbol emission probabilities in the INSERT state.
	Either of the following:
	• A matrix of size ModelLength-by-AlphaLength, where each row corresponds to the emission distribution for a specific INSERT state. Defaults to uniform distributions.
	• A structure containing residue counts, such as returned by aacount or basecount.
NullEmission	Symbol emission probabilities in the MATCH and INSERT states for the NULL model.
	Either of the following:
	• A 1-by-AlphaLength row vector. Defaults to a uniform distribution.
	• A structure containing residue counts, such as returned by aacount or basecount.
	Note The NULL model is used to compute the log-odds ratio at every state and avoid overflow when propagating the probabilities through the model.
	Note NULL probabilities are also known as the
	background probabilities.

Field	Description
BeginX	BEGIN state transition probabilities.
	Format is a 1-by-(ModelLength + 1) row vector:
	[B->D1 B->M1 B->M2 B->M3 B->Mend]
	Note If necessary, hmmprofstruct will normalize the data such that the sum of the transition probabilities from the BEGIN state equals 1:
	<pre>sum(Model.BeginX) = 1</pre>
	For fragment profiles:
	<pre>sum(Model.BeginX(3:end)) = 0</pre>
	Default is [0.01 0.99 0 0 0].

Field	Description
MatchX	MATCH state transition probabilities.
	Format is a 4-by-(ModelLength - 1) matrix:
	<pre>[M1->M2 M2->M3 M[end-1]->Mend; M1->I1 M2->I2 M[end-1]->I[end-1]; M1->D2 M2->D3 M[end-1]->Dend; M1->E M2->E M[end-1]->E]</pre>
	Note If necessary, hmmprofstruct will normalize the data such that the sum of the transition probabilities from every MATCH state equals 1:
	<pre>sum(Model.MatchX) = [1 1 1]</pre>
	For fragment profiles:
	<pre>sum(Model.MatchX(4,:)) = 0</pre>
	Default is repmat([0.998 0.001 0.001 0],ModelLength-1,1).

Field	Description	
InsertX	INSERT state transition probabilities.	
	Format is a 2-by-(ModelLength - 1) matrix:	
	[I1->M2 I2->M3 I[end-1]->Mend; I1->I1 I2->I2 I[end-1]->I[end-1]]	
	Note If necessary, hmmprofstruct will normalize the data such that the sum of the transition probabilities from every INSERT state equals 1:	
	<pre>sum(Model.InsertX) = [1 1 1]</pre>	
	Default is repmat([0.5	
	0.5],ModelLength-1,1).	

hmmprofstruct

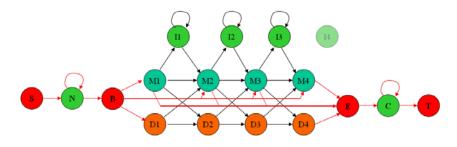
Field	Description
DeleteX	DELETE state transition probabilities.
	Format is a 2-by-(ModelLength - 1) matrix:
	<pre>[D1->M2 D2->M3 D[end-1]->Mend ; D1->D2 D2->D3 D[end-1]->Dend]</pre>
	Note If necessary, hmmprofstruct will normalize the data such that the sum of the transition probabilities from every DELETE state equals 1:
	<pre>sum(Model.DeleteX) = [1 1 1]</pre>
	Default is repmat([0.5
	0.5],ModelLength-1,1).

Field	Description	
FlankingInsertX	Flanking insert states (N and C) used for LOCAL profile alignment.	
	Format is a 2-by-2 matrix:	
	[N->B C->T ; N->N C->C]	
	Note If necessary, hmmprofstruct will normalize the data such that the sum of the transition probabilities from Flanking Insert states equals 1: sum(Model.FlankingInsertsX) = [1 1]	
	Note To force global alignment use: <i>Model</i> .FlankingInsertsX = [1 1; 0 0]	
	Default is [0.01 0.01; 0.99 0.99].	

Field	Description	
LoopX	Loop states transition probabilities used for multiple hits alignment.	
	Format is a 2-by-2 matrix:	
	[E->C J->B; E->J J->J]	
	Note If necessary, hmmprofstruct will normalize the data such that the sum of the transition probabilities from Loop states equals 1: sum(Model.LoopX) = [1 1]	
	Default is [0.5 0.01; 0.5 0.99].	

Field	Description	
NullX	Null transition probabilities used to provide scores with log-odds values also for state transitions.	
	Format is a 2-by-1 column vector:	
	[G->F ; G->G]	
	Note If necessary, hmmprofstruct will normalize the data such that the sum of the transition probabilities from Null states equals 1 sum(Model.NullX) = 1	
	Default is [0.01; 0.99].	
IDNumber	Optional. User-assigned identification number.	
Description	Optional. User-assigned description of the model.	

HMM Profile Model


An HMM profile model is a common statistical tool for modeling structured sequences composed of symbols. These symbols include randomness in both the output (emission of symbols) and the state transitions of the process. Markov models are generally represented by state diagrams.

The following figure is a state diagram for an HMM profile of length four. INSERT, MATCH, and DELETE states are in the center section.

• INSERT state represents the excess of one or more symbols in the target sequence that are not included in the profile.

- MATCH state means that the target sequence is aligned to the profile at the specific location.
- DELETE state represents a gap or symbol absence in the target sequence (also known as a silent state because it does not emit any symbols).

Flanking states (S, N, B, E, C, T) are used for proper modeling of the ends of the sequence, either for global, local or fragment alignment of the profile. S, B, E, and T are silent, while N and C are used to insert symbols at the flanks.

Examples Creating an HMM Profile Structure

Create an HMM profile structure with 100 MATCH states, using the amino acid alphabet.

hmmProfile = hmmprofstruct(100, 'Alphabet', 'AA')

Editing an HMM Profile Structure

1 Use the pfamhmmread function to create an HMM profile structure from pf00002.1s, a PFAM HMM-formatted file included with the software.

hmm02 = pfamhmmread('pf00002.ls');

2 Modify the HMM profile structure to force a global alignment by setting the looping transition probabilities in the flanking insert states to zero.

hmm02 = hmmprofstruct(hmm02, 'FlankingInsertX',[0 0;1 1]); hmm02.FlankingInsertX

ans = 0

1

See Also Bioinformatics Toolbox functions: aacount, basecount, gethmmprof, hmmprofalign, hmmprofestimate, hmmprofgenerate, hmmprofmerge, pfamhmmread, showhmmprof

0

1

Purpose	Look up Illumina BeadStudio target (probe) sequence and annotation information
Syntax	AnnotStruct = ilmnbslookup(AnnotationFile, ID) AnnotStruct = ilmnbslookup(AnnotationFile, ID, 'LookUpField', LookUpFieldValue)

ilmnbslookup

Arguments	AnnotationFile	String specifying a file name or a path and file name of an Illumina annotation file (CSV, BGX, or TXT format). If you specify only a file name, that file must be on the MATLAB search path or in the current directory.
		Note Currently, the Bioinformatics Toolbox software supports annotation files associated with only these Illumina whole-genome arrays:
		• HumanRef-8_V3
		• HumanWG-6_V3
		• HumanRef-8_V2
		• HumanWG-6_V2
		• MouseRef-8_V2
		• MouseWG-6_V2
		• MouseRef-8_V1
		• MouseWG-6_V1
		• RatRef-12_V1

Tip You can download Illumina annotation files, such as HumanRef-8_V3_0_R0_11282963_A.bgx, from the Illumina Web site.

	ID	String or cell array of strings representing a unique identifier(s) for one or more targets (probes) on an Illumina microarray.	
		Tip By default, <i>ID</i> must match the Search_key field in <i>AnnotationFile</i> . However, you can use an identifier that corresponds to any of the fields in <i>AnnotationFile</i> , then set the 'LookUpField' property appropriately. For example, if you want to look up annotation information for the targets (probes) on chromosome 7 only, set <i>ID</i> to '7', then set <i>LookUpFieldValue</i> to 'Chromosome'. For a list of all fields in <i>AnnotationFile</i> , see the following tables.	
	LookUpFieldValue	Field in <i>AnnotationFile</i> where ilmnbslookup looks for the specified <i>ID</i> . Default is the Search_key field.	
		Tip Set this property so that it corresponds to the <i>ID</i> you use as input.	
Return Values	AnnotStruct	Structure containing the probe sequence and annotation information for one or more targets (probes) specified by <i>ID</i> , and by <i>AnnotationFile</i> , an Illumina annotation file.	
		AnnotStruct contains the same fields as AnnotationFile. The fields are described in the following two tables.	

Description

AnnotStruct = ilmnbslookup(AnnotationFile, ID) returns AnnotStruct, a structure containing probe sequence and annotation information for one or more targets (probes) specified by ID, and by AnnotationFile, an Illumina annotation file (CSV, BGX, or TXT format).

AnnotStruct contains the same fields as AnnotationFile. The fields are described in the following two tables.

Field	Description
Search_key	Internal identifier for the target, useful for custom design array
Target	Unique identifier for the target
ProbeId	Illumina probe identifier
Gid	GenBank identifier for the gene
Transcript	Illumina internal transcript identifier
Accession	GenBank accession number for the gene
Symbol	Typically, the gene symbol
Туре	Probe type
Start	Starting position of the probe sequence in the GenBank record
Probe_Sequence	Sequence of the probe
Definition	Definition field from the GenBank record
Ontology	Gene Ontology terms associated with the gene
Synonym	Synonyms for the gene (from the GenBank record)

Structure Created from Illumina CSV Annotation File

Field	Description
Accession	GenBank accession number for the gene
Array_Address_Id	Decoder identifier
Chromosome	Chromosome on which the gene is located
Cytoband	Cytogenetic banding region of the chromosome on which the gene associated with the target is located
Definition	Definition field from the GenBank record
Entrez_Gene_ID	Entrez Gene database identifier for the gene
GI	GenBank identifier for the gene
ILMN_Gene	Illuminainternal gene symbol
Obsolete_Probe_Id	Probe identifier before BGX annotation files
Ontology_Component	Gene Ontology cellular components associated with the gene
Ontology_Function	Gene Ontology molecular functions associated with the gene
Ontology_Process	Gene Ontology biological processes associated with the gene
Probe_Chr_Orientation	Orientation of the probe on the NCBI genome build
Probe_Coordinates	Genomic position of the probe on the NCBI genome build
Probe_Id	Illuminaprobe identifier
Probe_Sequence	Sequence of the probe

Structure Created from a BGX or TXT Annotation File

Field	Description
Probe_Start	Start position of the probe relative to the 5' end of the source transcript sequence
Probe_Type	Information about what the probe is targeting
Protein_Product	NCBI protein accession number
RefSeq_ID	Identifier from the NCBI RefSeq database
Reporter_Composite_map	Information associated with control probes
Reporter_Group_Name	Information associated with control probes
Reporter_Group_id	Information associated with control probes
Search_Key	Internal identifier for the target, useful for custom design array
Source	Source from which the transcript sequence was obtained
Source_Reference_ID	Source's identifier
Species	Species associated with the gene
Symbol	Typically, the gene symbol
Synonyms	Synonyms for the gene (from the GenBank record)
Transcript	Illuminainternal transcript identifier
Unigene_ID	Identifier from the NCBI UniGene database

Structure Created from a BGX or TXT Annotation File (Continued)

```
AnnotStruct = ilmnbslookup(AnnotationFile, ID,
'LookUpField', LookUpFieldValue) looks for ID in the annotation file
in the field specified by LookUpFieldValue. Default is the Search_key
field.
```

Examples

Note The gene expression file, TumorAdjacent-probe-raw.txt, and the annotation file, HumanRef-8_V3_0_R0_11282963_A.bgx, used in the following examples are not provided with the Bioinformatics Toolbox software.

Look Up Annotation Information for a Single Target (Probe)

1 Read the contents of a tab-delimited file exported from the Illumina BeadStudio software into a MATLAB structure.

ilmnStruct = ilmnbsread('TumorAdjacent-probe-raw.txt')

ilmnStruct =

```
Header: [1x1 struct]
TargetID: {22184x1 cell}
ColumnNames: {1x37 cell}
Data: [22184x37 double]
TextColumnNames: {1x23 cell}
TextData: {22184x23 cell}
```

2 Find the number of the Search_key column in the TextColumnNames cell array, which is returned in the ilmnStruct structure by the ilmnbsread function.

```
srchCol = find(strcmpi('Search_Key',ilmnStruct.TextColumnNames))
srchCol =
1
```

3 Use the output from step 2 to look up the probe sequence and annotation information for the 10th entry in the annotation file, HumanRef-8_V3_0_R0_11282963_A.bgx.

```
annotation = ilmnbslookup('HumanRef-8_V3_0_R0_11282963_A.bgx',...
                           ilmnStruct.TextData{10,srchCol})
annotation =
                 Accession: 'NM_144670.2'
          Array_Address_Id: '0004050154'
                Chromosome: '12'
                  Cytoband: '12p13.31b'
                Definition: 'Homo sapiens alpha-2-macroglobulin-like 1 (A2ML1), mRNA.'
            Entrez_Gene_ID: '144568'
                        GI: '74271844'
                 ILMN Gene: 'A2ML1'
         Obsolete Probe Id: ''
        Ontology_Component: ''
         Ontology_Function: 'endopeptidase inhibitor activity [goid 4866] [evidence IEA]'
          Ontology Process: ''
     Probe Chr Orientation: '+'
         Probe Coordinates: '8920412-8920461'
                  Probe_Id: 'ILMN_2136495'
            Probe_Sequence: 'TGTAATCGCAGCCCCTTGGAAGGCCAAGGCAGGAGAATCGCCTCAACACT'
               Probe Start: '4889'
                Probe_Type: 'S'
           Protein_Product: 'NP_653271.2'
                 RefSeq_ID: 'NM_144670.2'
    Reporter Composite map: ''
       Reporter Group Name: ''
         Reporter Group id: ''
                Search_Key: 'ILMN_17375'
                    Source: 'RefSeg'
       Source_Reference_ID: 'NM_144670.2'
                   Species: 'Homo sapiens'
                    Symbol: 'A2ML1'
                  Synonyms: [1x141 char]
```

```
Transcript: 'ILMN_17375'
Unigene_ID: ''
```

Look Up Annotation Information for a Subset of Targets (Probes)

Use the ilmnbslookup function with the 'LookUpField' property to look up the annotation information for all targets located on chromosome 12 in the annotation file, HumanRef-8_V3_0_R0_11282963_A.bgx.

chr12annotation =

Accession: {1x1186 cell} Array Address Id: {1x1186 cell} Chromosome: {1x1186 cell} Cytoband: {1x1186 cell} Definition: {1x1186 cell} Entrez_Gene_ID: {1x1186 cell} GI: {1x1186 cell} ILMN_Gene: {1x1186 cell} Obsolete_Probe_Id: {1x1186 cell} Ontology Component: {1x1186 cell} Ontology Function: {1x1186 cell} Ontology_Process: {1x1186 cell} Probe_Chr_Orientation: {1x1186 cell} Probe Coordinates: {1x1186 cell} Probe Id: {1x1186 cell} Probe Sequence: {1x1186 cell} Probe_Start: {1x1186 cell} Probe_Type: {1x1186 cell} Protein Product: {1x1186 cell} RefSeq ID: {1x1186 cell} Reporter Composite map: 1.1 Reporter_Group_Name: 1.1 Reporter Group id: '' Search Key: {1x1186 cell} Source: {1x1186 cell} Source_Reference_ID: {1x1186 cell} Species: {1x1186 cell} Symbol: {1x1186 cell} Synonyms: {1x1186 cell} Transcript: {1x1186 cell} Unigene_ID: {1x1186 cell}

The output structure indicates that there are 1,186 targets located on chromosome 12.

See Also Bioinformatics Toolbox function: ilmnbsread

Purpose	Read gene expression data exported from Illumina BeadStudio software
Syntax	<pre>IlmnStruct = ilmnbsread(File) IlmnStruct = ilmnbsread(File,'Columns', ColumnsValue,) IlmnStruct = ilmnbsread(File,'HeaderOnly', HeaderOnlyValue,) IlmnStruct = ilmnbsread(File,'CleanColNames', CleanColNamesValue,)</pre>

Arguments	File	String specifying a file name or a path and file name of a tab-delimited file or comma-separated expression data file exported from Illumina BeadStudio software. If you specify only a file name, that file must be on the MATLAB search path or in the current directory.
		Note Currently, the Bioinformatics Toolbox software supports gene expression data files created from only these Illumina whole-genome arrays:
		• HumanRef-8_V3
		• HumanWG-6_V3
		• HumanRef-8_V2
		• HumanWG-6_V2
		• MouseRef-8_V2
		• MouseWG-6_V2
		• MouseRef-8_V1
		• MouseWG-6_V1
		• RatRef-12_V1
	ColumnsValue	Cell array that specifies the column names to read. Default is all column names.

HeaderOnlyValue	Controls the population of only the Header, ColumnNames, and TextColumnNames fields in <i>IlmnStruct</i> . Choices are true or false (default).
<i>CleanColNamesValue</i>	Controls the conversion of any ColumnNames containing spaces or characters that cannot be used as MATLAB variable names, to valid MATLAB variable names. Choices are true or false (default).
IlmnStruct	MATLAB structure containing data exported from Illumina BeadStudio software.

Description IlmnStruct = ilmnbsread(File) reads File, a tab-delimited or comma-separated expression data file exported from the Illumina BeadStudio software, and creates IlmnStruct, a MATLAB structure containing the following fields.

Return Values

Field	Description
Header	String containing a description of the data.
TargetID	Cell array containing unique identifiers for targets on an Illumina gene expression microarray.
ColumnNames	Cell array containing names of the columns that contain numeric data in the tab-delimited file exported from the Illumina BeadStudio software.

Field	Description	
Data	Matrix containing numeric microarray data for each target on an Illumina gene expression microarray.	
	Note ColumnNames and Data have the same number of columns.	
TextColumnNames	Cell array containing names of the columns that contain nonnumeric data in the tab-delimited file exported from the Illumina BeadStudio software. This field can be empty.	
TextData	Cell array containing nonnumeric microarray data (such as annotations) for each target on a Illumina gene expression microarray. This fiel can be empty.	
	Note TextColumnNames and TextData have the same number of columns.	

IlmnStruct = ilmnbsread(File, ...'PropertyName', PropertyValue, ...) calls ilmnbsread with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

IlmnStruct = ilmnbsread(File, ...'Columns', ColumnsValue, ...) reads the data only from the columns specified by ColumnsValue, a cell array of column names. Default behavior is to read data from all columns. IlmnStruct = ilmnbsread(File, ...'HeaderOnly', HeaderOnlyValue, ...) controls the population of only the Header, ColumnNames, and TextColumnNames fields in IlmnStruct. Choices are true or false (default).

IlmnStruct = ilmnbsread(File, ...'CleanColNames', CleanColNamesValue, ...) controls the conversion of any ColumnNames containing spaces or characters that cannot be used as MATLAB variable names, to valid MATLAB variable names. Choices are true or false (default).

Tip Use the 'CleanColNames' property if you plan to use the ColumnNames field as variable names.

Examples

Note The gene expression file, TumorAdjacent-probe-raw.txt used in the following example is not provided with the Bioinformatics Toolbox software.

Read the contents of a tab-delimited file exported from the Illumina BeadStudio software into a MATLAB structure.

```
ilmnStruct = ilmnbsread('TumorAdjacent-probe-raw.txt')
```

ilmnStruct =

Header: [1x1 struct] TargetID: {22184x1 cell} ColumnNames: {1x37 cell} Data: [22184x37 double] TextColumnNames: {1x23 cell} TextData: {22184x23 cell} See Also Bioinformatics Toolbox functions: affyread, agferead, celintensityread, galread, geoseriesread, geosoftread, gprread, ilmnbslookup, imageneread, magetfield, sptread

Purpose	Read microarray data from ImaGene Results file		
Syntax	<pre>imagenedata = imageneread('File') imagenedata = imageneread(, 'CleanColNames', CleanColNamesValue,)</pre>		
Arguments	File	ImaGene Results formatted file. Enter a file name or a path and file name.	
	CleanColNamesValue	Controls the conversion of any ColumnNames containing spaces or characters that cannot be used as MATLAB variable names, to valid MATLAB variable names. Choices are true or false (default).	
Description	<pre>imagenedata = imageneread('File') reads ImaGene results data from File and creates a MATLAB structure imagedata containing the following fields. Field</pre>		
	HeaderAA		
	Data		
	Blocks		
	Rows		
	Columns		
	Fields		
	IDs		
	ColumnNames		
	Indices		
	Shape		

	<pre>imagenedata = imageneread(, 'PropertyName', PropertyValue,) calls imageneread with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:</pre>			
	<pre>imagenedata = imageneread(, 'CleanColNames', CleanColNamesValue,) controls the conversion of any ColumnNames containing spaces or characters that cannot be used as MATLAB variable names, to valid MATLAB variable names. Choices are true or false (default).</pre>			
	The field Indices of the structure contains indices that you can use for plotting heat maps of the data with the function image or imagesc.			
	For more details on the ImaGene format and example data, see the ImaGene documentation.			
Examples	Read in a sample ImaGene Results file. Note that the example file, cy3.txt, is not provided with the Bioinformatics Toolbox software.			
	cy3Data = imageneread('cy3.txt');			
	2 Plot the signal mean.			
	<pre>maimage(cy3Data,'Signal Mean');</pre>			
	3 Read in a sample ImaGene Results file. Note that the example file, cy5.txt, is not provided with the Bioinformatics Toolbox software.			
	cy5Data = imageneread('cy5.txt');			
	4 Create a loglog plot of the signal median from two ImaGene Results files.			
	<pre>sigMedianCol = find(strcmp('Signal Median',cy3Data.ColumnNames)); cy3Median = cy3Data.Data(:,sigMedianCol); cy5Median = cy5Data.Data(:,sigMedianCol); maloglog(cy3Median,cy5Median,'title','Signal Median');</pre>			

See Also Bioinformatics Toolbox functions: gprread, ilmnbsread, maboxplot, maimage, sptread

int2aa

Purpose	Convert amino acid sequence from integer to letter representation	
Syntax	SeqChar = int2aa(SeqInt) SeqChar = int2aa(SeqInt, 'Case', CaseValue)	
Arguments	SeqInt	Row vector of integers specifying an amino acid sequence. For valid integers, see the table Mapping Amino Acid Integers to Letter Codes on page 2-558. Integers are arbitrarily assigned to IUB/IUPAC letters.
	CaseValue	String specifying the case of the returned string. Choices are 'upper' (default) or 'lower'.
Return Values	SeqChar	Amino acid sequence specified by a string of single-letter codes.
Description	SeqChar = i	nt2aa(SeqInt) converts SeqInt, a row vector of integers

cription SeqChar = int2aa(SeqInt) converts SeqInt, a row vector of integers specifying an amino acid sequence, to SeqChar, a string of single-letter codes specifying the same amino acid sequence. For valid integers, see the table Mapping Amino Acid Integers to Letter Codes on page 2-558.

SeqChar = int2aa(SeqInt, 'Case', CaseValue) specifies the case of the returned string. Choices are 'upper' (default) or 'lower'.

Mapping Amino Acid Integers to Letter Codes

Amino Acid	Integer	Code
Alanine	1	А
Arginine	2	R
Asparagine	3	Ν

Amino Acid	Integer	Code
Aspartic acid (Aspartate)	4	D
Cysteine	5	С
Glutamine	6	Q
Glutamic acid (Glutamate)	7	E
Glycine	8	G
Histidine	9	н
Isoleucine	10	I
Leucine	11	L
Lysine	12	К
Methionine	13	М
Phenylalanine	14	F
Proline	15	Р
Serine	16	S
Threonine	17	Т
Tryptophan	18	W
Tyrosine	19	Y
Valine	20	V
Asparagine or Aspartic acid (Aspartate)	21	В
Glutamine or Glutamic acid (Glutamate)	22	Z
Unknown amino acid (any amino acid)	23	Х
Translation stop	24	*
Gap of indeterminate length	25	-
Unknown (any integer not in table)	$0 \text{ or} \geq 26$?

Mapping Amino Acid Integers to Letter Codes (Continued)

int2aa

Examples	Convert an amino acid sequence from integer to letter representation.		
	s = int2aa([13 1 17 11 1 21])		
	s =		
	MATLAB		
See Also	Bioinformatics Toolbox functions: aa2int, aminolookup, int2nt, nt2int		

Purpose	Convert nucleotide sequence from integer to letter representation		
Syntax	<pre>SeqChar = int2nt(SeqInt) SeqChar = int2nt(SeqInt,'Alphabet', AlphabetValue,) SeqChar = int2nt(SeqInt,'Unknown', UnknownValue,) SeqChar = int2nt(SeqInt,'Case', CaseValue,)</pre>		
Arguments	SeqInt	Row vector of integers specifying a nucleotide sequence. For valid integers, see the table Mapping Nucleotide Integers to Letter Codes on page 2-562. Integers are arbitrarily assigned to IUB/IUPAC letters.	
	AlphabetValue	 String specifying a nucleotide alphabet. Choices are: 'DNA' (default) — Uses the symbols A, C, G, and T. 	
		• 'RNA' — Uses the symbols A, C, G, and U.	
	UnknownValue	Character to represent unknown nucleotides, that is 0 or integers \geq 17. Choices are any character other than the nucleotide characters A, C, G, T, and U and the ambiguous nucleotide characters N, R, Y, K, M, S, W, B, D, H, and V. Default is *.	
	CaseValue	String specifying the case of the returned character string. Choices are 'upper' (default) or 'lower'.	
Return Values	SeqChar	Nucleotide sequence specified by a character string of codes.	
Description		nt (SeqInt) converts SeqInt, a row vector of integers	

specifying a nucleotide sequence, to SeqChar, a string of codes specifying

the same nucleotide sequence. For valid codes, see the table Mapping Nucleotide Integers to Letter Codes on page 2-562.

Nucleotide Code Integer Adenosine 1 А Cytidine 2 С Guanine 3 G Thymidine 4 Т Uridine (if 'Alphabet' set to 'RNA') 4 U 5 Purine (A or G) R 6 Y Pyrimidine (T or C) 7 Keto (G or T) Κ 8 М Amino (A or C) Strong interaction (3 H bonds) (G or C) 9 S Weak interaction (2 H bonds) (A or T) 10 W Not A (C or G or T) 11 В Not C (A or G or T) 12 D 13 н Not G (A or C or T) 14 V Not T or U (A or C or G) 15 Ν Any nucleotide (A or C or G or T or U) 16 Gap of indeterminate length * (default) Unknown (any integer not in table) $0 \text{ or} \geq 17$

Mapping Nucleotide Integers to Letter Codes

SeqChar = int2nt(SeqInt, ...PropertyName', PropertyValue, ...) calls int2nt with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation

	marks and is case insensitive. These property name/property value pairs are as follows:
	<pre>SeqChar = int2nt(SeqInt,'Alphabet', AlphabetValue,) specifies a nucleotide alphabet. AlphabetValue can be 'DNA', which uses the symbols A, C, G, and T, or 'RNA', which uses the symbols A, C, G, and U. Default is 'DNA'.</pre>
	SeqChar = int2nt(SeqInt,, 'Unknown', UnknownValue,) specifies the character to represent unknown nucleotides, that is 0 or integers \geq 17. UnknownValue can be any character other than the nucleotide characters A, C, G, T, and U and the ambiguous nucleotide characters N, R, Y, K, M, S, W, B, D, H, and V. Default is *.
	<pre>SeqChar = int2nt(SeqInt,'Case', CaseValue,) specifies the case of the returned character string. CaseValue can be 'upper' (default) or 'lower'.</pre>
Examples	• Convert a nucleotide sequence from integer to letter representation.
	s = int2nt([1 2 4 3 2 4 1 3 2])
	s = ACTGCTAGC
	• Convert a nucleotide sequence from integer to letter representation and define # as the symbol for unknown numbers 17 and greater.
	si = [1 2 4 20 2 4 40 3 2]; s = int2nt(si, 'unknown', '#')
	s = ACT#CT#GC
See Also	Bioinformatics Toolbox functions: aa2int, baselookup, int2aa, nt2int

isoelectric

Purpose	Estimate isoelectric point for amino acid sequence	
Syntax	<pre>pI = isoelectric(SeqAA) [pI Charge] = isoelectric(SeqAA) isoelectric(, 'PropertyName', PropertyValue,) isoelectric(, 'PKVals', PKValsValue) isoelectric(, 'Charge', ChargeValue) isoelectric(, 'Chart', ChartValue)</pre>	
Arguments	SeqAA	Amino acid sequence. Enter a character string or a vector of integers from the table Mapping Amino Acid Letter Codes to Integers on page 2-2. Examples: 'ARN' or [1 2 3].
	PKValsValue	Property to provide alternative pK values.
	ChargeValue	Property to select a specific pH for estimating charge. Enter a number between 0 and 14. The default value is 7.2.
	ChartValue	Property to control plotting a graph of charge versus pH. Enter true or false.
Description	for an amino ac	ric(SeqAA) returns the estimated isoelectric point (ρI) id sequence. The isoelectric point is the pH at which the et charge of zero
	$[pI \ Charge]$ = isoelectric(SeqAA) returns the estimated isoelectric point (pI) for an amino acid sequence and the estimated charge for a given pH (default is typical intracellular pH 7.2).	
	The estimates are skewed by the underlying assumptions that all amino acids are fully exposed to the solvent, that neighboring peptides have no influence on the pK of any given amino acid, and that the constitutive amino acids, as well as the N- and C-termini, are unmodified. Cysteine residues participating in disulfide bridges also affect the true pI and are not considered here. By default, isoelectric uses the EMBOSS amino	

acid pK table, or you can substitute other values using the property PKVals.

• If the sequence contains ambiguous amino acid characters (b z * -), isoelectric ignores the characters and displays a warning message.

Warning: Symbols other than the standard 20 amino acids appear in the sequence.

• If the sequence contains undefined amino acid characters (i j o), isoelectric ignores the characters and displays a warning message.

Warning: Sequence contains unknown characters. These will be ignored.

isoelectric(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

isoelectric(..., 'PKVals', *PKValsValue*) uses the alternative pK table stored in the text file *PKValValues*. For an example of a pK text file, see the file Emboss.pK.

N_term 8.6 K 10.8 R 12.5 H 6.5 D 3.9 E 4.1 C 8.5 Y 10.1 C_term 3.6

isoelectric(..., 'Charge', ChargeValue) returns the estimated charge of a sequence for a given pH (ChargeValue).

isoelectric(..., 'Chart', *ChartValue*) when *ChartValue* is true, returns a graph plotting the charge of the protein versus the pH of the solvent.

isoelectric

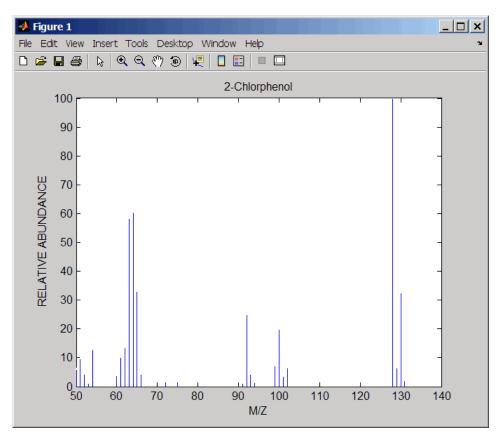
Example	% Get a sequence from PDB. pdbSeq = getpdb('1CIV', 'SequenceOnly', true) % Estimate its isoelectric point. isoelectric(pdbSeq)
	% Plot the charge against the pH for a short polypeptide sequence. isoelectric('PQGGGGWGQPHGGGWGQPHGGGGWGQGGSHSQG', 'CHART', true)
	% Get the Rh blood group D antigen from NCBI and calculate % its charge at pH 7.3 (typical blood pH). gpSeq = getgenpept('AAB39602') [pI Charge] = isoelectric(gpSeq, 'Charge', 7.38)
See Also	Bioinformatics Toolbox functions: aacount, molweight

Purpose	Read JCAMP-DX-formatted files	
Syntax	JCAMPStruct = jcampread(File)	
Arguments	File	 Either of the following: String specifying a file name, a path and file name, or a URL pointing to a file. The referenced file is a JCAMP-DX-formatted file (ASCII text file). If you specify only a file name, that file must be on the MATLAB search path or in the current directory. MATLAB character array that contains the text of a
		JCAMP-DX-formatted file.
Return Values	JCAMPStruct	MATLAB structure containing information from a JCAMP-DX-formatted file.
Description	JCAMP-DX is a file format for infrared, NMR, and mass spectrometry data from the Joint Committee on Atomic and Molecular Physical Data (JCAMP). jcampread supports reading data from files saved with Versions 4.24, 5, or 6 of the JCAMP-DX format. For more details, see: http://www.jcamp-dx.org/ JCAMPStruct = jcampread(File) reads data from File, a	
	JCAMP-DX-formatted file, and creates <i>JCAMPStruct</i> , a MATLAB structure containing the following fields.	
	Field	
	Title	

Field
DataType
DataClass
Origin
Owner
Blocks
Notes

The Blocks field of the structure is an array of structures corresponding to each set of data in the file. These structures have the following fields.

Field
XData
YData
XUnits
YUnits
Notes


Examples

1 Download test data in the file isa_ms1.dx from:

http://www.jcamp-dx.org/testdata.html

2 Read a JCAMP-DX file (isas_ms1.dx) into the MATLAB software and plot the mass spectrum.

```
jcampStruct = jcampread('isas_ms1.dx')
data = jcampStruct.Blocks(1);
stem(data.XData,data.YData, '.', 'MarkerEdgeColor','w');
title(jcampStruct.Title);
xlabel(data.XUnits);
ylabel(data.YUnits);
```


A Figure window opens with the mass spectrum.

See Also

Bioinformatics Toolbox functions: mslowess, mssgolay, msviewer, mzcdfread, mzxmlread

joinseq

Purpose	Join two sequences to produce shortest supersequence		
Syntax	SeqNT3 = joinseq(SeqNT1, SeqNT2)		
Arguments	SeqNT1, SeqNT2 Nucleotide sequences.		
Description	SeqNT3 = joinseq(SeqNT1, SeqNT2) creates a new sequence that is the shortest supersequence of $SeqNT1$ and $SeqNT2$. If there is no overlap between the sequences, then $SeqNT2$ is concatenated to the end of $SeqNT1$. If the length of the overlap is the same at both ends of the sequence, then the overlap at the end of $SeqNT1$ and the start of $SeqNT2$ is used to join the sequences.		
	If SeqNT1 is a subsequence of SeqNT2, then SeqNT2 is returned as the shortest supersequence and vice versa.		
Examples	<pre>seq1 = 'ACGTAAA'; seq2 = 'AAATGCA'; joined = joinseq(seq1,seq2) joined =</pre>		
See Also	MATLAB functions: cat, strcat, strfind		

Purpose	Classify data using nearest neighbor method		
Syntax	Class = knnclassify(Sample, Training, Group) Class = knnclassify(Sample, Training, Group, k) Class = knnclassify(Sample, Training, Group, k, distance) Class = knnclassify(Sample, Training, Group, k, distance, rule)		
Arguments	Sample	Matrix whose rows will be classified into groups. <i>Sample</i> must have the same number of columns as <i>Training</i> .	
	Training	Matrix used to group the rows in the matrix <i>Sample</i> . <i>Training</i> must have the same number of columns as <i>Sample</i> . Each row of <i>Training</i> belongs to the group whose value is the corresponding entry of <i>Group</i> .	
	Group	Vector whose distinct values define the grouping of the rows in <i>Training</i> .	
	k	The number of nearest neighbors used in the classification. Default is 1.	

distance	 String specifying the distance metric. Choices are: 'euclidean' — Euclidean distance (default)
	• 'cityblock' — Sum of absolute differences
	 'cosine' — One minus the cosine of the included angle between points (treated as vectors)
	• 'correlation' — One minus the sample correlation between points (treated as sequences of values)
	• 'hamming' — Percentage of bits that differ (suitable only for binary data)
rule	 String to specify the rule used to decide how to classify the sample. Choices are: 'nearest' — Majority rule with nearest point tie-break (default)
	 'random' — Majority rule with random point tie-break
	• 'consensus' — Consensus rule

Description

Class = knnclassify(Sample, Training, Group) classifies the rows of the data matrix Sample into groups, based on the grouping of the rows of Training. Sample and Training must be matrices with the same number of columns. Group is a vector whose distinct values define the grouping of the rows in Training. Each row of Training belongs to the group whose value is the corresponding entry of Group. knnclassify assigns each row of Sample to the group for the closest row of Training. Group can be a numeric vector, a string array, or a cell array of strings. Training and Group must have the same number of rows. knnclassify treats NaNs or empty strings in Group as missing values, and ignores the corresponding rows of Training. Class indicates which group each row of Sample has been assigned to, and is of the same type as Group.

Class = knnclassify(Sample, Training, Group, k) enables you to specify k, the number of nearest neighbors used in the classification. Default is 1.

Class = knnclassify(Sample, Training, Group, k, distance)
enables you to specify the distance metric. Choices for distance are:

- 'euclidean' Euclidean distance (default)
- 'cityblock' Sum of absolute differences
- 'cosine' One minus the cosine of the included angle between points (treated as vectors)
- 'correlation' One minus the sample correlation between points (treated as sequences of values)
- 'hamming' Percentage of bits that differ (suitable only for binary data)

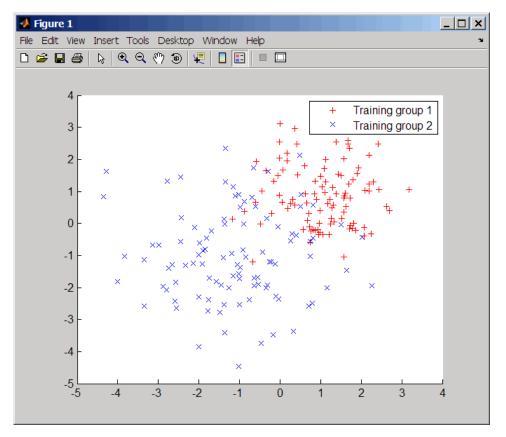
Class = knnclassify(Sample, Training, Group, k, distance, rule) enables you to specify the rule used to decide how to classify the sample. Choices for rule are:

- 'nearest' Majority rule with nearest point tie-break (default)
- 'random' Majority rule with random point tie-break
- 'consensus' Consensus rule

The default behavior is to use majority rule. That is, a sample point is assigned to the class the majority of the k nearest neighbors are from. Use 'consensus' to require a consensus, as opposed to majority rule. When using the 'consensus' option, points where not all of the k nearest neighbors are from the same class are not assigned to one of the classes. Instead the output Class for these points is NaN for numerical groups or '' for string named groups. When classifying to more than two groups or when using an even value for k, it might be necessary to break a tie in the number of nearest neighbors. Options are 'random', which selects a random tiebreaker, and 'nearest', which uses the nearest neighbor among the tied groups to break the tie. The default behavior is majority rule, with nearest tie-break.

Examples

Classifying Rows


The following example classifies the rows of the matrix sample:

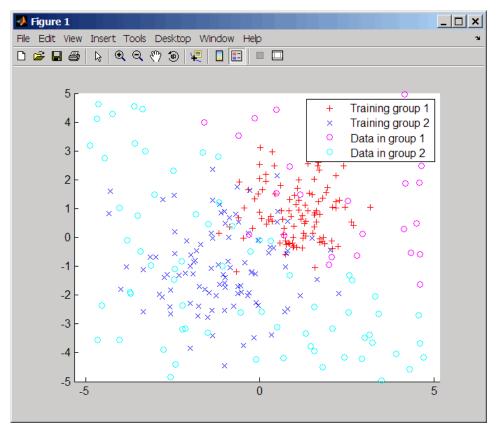
```
sample = [.9 .8;.1 .3;.2 .6]
sample =
    0.9000
              0.8000
    0.1000
              0.3000
    0.2000
              0.6000
training=[0 0;.5 .5;1 1]
training =
         0
                   0
    0.5000
              0.5000
    1.0000
              1.0000
group = [1;2;3]
group =
     1
     2
     3
class = knnclassify(sample, training, group)
class =
     3
     1
     2
```

Row 1 of sample is closest to row 3 of training, so class(1) = 3. Row 2 of sample is closest to row 1 of training, so class(2) = 1. Row 3 of sample is closest to row 2 of training, so class(3) = 2.

Classifying Rows into One of Two Groups

The following example classifies each row of the data in sample into one of the two groups in training. The following commands create the matrix training and the grouping variable group, and plot the rows of training in two groups.

The following commands create the matrix sample, classify its rows into two groups, and plot the result.


knnclassify

Classifying Rows Using the Three Nearest Neighbors

The following example uses the same data as in Classifying Rows into One of Two Groups on page 2-575, but classifies the rows of sample using three nearest neighbors instead of one.

```
gscatter(training(:,1),training(:,2),group,'rb','+x');
hold on;
c3 = knnclassify(sample, training, group, 3);
gscatter(sample(:,1),sample(:,2),c3,'mc','o');
legend('Training group 1','Training group 2','Data in group 1','Data in group 2');
```


If you compare this plot with the one in Classifying Rows into One of Two Groups on page 2-575, you see that some of the data points are classified differently using three nearest neighbors.

References [1] Mitchell, T. (1997). Machine Learning, (McGraw-Hill).

See Also Bioinformatics Toolbox functions: classperf, crossvalind, knnimpute, svmclassify, svmtrain

Statistics Toolbox function: classify

```
Purpose
                   Impute missing data using nearest-neighbor method
Syntax
                   knnimpute(Data)
                   knnimpute(Data, k)
                   knnimpute(..., 'Distance', DistanceValue, ...)
                   knnimpute(..., 'DistArgs', DistArgsValue, ...)
                   knnimpute(..., 'Weights', WeightsValues, ...)
                   knnimpute(..., 'Median', MedianValue, ...)
Arguments
                    Data
                    k
Description
                   knnimpute (Data) replaces NaNs in Data with the corresponding value
                   from the nearest-neighbor column. The nearest-neighbor column is
                   the closest column in Euclidean distance. If the corresponding value
                   from the nearest-neighbor column is also NaN, the next nearest column
                   is used.
                   knnimpute (Data, k) replaces NaNs in Data with a weighted mean of
                   the k nearest-neighbor columns. The weights are inversely proportional
                   to the distances from the neighboring columns.
                   knnimpute(..., 'PropertyName', PropertyValue, ...) calls
                   knnimpute with optional properties that use property name/property
                   value pairs. You can specify one or more properties in any order. Each
                   PropertyName must be enclosed in single quotation marks and is case
                   insensitive. These property name/property value pairs are as follows:
                   knnimpute(..., 'Distance', DistanceValue, ...) computes
                   nearest-neighbor columns using the distance metric distfun. The
                   choices for DistanceValue are:
```

knnimpute

'seuclidean'	Standardized Euclidean distance — each coordinate in the sum of squares is inversely weighted by the sample variance of that coordinate.
'cityblock'	City block distance.
'mahalanobis'	Mahalanobis distance.
'minkowski'	Minkowski distance with exponent 2.
'cosine'	One minus the cosine of the included angle.
'correlation'	One minus the sample correlation between observations, treated as sequences of values.
'hamming'	Hamming distance — the percentage of coordinates that differ.
'jaccard'	One minus the Jaccard coefficient — the percentage of nonzero coordinates that differ.
'chebychev'	Chebychev distance (maximum coordinate difference)
function handle	A handle to a distance function, specified using @, for example, @distfun.

'euclidean' Euclidean distance (default).

See pdist for more details.

knnimpute(..., 'DistArgs', *DistArgsValue*, ...) passes arguments (*DistArgsValue*) to the function distfun. *DistArgsValue* can be a single value or a cell array of values.

knnimpute(..., 'Weights', WeightsValues, ...) lets you specify the weights used in the weighted mean calculation. w should be a vector of length k.

knnimpute(..., 'Median', MedianValue, ...) when MedianValue is true, uses the median of the k nearest neighbors instead of the weighted mean.

Example 1

A = [1 2 5;4 5 7;NaN -1 8;7 6 0]

1	2	5
4	5	7
NaN	- 1	8
7	6	0

Note that A(3,1) = NaN. Because column 2 is the closest column to column 1 in Euclidean distance, knnimpute imputes the (3,1) entry of column 1 to be the corresponding entry of column 2, which is -1.

```
knnimpute(A)
ans =
1 2 5
4 5 7
-1 -1 8
7 6 0
```

Example 2 The following example loads the data set yeastdata and imputes missing values in the array yeastvalues:

```
load yeastdata
% Remove data for empty spots
emptySpots = strcmp('EMPTY',genes);
yeastvalues(emptySpots,:) = [];
genes(emptySpots) = [];
% Impute missing values
imputedValues = knnimpute(yeastvalues);
```

References [1] Speed, T. (2003). Statistical Analysis of Gene Expression Microarray Data (Chapman & Hall/CRC).

 [2] Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P., and Botstein, D. (1999). "Imputing missing data for gene expression arrays", Technical Report, Division of Biostatistics, Stanford University.
 [3] Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. (2001). Missing value estimation methods for DNA microarrays. Bioinformatics 17(6), 520–525.
 See Also Statistics Toolbox function: knnclassify MATLAB function: isnan Statistics Toolbox functions: nanmean, nanmedian, pdist

Purpose	Create box plot for mi	croarray data
Syntax (1997)	<pre>maboxplot(MAData) maboxplot(MAData, ColumnName) maboxplot(MAStruct, FieldName) H = maboxplot() [H, HLines] = maboxplot() maboxplot(, 'Title', TitleValue,) maboxplot(, 'Notch', NotchValue,) maboxplot(, 'Notch', SymbolValue,) maboxplot(, 'Symbol', SymbolValue,) maboxplot(, 'Orientation', OrientationValue,) maboxplot(, 'WhiskerLength', WhiskerLengthValue,) maboxplot(, 'BoxPlot', BoxPlotValue,)</pre>	
Arguments	MAData	DataMatrix object, numeric array, or a structure containing a field called Data. The values in the columns of <i>MAData</i> will be used to create box plots. If a DataMatrix object, the column names are used as labels in the box plot.
	ColumnName	An array of column names corresponding to the data in <i>MAData</i> used as labels in the box plot.
	MAStruct	A microarray data structure.
	FieldName	A field within the microarray data structure, MAStruct. The values in the field FieldName will be used to create box plots.
	TitleValue	A string to use as the title for the plot. The default title is FieldName.
	NotchValue	Property to control the type of boxes drawn. Enter either true for notched boxes, or false, for square boxes. Default is false.

OrientationValue	Property to specify the orientation of the box plot. Enter 'Vertical' or 'Horizontal'. Default is 'Horizontal'.
WhiskerLengthValue	Property to specify the maximum length of the whiskers as a function of the interquartile range (IQR). The whisker extends to the most extreme data value within <i>WhiskerLengthValue</i> *IQR of the box. Default = 1.5. If <i>WhiskerLengthValue</i> equals 0, then maboxplot displays all data values outside the box, using the plotting symbol Symbol.
BoxPlotValue	A cell array of property name/property value pairs to pass to the Statistics Toolbox boxplot function, which creates the box plot. For valid pairs, see the boxplot function.

Description maboxplot(*MAData*) displays a box plot of the values in the columns of *MAData*. *MAData* can be a DataMatrix object, numeric array, or a structure containing a field called Data, containing microarray data.

maboxplot(MAData, ColumnName) labels the box plot column names.

maboxplot(MAStruct, FieldName) displays a box plot of the values in the field FieldName in the microarray data structure MAStruct. If MAStruct is block based, maboxplot creates a box plot of the values in the field FieldName for each block.

Note If you provide *MAStruct*, without providing *FieldName*, maboxplot uses the Signal element in the ColumnNames field of *MAStruct*, if Affymetrixdata, or the first element in the in the ColumnNames field of *MAStruct*, otherwise.

H = maboxplot(...) returns the handle of the box plot axes.

[H, HLines] = maboxplot(...) returns the handles of the lines used to separate the different blocks in the image.

maboxplot(..., 'PropertyName', PropertyValue, ...) calls maboxplot with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

maboxplot(..., 'Title', TitleValue, ...) allows you to specify the title of the plot. The default TitleValue is FieldName.

maboxplot(..., 'Notch', NotchValue, ...) if NotchValue is true, draws notched boxes. The default is false to show square boxes.

maboxplot(..., 'Symbol', SymbolValue, ...) allows you to specify the symbol used for outlier values. The default Symbol is '+'.

maboxplot(..., 'Orientation', OrientationValue, ...) allows you to specify the orientation of the box plot. The choices are 'Vertical' and 'Horizontal'. The default is 'Vertical'.

maboxplot(..., 'WhiskerLength', WhiskerLengthValue, ...) allows you to specify the whisker length for the box plot. WhiskerLengthValue defines the maximum length of the whiskers as a function of the interquartile range (IQR) (default = 1.5). The whisker extends to the most extreme data value within WhiskerLength*IQR of the box. If WhiskerLengthValue equals 0, then maboxplot displays all data values outside the box, using the plotting symbol Symbol.

maboxplot(..., 'BoxPlot', *BoxPlotValue*, ...) allows you to specify arguments to pass to the boxplot function, which creates the box plot. *BoxPlotValue* is a cell array of property name/property value pairs. For valid pairs, see the boxplot function.

Examples	load yeastdata
	<pre>maboxplot(yeastvalues,times);</pre>
	<pre>xlabel('Sample Times');</pre>

% Using a structure

	geoStruct = getgeodata('GSM1768'); maboxplot(geoStruct, 'title', 'GSM1768');
	<pre>% For block-based data madata = gprread('mouse_a1wt.gpr'); maboxplot(madata,'F635 Median','Boxplot', {'Factorlabelorientation', 'horizontal'}); figure maboxplot(madata,'F635 Median - B635','TITLE', 'Cv5 Channel FG - BG');</pre>
See Also	Bioinformatics Toolbox functions: magetfield, maimage, mairplot, maloglog, malowess, manorm, mavolcanoplot Statistics Toolbox function: boxplot

Purpose	Estimate false discovery rate (FDR) of differentially expressed genes from two experimental conditions or phenotypes	
Syntax	<pre>FDR = mafdr(PValues) [FDR, Q] = mafdr(PValues) [FDR, Q, Pi0] = mafdr(PValues) [FDR, Q, Pi0, R2] = mafdr(PValues) = mafdr(PValues,'BHFDR', BHFDRValue,) = mafdr(PValues,'Lambda', LambdaValue,) = mafdr(PValues,'Method', MethodValue,) = mafdr(PValues,'Showplot', ShowplotValue,)</pre>	
Arguments	PValues	Either of the following:
		• Column vector of p-values for each feature (for example, gene) in a data set, such as returned by mattest.
		• DataMatrix object containing p-values for each feature (for example, gene) in a data set, such as returned by mattest.
	BHFDRValue	Property to control the use of the linear step-up (LSU) procedure originally introduced by Benjamini and Hochberg, 1995. Choices are true or false (default).
		Note If <i>BHFDRValue</i> is set to true, the Lambda and Method properties are ignored.

LambdaValue Input that specifies lambda, λ , the tuning parameter used to estimate the true null hypotheses, $\hat{\pi}_0(\lambda)$. LambdaValue can be either:

- A single value that is > 0 and < 1.
- A series of values. Each value must be > 0 and <
 1. There must be at least four values in the series.

Tip The series of values can be expressed by a colon operator with the form [*first:incr:last*], where *first* is the first value in the series, *incr* is the increment, and *last* is the last value in the series.

Default LambdaValue is the series of values [0.01:0.01:0.95].

Note If *LambdaValue* is set to a single value, the Method property is ignored.

	MethodValue	 String that specifies a method to calculate the true null hypothesis, π̂₀(λ), from the tuning parameter, LambdaValue, when LambdaValue is a series of values. Choices are: bootstrap (default) polynomial
	ShowplotValue	Property to display two plots:
		• Plot of the estimated true null hypotheses, $\hat{\pi}_0(\lambda)$, versus the tuning parameter, lambda, λ , with a cubic polynomial fitting curve
		• Plot of q-values versus p-values
		Choices are true or false (default).
Return Values	FDR	One of the following:
		• Column vector of positive FDR (pFDR) values (if <i>PValues</i> is a column vector).
		• DataMatrix object containing positive FDR (pFDR) values and the same row names as <i>PValues</i> (if <i>PValues</i> is a DataMatrix object).
	Q	Column vector of q-values.
	Pi0	Estimated true null hypothesis, $\hat{\pi}_{0}$.
	R2	Square of the correlation coefficient.
•		alues) computes a positive FDR (pFDR) value for each , a column vector or DataMatrix object containing

p-values for each gene in two microarray data sets, using a procedure

introduced by Storey, 2002. *FDR* is a column vector or a DataMatrix object containing positive FDR (pFDR) values.

[FDR, Q] = mafdr(PValues) also returns a q-value for each p-value in PValues. Q is a column vector.

[FDR, Q, Pi0] = mafdr(PValues) also returns Pi0, the estimated true null hypothesis, $\hat{\pi}_0$, if using the procedure introduced by Storey, 2002.

[FDR, Q, PiO, R2] = mafdr(PValues) also returns R2, the square of the correlation coefficient, if using the procedure introduced by Storey, 2002, and the polynomial method to calculate the true null hypothesis,

 $\hat{\pi}_{0}$, from the tuning parameter, lambda, $\lambda.$

... = mafdr(*PValues*, ...'*PropertyName*', *PropertyValue*, ...) calls mafdr with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = mafdr (*PValues*, ... 'BHFDR', *BHFDRValue*, ...) controls the use of the linear step-up (LSU) procedure originally introduced by Benjamini and Hochberg, 1995, to computes an FDR-adjusted p-value for each value in *PValues*. Choices are true or false (default).

Note If *BHFDRValue* is set to true, the Lambda and Method properties are ignored.

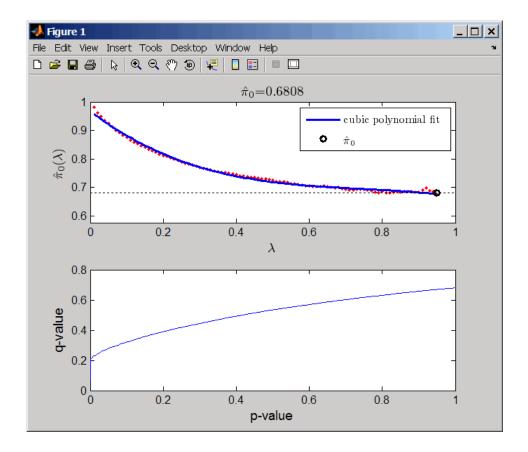
... = mafdr (*PValues*, ... 'Lambda', *LambdaValue*, ...) specifies lambda, λ , the tuning parameter used to estimate the true null hypotheses, $\hat{\pi}_0(\lambda)$. *LambdaValue* can be either:

• A single value that is > 0 and < 1.

• A series of values. Each value must be > 0 and < 1. There must be at least four values in the series.

Tip The series of values can be expressed by a colon operator with the form [*first:incr:last*], where *first* is the first value in the series, *incr* is the increment, and *last* is the last value in the series.

Default LambdaValue is the series of values [0.01:0.01:0.95].


Note If *LambdaValue* is set to a single value, the Method property is ignored.

... = mafdr(*PValues*, ... 'Method', *MethodValue*, ...) specifies a method to calculate the true null hypothesis, $\hat{\pi}_0$, from the tuning parameter, *LambdaValue*, when *LambdaValue* is a series of values. Choices are bootstrap (default) or polynomial.

... = mafdr(PValues, ...'Showplot', ShowplotValue, ...)
controls the display of two plots:

- Plot of the estimated true null hypotheses, $\hat{\pi}_0(\lambda)$, versus the tuning parameter, lambda, with a cubic polynomial fitting curve
- Plot of q-values versus p-values

Choices are true or false (default).

Examples

1 Load the MAT-file, included with the Bioinformatics Toolbox software, that contains Affymetrix data from a prostate cancer study, specifically probe intensity data from Affymetrix HG-U133A GeneChip arrays. The two variables in the MAT-file, dependentData and independentData, are two matrices of gene expression values from two experimental conditions.

load prostatecancerexpdata

2 Use the mattest function to calculate p-values for the gene expression values in the two matrices.

pvalues = mattest(dependentData, independentData, 'permute', true);

3 Use the mafdr function to calculate positive FDR values and q-values for the gene expression values in the two matrices and plot the data.

[fdr, q] = mafdr(pvalues, 'showplot', true);

The prostatecancerexpdata.mat file used in this example contains data from Best et al., 2005.

References [1] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research *11*, 6823–6834.

[2] Storey, J.D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society 64(3), 479-498.

[3] Storey, J.D., and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proc Nat Acad Sci *100(16)*, 9440–9445.

[4] Storey, J.D., Taylor, J.E., and Siegmund, D. (2004). Strong control conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. Journal of the Royal Statistical Society *66*, 187–205.

[5] Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society *57*, 289–300.

See Also Bioinformatics Toolbox functions: affygcrma, affyrma, gcrma, mairplot, maloglog, mapcaplot, mattest, mavolcanoplot, rmasummary

Purpose	Extract data from microarray structure		
Syntax	<pre>magetfield(MAStruct, FieldName)</pre>		
Arguments	MAStructMicroarray structure.FieldNameA column in MAStruct.		
Description	magetfield(MAStruct, FieldName) extracts data for FieldName, a column in MAStruct, microarray structure.		
	The benefit of this function is to hide the details of extracting a column of data from a structure created with one of the microarray reader functions (gprread, agferead, sptread, imageneread).		
Examples	<pre>maStruct = gprread('mouse_a1wt.gpr'); cy3data = magetfield(maStruct,'F635 Median'); cy5data = magetfield(maStruct,'F532 Median'); mairplot(cy3data,cy5data,'title','R vs G IR plot');</pre>		
See Also	Bioinformatics Toolbox functions: agferead, gprread, ilmnbsread, imageneread, maboxplot, mairplot, maloglog, malowess, sptread		

maimage

Purpose	Spatial image for	Spatial image for microarray data	
Syntax	<pre>maimage(X, FieldName) H = maimage() [H, HLines] = maimage() maimage(, 'PropertyName', PropertyValue,) maimage(, 'Title', TitleValue) maimage(, 'ColorBar', ColorBarValue) maimage(, 'HandleGraphicsPropertyName' PropertyValue)</pre>		
Arguments	X	A microarray data structure.	
	FieldName	A field in the microarray data structure X.	
	TitleValue	A string to use as the title for the plot. The default title is FieldName.	
	ColorBarValue	Property to control displaying a color bar in the Figure window. Enter either true or false. The default value is false.	
Description	maimage(X, FieldName) displays an image of field FieldName from microarray data structure X. Microarray data can be GenPix Results (GPR) format. After creating the image, click a data point to display the value and ID, if known.		
	H = maimage() returns the handle of the image.		
	[H, HLines] = maimage() returns the handles of the lines used to separate the different blocks in the image.		
	<pre>maimage(, 'PropertyName', PropertyValue,) defines optional properties using property name/value pairs.</pre>		
		Title', <i>TitleValue</i>) allows you to specify the title of ault title is FieldName.	

	maimage(, 'ColorBar', <i>ColorBarValue</i>), when <i>ColorBarValue</i> is true, a color bar is shown. If <i>ColorBarValue</i> is false, no color bar is shown. The default is for the color bar to be shown.
	<pre>maimage(, 'HandleGraphicsPropertyName' PropertyValue) allows you to pass optional Handle Graphics[®] property name/value pairs to the function. For example, a name/value pair for color could be maimage(, 'color' 'r').</pre>
Examples	<pre>madata = gprread('mouse_a1wt.gpr'); maimage(madata,'F635 Median'); figure; maimage(madata,'F635 Median - B635', 'Title','Cy5 Channel FG - BG'); colormap hot</pre>
See Also	Bioinformatics Toolbox functions: maboxplot, magetfield, mairplot, maloglog, malowess
	MATLAB function: imagesc

mainvarsetnorm

Purpose	Perform rank invariant set normalization on gene expression values from two experimental conditions or phenotypes		
Syntax	<pre>NormDataY = mainvarsetnorm(DataX, DataY) NormDataY = mainvarsetnorm(, 'Thresholds', ThresholdsValue,) NormDataY = mainvarsetnorm(, 'Exclude', ExcludeValue,) NormDataY = mainvarsetnorm(, 'Percentile', PercentileValue,) NormDataY = mainvarsetnorm(, 'Iterate', IterateValue,) NormDataY = mainvarsetnorm(, 'Method', MethodValue,) NormDataY = mainvarsetnorm(, 'Span', SpanValue,) NormDataY = mainvarsetnorm(, 'Showplot', ShowplotValue,)</pre>		
Arguments	DataX DataY	Vector of gene expression values from a single experimental condition or phenotype, where each row corresponds to a gene. These data points are used as the baseline. Vector of gene expression values from a single	
		experimental condition or phenotype, where each row corresponds to a gene. These data points will be normalized using the baseline.	

ThresholdsValue	Property to set the thresholds for the lowest average rank and the highest average rank, which are used to determine the invariant set. The rank invariant set is a set of data points whose proportional rank difference is smaller than a given threshold. The threshold for each data point is determined by interpolating between the threshold for the lowest average rank and the threshold for the highest average rank. Select these two thresholds empirically to limit the spread of the invariant set, but allow enough data points to determine the normalization relationship.
	ThresholdsValue is a 1-by-2 vector [LT, HT], where LT is the threshold for the lowest average rank and HT is threshold for the highest average rank. Values must be between 0 and 1. Default is [0.03, 0.07].
ExcludeValue	Property to filter the invariant set of data points, by excluding the data points whose average rank (between <i>DataX</i> and <i>DataY</i>) is in the highest <i>N</i> ranked averages or lowest <i>N</i> ranked averages.
PercentileValue	Property to stop the iteration process when the number of data points in the invariant set reaches N percent of the total number of input data points. Default is 1.
	Note If you do not use this property, the iteration process continues until no more data points are eliminated.

IterateValue	Property to control the iteration process for determining the invariant set of data points. Enter true to repeat the process until either no more data points are eliminated, or a predetermined percentage of data points (<i>PercentileValue</i>) is reached. Enter false to perform only one iteration of the process. Default is true.	
	Tip Select false for smaller data sets, typically less than 200 data points.	
MethodValue	Property to select the smoothing method used to normalize the data. Enter 'lowess' or 'runmedian'. Default is 'lowess'.	
SpanValue	Property to set the window size for the smoothing method. If <i>SpanValue</i> is less than 1, the window size is that percentage of the number of data points. If <i>SpanValue</i> is equal to or greater than 1, the window size is of size <i>SpanValue</i> . Default is 0.05, which correspond to a window size equal to 5% of the total number of data points in the invariant set.	
ShowplotValue	Property to control the plotting of a pair of M- scatter plots (before and after normalization). M is the ratio between DataX and DataY. A is the average of DataX and DataY. Enter true t create the pair of M-A scatter plots. Default is false.	

Description NormDataY = mainvarsetnorm(DataX, DataY) normalizes the values in DataY, a vector of gene expression values, to a reference vector, DataX, using the invariant set method. NormDataY is a vector of normalized gene expression values from DataY. Specifically, mainvarsetnorm:

• Determines the proportional rank difference (*prd*) for each pair of ranks, *RankX* and *RankY*, from the two vectors of gene expression values, *DataX* and *DataY*.

prd = abs(RankX - RankY)

• Determines the invariant set of data points by selecting data points whose proportional rank differences (*prd*) are below *threshold*, which is a predetermined threshold for a given data point (defined by the *ThresholdsValue* property). It optionally repeats the process until either no more data points are eliminated, or a predetermined percentage of data points is reached.

The invariant set is data points with a *prd* < *threshold*.

• Uses the invariant set of data points to calculate the lowess or running median smoothing curve, which is used to normalize the data in *DataY*.

Note If *DataX* or *DataY* contains NaN values, then *NormDataY* will also contain NaN values at the corresponding positions.

Tip mainvarsetnorm is useful for correcting for dye bias in two-color microarray data.

NormDataY = mainvarsetnorm(..., 'PropertyName', PropertyValue, ...) calls mainvarsetnorm with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows: NormDataY = mainvarsetnorm(..., 'Thresholds',

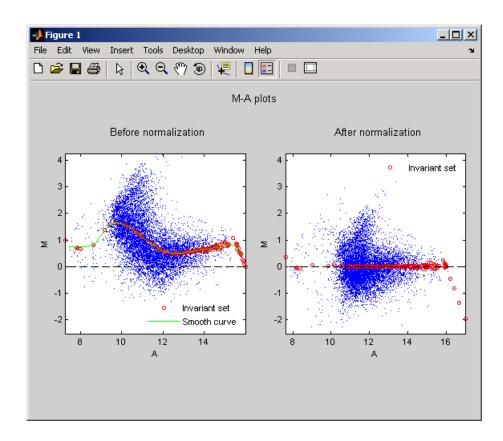
ThresholdsValue, ...) sets the thresholds for the lowest average rank and the highest average rank, which are used to determine the invariant set. The rank invariant set is a set of data points whose proportional rank difference is smaller than a given threshold. The threshold for each data point is determined by interpolating between the threshold for the lowest average rank and the threshold for the highest average rank. Select these two thresholds empirically to limit the spread of the invariant set, but allow enough data points to determine the normalization relationship.

ThresholdsValue is a 1-by-2 vector [LT, HT], where LT is the threshold for the lowest average rank and HT is threshold for the highest average rank. Values must be between 0 and 1. Default is [0.03, 0.07].

NormDataY = mainvarsetnorm(..., 'Exclude', ExcludeValue, ...) filters the invariant set of data points, by excluding the data points whose average rank (between DataX and DataY) is in the highest N ranked averages or lowest N ranked averages.

NormDataY = mainvarsetnorm(..., 'Percentile', PercentileValue, ...) stops the iteration process when the number of data points in the invariant set reaches N percent of the total number of input data points. Default is 1.

Note If you do not use this property, the iteration process continues until no more data points are eliminated.


NormDataY = mainvarsetnorm(..., 'Iterate', IterateValue, ...) controls the iteration process for determining the invariant set of data points. When IterateValue is true, mainvarsetnorm repeats the process until either no more data points are eliminated, or a predetermined percentage of data points (*PercentileValue*) is reached. When IterateValue is false, performs only one iteration of the process. Default is true. **Tip** Select false for smaller data sets, typically less than 200 data points.

NormDataY = mainvarsetnorm(..., 'Method', MethodValue, ...) selects the smoothing method for normalizing the data. When MethodValue is 'lowess', mainvarsetnorm uses the lowess method. When MethodValue is 'runmedian', mainvarsetnorm uses the running median method. Default is 'lowess'.

NormDataY = mainvarsetnorm(..., 'Span', SpanValue, ...) sets the window size for the smoothing method. If SpanValue is less than 1, the window size is that percentage of the number of data points. If SpanValue is equal to or greater than 1, the window size is of size SpanValue. Default is 0.05, which corresponds to a window size equal to 5% of the total number of data points in the invariant set.

NormDataY = mainvarsetnorm(..., 'Showplot', ShowplotValue, ...) determines whether to plot a pair of M-A scatter plots (before and after normalization). M is the ratio between DataX and DataY. A is the average of DataX and DataY. When ShowplotValue is true, mainvarsetnorm plots the M-A scatter plots. Default is false.

The following example illustrates how mainvarsetnorm can correct for dye bias or scanning differences between two channels of data from a two-color microarray experiment. Under perfect experimental conditions, data points with equal expression values would fall along the M = 0 line, which represents a gene expression ratio of 1. However, dye bias caused the measured values in one channel to be higher than the other channel, as seen in the Before Normalization plot. Normalization corrected the variance, as seen in the After Normalization plot.

Examples The following example extracts data from a GPR file and creates two column vectors of gene expression values from different experimental conditions. It then normalizes one of the data sets.

```
maStruct = gprread('mouse_a1wt.gpr');
cy3data = magetfield(maStruct, 'F635 Median');
cy5data = magetfield(maStruct, 'F532 Median');
Normcy5data = mainvarsetnorm(cy3data, cy5data);
```

References [1] Tseng, G.C., Oh, Min-Kyu, Rohlin, L., Liao, J.C., and Wong, W.H. (2001) Issues in cDNA microarray analysis: quality filtering, channel

normalization, models of variations and assessment of gene effects. Nucleic Acids Research. 29, 2549-2557.

[2] Hoffmann, R., Seidl, T., and Dugas, M. (2002) Profound effect of normalization on detection of differentially expressed genes in oligonucleotide microarray data analysis. Genome Biology. 3(7): research 0033.1-0033.11.

See Also affyinvarsetnorm, malowess, manorm, quantilenorm

mairplot

Purpose	Create intensity versus ratio scatter plot of microarray data		
Syntax	<pre>mairplot(DataX, DataY) [Intensity, Ratio] = mairplot(DataX, DataY) [Intensity, Ratio, H] = mairplot(DataX, DataY) = mairplot(, 'Type', TypeValue,) = mairplot(, 'LogTrans', LogTransValue,) = mairplot(, 'FactorLines', FactorLinesValue,) = mairplot(, 'Litle', TitleValue,) = mairplot(, 'Labels', LabelsValue,) = mairplot(, 'Normalize', NormalizeValue,) = mairplot(, 'Showplot', ShowplotValue,) = mairplot(, 'PlotOnly', PlotOnlyValue,)</pre>		
Arguments	DataX, DataY	DataMatrix object or vector of gene expression values where each row corresponds to a gene. For example, in a two-color microarray experiment, <i>DataX</i> could be cy3 intensity values and <i>DataY</i> could be cy5 intensity values.	
	TypeValue	String that specifies the plot type. Choices are 'IR' (plots \log_{10} of the product of the <i>DataX</i> and <i>DataY</i> intensities versus \log_2 of the intensity ratios) or 'MA' (plots (1/2) \log_2 of the product of the <i>DataX</i> and <i>DataY</i> intensities versus \log_2 of the intensity ratios). Default is 'IR'.	
	LogTransValue	Controls the conversion of data in X and Y from natural scale to \log_2 scale. Set <i>LogTransValue</i> to false, when the data is already \log_2 scale. Default is true, which assumes the data is natural scale.	

FactorLinesValue	Adds lines to the plot showing a factor of N change. Default is 2, which corresponds to a level of 1 and -1 on a \log_2 scale.	
	Tip You can also change the factor lines interactively, after creating the plot.	
TitleValue	String that specifies a title for the plot.	
LabelsValue	Cell array of labels for the data. If labels are defined, then clicking a point on the plot shows the label corresponding to that point.	
NormalizeValue	Controls the display of lowess normalized ratio values. Enter true to display to lowess normalized ratio values. Default is false.	
	Tip You can also normalize the data from the MAIR Plot window, after creating the plot.	
LowessOptionsValue	Cell array of one, two, or three property name/value pairs in any order that affect the lowess normalization. Choices for property name/value pairs are: • 'Order', OrderValue	
	• 'Robust', <i>RobustValue</i>	
	• 'Span', <i>SpanValue</i>	
	For more information on the preceding property name/value pairs, see malowess.	

mairplot

ShowplotValue	Controls the display of the scatter plot. Choices are true (default) or false.
PlotOnlyValue	Controls the display of the scatter plot without user interface components. Choices are true or false (default).
	Note If you set the 'PlotOnly' property to true, you can still display labels for data points by clicking a data point, and you can still adjust the horizontal fold change lines by click-dragging the lines.

Return Values	Intensity	 DataMatrix object or vector containing intensity values for the microarray gene expression data, calculated as: log₁₀ of the product of the DataX and DataY intensities (when Type is 'IR') (1/2)log₂ of the product of the DataX and DataY intensities (when Type is 'MA') 	
		Note If <i>DataX</i> or <i>DataY</i> is a DataMatrix object, then <i>Intensity</i> is also a DataMatrix object with the same properties.	
	Ratio	DataMatrix object or vector containing ratios of the microarray gene expression data, calculated as log2(DataX./DataY).	
		Note If <i>DataX</i> or <i>DataY</i> is a DataMatrix object, then <i>Ratio</i> is also a DataMatrix object with the same properties.	
	Н	Handle of the plot.	
Description	mairplot(DataX, DataY) creates a scatter plot that plots \log_{10} of the product of the DataX and DataY intensities versus \log_2 of the intensi ratios.		
	[<i>Intensity</i> , <i>Ratio</i>] = mairplot(<i>DataX</i> , <i>DataY</i>) returns the intensity and ratio values. If you set 'Normalize' to true, the returned ratio values are normalized.		
[Intensity, Rat of the plot.		<pre>H] = mairplot(DataX, DataY) returns the handle</pre>	

... = mairplot(..., '*PropertyName*', *PropertyValue*, ...) calls mairplot with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = mairplot(..., 'Type', *TypeValue*, ...) specifies the plot type. Choices are 'IR' (plots \log_{10} of the product of the *DataX* and *DataY* intensities versus \log_2 of the intensity ratios) or 'MA' (plots (1/2) \log_2 of the product of the *DataX* and *DataY* intensities versus \log_2 of the intensity ratios). Default is 'IR'.

... = mairplot(..., 'LogTrans', LogTransValue, ...) controls the conversion of data in X and Y from natural to \log_2 scale. Set LogTransValue to false, when the data is already \log_2 scale. Default is true, which assumes the data is natural scale.

 \dots = mairplot(..., 'FactorLines', FactorLinesValue, ...) adds lines to the plot showing a factor of N change. Default is 2, which corresponds to a level of 1 and -1 on a log₂ scale.

Tip You can also change the factor lines interactively, after creating the plot.

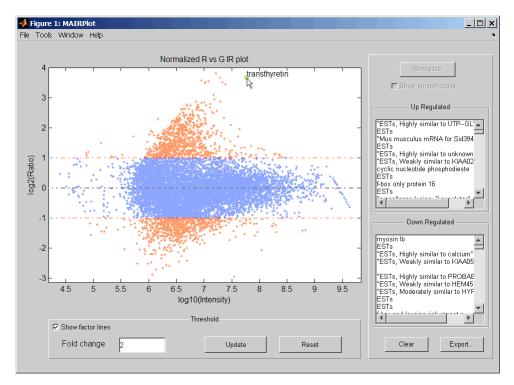
... = mairplot(..., 'Title', *TitleValue*, ...) specifies a title for the plot.

... = mairplot(..., 'Labels', *LabelsValue*, ...) specifies a cell array of labels for the data. If labels are defined, then clicking a point on the plot shows the label corresponding to that point.

... = mairplot(..., 'Normalize', NormalizeValue, ...) controls the display of lowess normalized ratio values. Enter true to display to lowess normalized ratio values. Default is false. **Tip** You can also normalize the data from the MAIR Plot window, after creating the plot.

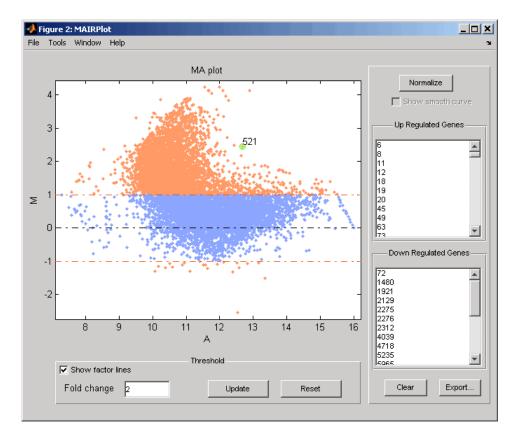
... = mairplot(..., 'LowessOptions', *LowessOptionsValue*, ...) lets you specify up to three property name/value pairs (in any order) that affect the lowess normalization. Choices for property name/value pairs are:

- 'Order', OrderValue
- 'Robust', RobustValue
- 'Span', SpanValue


For more information on the previous three property name/value pairs, see the malowess function.

... = mairplot(..., 'Showplot', *ShowplotValue*, ...) controls the display of the scatter plot. Choices are true (default) or false.

... = mairplot(..., 'PlotOnly', *PlotOnlyValue*, ...) controls the display of the scatter plot without user interface components. Choices are true or false (default).


Note If you set the 'PlotOnly' property to true, you can still display labels for data points by clicking a data point, and you can still adjust the horizontal fold change lines by click-dragging the lines.

Following is an IR plot of normalized data.

Following is an MA plot of unnormalized data.

mairplot

The intensity versus ratio scatter plot displays the following:

- $\bullet~\log_{10}$ (Intensity) versus \log_2 (Ratio) scatter plot of genes.
- Two horizontal fold change lines at a fold change level of 2, which corresponds to a ratio of 1 and -1 on a log ₂ (Ratio) scale. (Lines will be at different fold change levels, if you used the 'FactorLines' property.)
- Data points for genes that are considered differentially expressed (outside of the fold change lines) appear in orange.

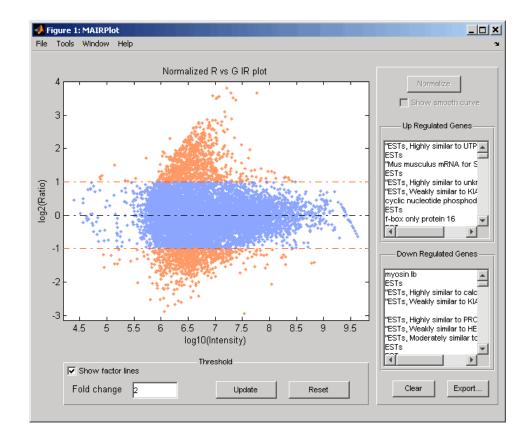
mairplot

After you display the intensity versus ratio scatter plot, you can interactively do the following:

- Adjust the horizontal fold change lines by click-dragging one line or entering a value in the **Fold Change** text box, then clicking **Update**.
- Display labels for data points by clicking a data point.
- Select a gene from the **Up Regulated** or **Down Regulated** list to highlight the corresponding data point in the plot. Press and hold **Ctrl** or **Shift** to select multiple genes.
- Zoom the plot by selecting **Tools > Zoom In** or **Tools > Zoom Out**.
- View lists of significantly up-regulated and down-regulated genes, and optionally, export the gene labels and indices to a structure in the MATLAB Workspace by clicking **Export**.
- Normalize the data by clicking the **Normalize** button, then selecting whether to show the normalized plot in a separate window. If you show the normalized plot in a separate window, the **Show smooth curve** check box becomes available in the original (unnormalized) plot.

Tip To select different lowess normalization options before normalizing, select **Tools > Set LOWESS Normalization Options**, then enter options in the Options for LOWESS dialog box.

Examples 1 Use the gprread function to create a structure containing microarray data.

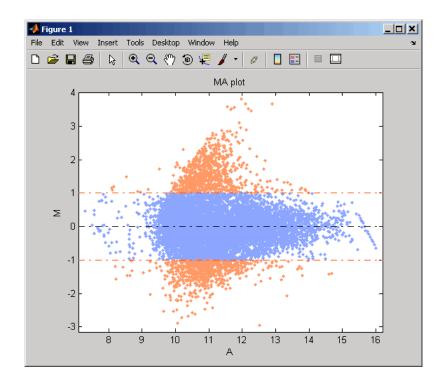

maStruct = gprread('mouse_a1wt.gpr');

2 Use the magetfield function to extract the green (cy3) and red (cy5) signals from the structure.

```
cy3data = magetfield(maStruct, 'F635 Median');
cy5data = magetfield(maStruct, 'F532 Median');
```

3 Create an intensity versus ratio scatter plot of the cy3 and cy5 data. Normalize the data and add a title and labels:

```
mairplot(cy3data, cy5data, 'Normalize', true, ...
'Title','Normalized R vs G IR plot', ...
'Labels', maStruct.Names)
```



4 Return intensity values and ratios without displaying the plot.

[intensities, ratios] = mairplot(cy3data, cy5data, 'Showplot', false);

5 Create a normalized MA plot of the cy3 and cy5 data without the user interface components.

```
mairplot(cy3data, cy5data, 'Normalize', true, ...
'Type','MA','PlotOnly',true)
```


References [1] Quackenbush, J. (2002). Microarray Data Normalization and Transformation. Nature Genetics Suppl. 32, 496–501. [2] Dudoit, S., Yang, Y.H., Callow, M.J., and Speed, T.P. (2002). Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray Experiments. Statistica Sinica 12, 111–139. See Also Bioinformatics Toolbox functions: maboxplot, magetfield, maimage, mainvarsetnorm, maloglog, malowess, manorm, mattest, mavolcanoplot

maloglog

Purpose	Create loglog plot of microarray data		
Syntax	<pre>maloglog(X, Y, 'PropertyName', PropertyValue) maloglog(, 'FactorLines', N) maloglog(, 'Title', TitleValue) maloglog(, 'Labels', LabelsValues) maloglog(, 'HandleGraphicsName', HGValue) H = maloglog()</pre>		
Arguments	Χ, Υ	DataMatrix object or numeric array of microarray expression values from a single experimental condition.	
	Ν	Property to add two lines to the plot showing a factor of N change.	
	TitleValue	A string to use as the title for the plot.	
	LabelsValue	A cell array of labels for the data in X and Y. If you specify <i>LabelsValue</i> , then clicking a data point in the plot shows the label corresponding to that point.	
Description	maloglog(X, Y, ' <i>PropertyName</i> ', <i>PropertyValue</i>) creates a loglog scatter plot of X versus Y. X and Y are DataMatrix objects or numeric arrays of microarray expression values from two different experimental conditions.		
	maloglog(, 'FactorLines', N) adds two lines to the plot showin factor of N change.		
	<pre>maloglog(, 'Title', TitleValue) allows you to specify a title for the plot. maloglog(, 'Labels', LabelsValues) allows you to specify a cell array of labels for the data. If LabelsValues is defined, then clicking a data point in the plot shows the label corresponding to that point.</pre>		

= maloglog() returns the handle to the plot.
<pre>maStruct = gprread('mouse_a1wt.gpr'); Red = magetfield(maStruct,'F635 Median'); Green = magetfield(maStruct,'F532 Median'); maloglog(Red,Green,'title','Red vs Green'); % Add factorlines and labels figure maloglog(Red,Green,'title','Red vs Green', 'FactorLines',2,'LABELS',maStruct.Names); % Now create a normalized plot figure maloglog(manorm(Red),manorm(Green),'title', 'Normalized Red vs Green','FactorLines',2, 'LABELS',maStruct.Names);</pre>
Bioinformatics Toolbox functions maboxplot, magetfield, ainvarsetnorm, maimage, mairplot, malowess, manorm, mattest, avolcanoplot

MATLAB function loglog

malowess

Purpose	Smooth microarray data using Lowess method	
Syntax	<pre>YSmooth = malowess(X, Y) YSmooth = malowess(X, Y,'Order', OrderValue,) YSmooth = malowess(X, Y,'Robust', RobustValue,) YSmooth = malowess(X, Y,'Span', SpanValue,)</pre>	
Arguments	Х, Ү	DataMatrix object or numeric vector containing scatter data.
	OrderValue	Property to select the order of the algorithm. Enter either 1 (linear fit) or 2 (quadratic fit). The default order is 1.
	RobustValue	Property to select a robust fit. Enter either true or false.
	SpanValue	Property to specify the window size. The default value is 0.05 (5% of total points in X)
Description	YSmooth = malowess(X, Y) smooths scatter data in X and Y using the Lowess smoothing method. The default window size is 5% of the length of X. YSmooth is a numeric vector or, if Y is a DataMatrix object, also a DataMatrix object with the same properties as Y. YSmooth = malowess(X, Y,'PropertyName', PropertyValue,) calls malowess with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:	
	YSmooth = malowess(X, Y,, Order', OrderValue,) chooses the order of the algorithm. Note that the Curve Fitting Toolbox TM software refers to Lowess smoothing of order 2 as Loess smoothing.	

YSmooth = malowess(X, Y, ..., Robust', RobustValue, ...) uses a robust fit when RobustValue is set to true. This option can take a long time to calculate.

YSmooth = malowess(X, Y, ..., Span', SpanValue, ...) modifies the window size for the smoothing function. If SpanValue is less than 1, the window size is taken to be a fraction of the number of points in the data. If SpanValue is greater than 1, the window is of size SpanValue.

Examples	<pre>maStruct = gprread('mouse_a1wt.gpr'); cy3data = magetfield(maStruct, 'F635 Median'); cy5data = magetfield(maStruct, 'F532 Median'); [x,y] = mairplot(cy3data, cy5data); drawnow ysmooth = malowess(x,y); hold on; plot(x, ysmooth, 'rx') ynorm = y - ysmooth;</pre>
See Also	Bioinformatics Toolbox functions: affyinvarsetnorm mabo

See Also Bioinformatics Toolbox functions: affyinvarsetnorm, maboxplot, magetfield, maimage, mainvarsetnorm, mairplot, maloglog, manorm, quantilenorm

Statistics Toolbox function: robustfit

manorm

Purpose	Normalize microarray data		
Syntax (1997)	[XNorm, Col manorm(, manorm(, manorm(, manorm(, manorm(,	<pre>norm(X) norm(MAStruct, FieldName) Val] = manorm() 'Method', MethodValue,) 'Extra_Args', Extra_ArgsValue,) 'LogData', LogDataValue,) 'Percentile', PercentileValue,) 'Global', GlobalValue,) 'StructureOutput', StructureOutputValue,) 'NewColumnName', NewColumnNameValue,)</pre>	
Arguments	X	Numeric array or DataMatrix object of microarray data.	
	MAStruct	Microarray structure.	
	FieldName	Field.	
Description	<pre>XNorm = manorm(X) scales the values in each column of X, a numeric array or DataMatrix object of microarray data, by dividing by the mean column intensity. XNorm is a vector, matrix, or DataMatrix object of normalized microarray data. XNorm = manorm(MAStruct, FieldName) scales the data in MAStruct, a microarray structure, for a field specified by FieldName, for each block or print-tip by dividing each block by the mean column intensity. The output is a matrix with each column corresponding to the normalized data for each block.</pre>		
	[XNorm, ColVal] = manorm() returns the values used to normalize the data.		
	manorm(, ' <i>PropertyName</i> ', <i>PropertyValue</i> ,) calls manorm with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each		

PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

manorm(..., 'Method', MethodValue, ...) allows you to choose the method for scaling or centering the data. MethodValue can be 'Mean'(default), 'Median', 'STD' (standard deviation), 'MAD' (median absolute deviation), or a function handle. If you pass a function handle, then the function should ignore NaNs and must return a single value per column of the input data.

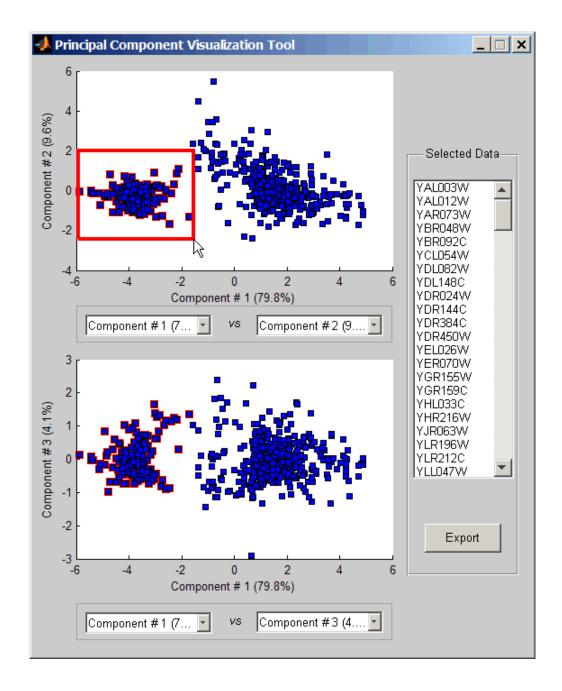
manorm(..., 'Extra_Args', *Extra_ArgsValue*, ...) allows you to pass extra arguments to the function *MethodValue*. *Extra_ArgsValue* must be a cell array.

manorm(..., 'LogData', LogDataValue, ...), when LogDataValue is true, works with log ratio data in which case the mean (or *MethodValue*) of each column is subtracted from the values in the columns, instead of dividing the column by the normalizing value.

manorm(..., 'Percentile', PercentileValue, ...) only uses the
percentile(PercentileValue) of the data preventing large outliers from
skewing the normalization. If PercentileValue is a vector containing
two values, then the range from the PercentileValue(1) percentile to
the PercentileValue(2) percentile is used. The default value is 100,
that is to use all the data in the data set.

manorm(..., 'Global', *GlobalValue*, ...) when *GlobalValue* is true, normalizes the values in the data set by the global mean (or *MethodValue*) of the data, as opposed to normalizing each column or block of the data independently.

manorm(..., 'StructureOutput', StructureOutputValue, ...), when StructureOutputValue is true, the input data is a structure returns the input structure with an additional data field for the normalized data.


manorm(..., 'NewColumnName', NewColumnNameValue, ...), when using StructureOutput, allows you to specify the name of the column that is appended to the list of ColumnNames in the structure. The default behavior is to prefix 'Block Normalized' to the FieldName string.

manorm

```
Examples
                         maStruct = gprread('mouse a1wt.gpr');
                         % Extract some data of interest.
                         Red = magetfield(maStruct, 'F635 Median');
                         Green = magetfield(maStruct, 'F532 Median');
                         % Create a log-log plot.
                         maloglog(Red,Green,'factorlines',true)
                         % Center the data.
                         normRed = manorm(Red);
                         normGreen = manorm(Green);
                         % Create a log-log plot of the centered data.
                         figure
                         maloglog(normRed,normGreen,'title','Normalized','factorlines',true)
                         % Alternatively, you can work directly with the structure
                         normRedBs = manorm(maStruct, 'F635 Median - B635');
                         normGreenBs = manorm(maStruct, 'F532 Median - B532');
                         % Create a log-log plot of the centered data. This includes some
                         % zero values so turn off the warning.
                         figure
                         w = warning('off', 'Bioinfo:maloglog:ZeroValues');
                         warning('off','Bioinfo:maloglog:NegativeValues');
                         maloglog(normRedBs,normGreenBs,'title',...
                                         'Normalized Background-Subtracted Median Values',...
                                         'factorlines',true)
                                 warning(w);
See Also
                      Bioinformatics Toolbox functions: affyinvarsetnorm, maboxplot,
```

magetfield, mainvarsetnorm, mairplot, maloglog, malowess, quantilenorm, rmasummary

Purpose	Create Principal Component Analysis (PCA) plot of microarray data	
Syntax	<pre>mapcaplot(Data) mapcaplot(Data, Label)</pre>	
Arguments	Data	DataMatrix object or numeric array containing microarray expression profile data. If a DataMatrix object, the row names are used as labels in the plot, unless you provide labels with the second input <i>Label</i> .
	Label	Cell array of strings representing labels for the data points in the plot.
Description	mapcaplot(<i>Data</i>) creates 2-D scatter plots of principal components of <i>Data</i> , a DataMatrix object or numeric array containing microarray expression profile data.	
	<pre>mapcaplot(Data, Label) uses the elements of the cell array of strings Label, instead of the row numbers, to label the data points in the PCA plots.</pre>	

Once you plot the principal components, you can:

\bullet Select principal components for the x and y axes from the drop-down
list boxes below each scatter plot.

- Click a data point to display its label.
- Select a subset of data points by click-dragging a box around them. This will highlight the points in the selected region and the corresponding points in the other axes. The labels of the selected data points appear in the list box.
- Select a label in the list box to highlight the corresponding data point in the plot. Press and hold **Ctrl** or **Shift** to select multiple data points.
- Export the gene labels and indices to a structure in the MATLAB workspace by clicking **Export**.
- **Examples** load filteredyeastdata mapcaplot(yeastvalues, genes)
- See Also Bioinformatics Toolbox functions: clustergram, mattest, mavolcanoplot

Statistics Toolbox function: princomp

mattest

Purpose	Perform two-sample t-test to evaluate differential expression of genes from two experimental conditions or phenotypes
Syntax	<pre>PValues = mattest(DataX, DataY) [PValues, TScores] = mattest(DataX, DataY) [PValues, TScores, DFs] = mattest(DataX, DataY) = mattest(, 'Permute', PermuteValue,) = mattest(, 'Bootstrap', BootstrapValue,) = mattest(, 'Showhist', ShowhistValue,) = mattest(, 'Showplot', ShowplotValue,) = mattest(, 'Labels', LabelsValue,)</pre>

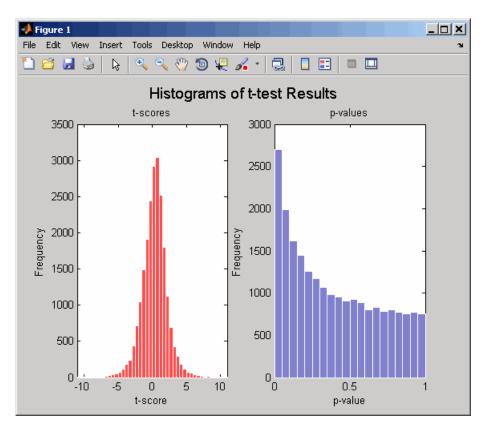
Arguments

DataX, DataY	DataMatrix object or a matrix of gene expression values where each row corresponds to a gene and each column corresponds to a replicate. <i>DataX</i> and <i>DataY</i> must have the same number of rows and are assumed to be normally distributed in each class with equal variances.
	DataX contains data from one experimental condition and DataY contains data from a different experimental condition. For example, DataX could be expression values from cancer cells, and DataY could be expression values from normal cells.
PermuteValue	Controls whether permutation tests are run, and if so, how many. Choices are true, false (default), or any integer greater than 2. If set to true, the number of permutations is 1000.
BootstrapValue	Controls whether bootstrap tests are run, and if so, how many. Choices are true, false (default), or any integer greater than 2. If set to true, the number of bootstrap tests is 1000.

	ShowhistValue	Controls the display of histograms of t-score distributions and p-value distributions. Choices are true or false (default).
	ShowplotValue	Controls the display of a normal t-score quantile plot. Choices are true or false (default). In the t-score quantile plot, data points with t-scores > $(1 - 1/(2N))$ or $< 1/(2N)$ display with red circles. N is the total number of genes.
	LabelsValue	Cell array of labels (typically gene names or probe set IDs) for each row in <i>DataX</i> and <i>DataY</i> . The labels display if you click a data point in the t-score quantile plot.
Return	214.1	
Values	PValues	One of the following:
		• Column vector of p-values for each gene in <i>DataX</i> and <i>DataY</i> (if both inputs are matrices).
		• DataMatrix object with row names the same as the first input DataMatrix object and a column name of p-values (if at least one input is a DataMatrix object).
	TScores	Column vector of t-scores for each gene in <i>DataX</i> and <i>DataY</i> .
	DFs	Column vector containing the degree of freedom for each gene in <i>DataX</i> and <i>DataY</i> .
Description	profiles in DataX a DataX and DataY a gene expression va	st(DataX, DataY) compares the gene expression and DataY and returns a p-value for each gene. are either a DataMatrix object or a matrix of alues, in which each row corresponds to a gene, and sponds to a replicate. DataX contains data from

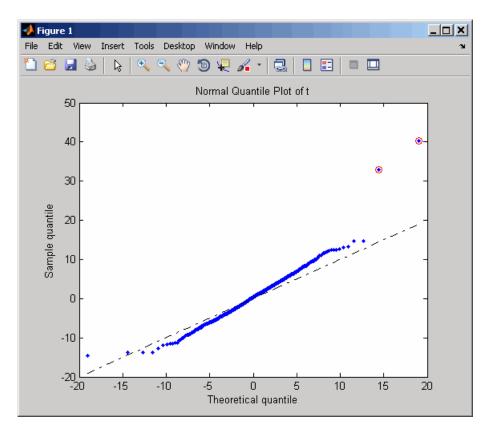
one experimental condition and *DataY* contains data from another experimental condition. *DataX* and *DataY* must have the same number of rows and are assumed to be normally distributed in each class with equal variances. *PValues* is a column vector of p-values for each gene, or, if at least one of the inputs is a DataMatrix object, a DataMatrix object with row names the same as the first input DataMatrix object and a column name of p-values.

[*PValues, TScores*] = mattest(*DataX, DataY*) also returns a t-score for each gene in *DataX* and *DataY. TScores* is a column vector of t-scores for each gene.


[*PValues, TScores, DFs*] = mattest(*DataX, DataY*) also returns *DFs*, a column vector containing the degree of freedom for each gene across both data sets, *DataX* and *DataY*.

... = mattest(..., 'PropertyName', PropertyValue, ...) calls mattest with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = mattest(..., 'Permute', *PermuteValue*, ...) controls whether permutation tests are run, and if so, how many. *PermuteValue* can be true, false (default), or any integer greater than 2. If set to true, the number of permutations is 1000.


... = mattest(..., 'Bootstrap', BootstrapValue, ...) controls whether bootstrap tests are run, and if so, how many. BootstrapValue can be true, false (default), or any integer greater than 2. If set to true, the number of bootstrap tests is 1000.

... = mattest(..., 'Showhist', ShowhistValue, ...) controls the display of histograms of t-score distributions and p-value distributions. When ShowhistValue is true, mattest displays histograms. Default is false.

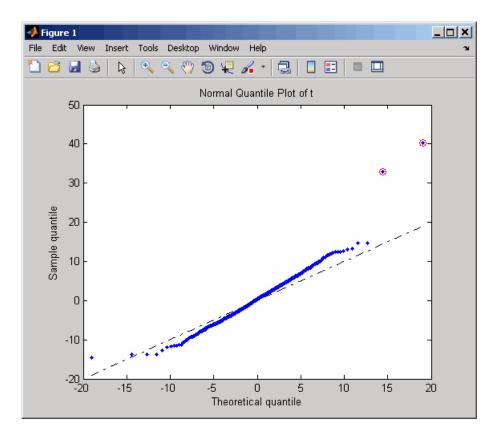
... = mattest(..., 'Showplot', ShowplotValue, ...) controls the display of a normal t-score quantile plot. When ShowplotValue is true, mattest displays a quantile-quantile plot. Default is false. In the t-score quantile plot, the black diagonal line represents the sample quantile being equal to the theoretical quantile. Data points of genes considered to be differentially expressed lie farther away from this line. Specifically, data points with t-scores > (1 - 1/(2N)) or < 1/(2N)display with red circles. N is the total number of genes.

mattest

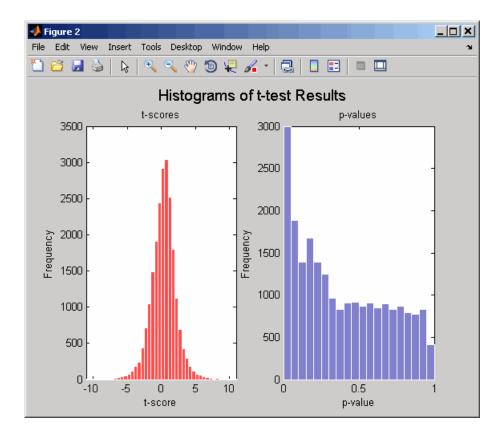
... = mattest(..., 'Labels', *LabelsValue*, ...) controls the display of labels when you click a data point in the t-score quantile plot. *LabelsValue* is a cell array of labels (typically gene names or probe set IDs) for each row in *DataX* and *DataY*.

Examples
 Load the MAT-file, included with the Bioinformatics Toolbox software, that contains Affymetrix data from a prostate cancer study, specifically probe intensity data from Affymetrix HG-U133A GeneChip arrays. The two variables in the MAT-file, dependentData and independentData, are two matrices of gene expression values from two experimental conditions.

load prostatecancerexpdata


2 Calculate the p-values and t-scores for the gene expression values in the two matrices and display a normal t-score quantile plot.

[pvalues,tscores] = mattest(dependentData, independentData,...
'showplot',true);


3 Calculate the p-values and t-scores again using permutation tests (1000 permutations) and displaying histograms of t-score distributions and p-value distributions.

4 Calculate the p-values and t-scores again using bootstrap tests (2000 tests) and displaying histograms of t-score distributions and p-value distributions.

mattest

mattest

The prostatecancerexpdata.mat file used in this example contains data from Best et al., 2005.

References [1] Huber, W., von Heydebreck, A., Sültmann, H., Poustka, A., and Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics *18 (Suppl. 1)*, S96–S104.

[2] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research *11*, 6823–6834.

See Also Bioinformatics Toolbox functions: affygcrma, affyrma, maboxplot, mafdr, mainvarsetnorm, mairplot, maloglog, malowess, manorm, mavolcanoplot, rmasummary

Purpose	Create significance versus gene expression ratio (fold change) scatter plot of microarray data	
Syntax	<pre>mavolcanoplot(DataX, DataY, PValues) SigStructure = mavolcanoplot(DataX, DataY, PValues) mavolcanoplot(, 'Labels', LabelsValue,) mavolcanoplot(, 'LogTrans', LogTransValue,) mavolcanoplot(, 'PCutoff', PCutoffValue,) mavolcanoplot(, 'Foldchange', FoldchangeValue,) mavolcanoplot(, 'PlotOnly', PlotOnlyValue,)</pre>	
Arguments	DataX, DataY	DataMatrix object, matrix, or vector of gene expression values from a single experimental condition. If a DataMatrix object or a matrix, each row is a gene, each column is a sample, and an average expression value is calculated for each gene.
		Note If the values in <i>DataX</i> or <i>DataY</i> are natural scale, use the LogTrans property to convert them to \log_2 scale.
	PValues	Either of the following:
		• Column vector of p-values for each feature (for example, gene) in a data set, such as returned by mattest.
		• DataMatrix object containing p-values for each feature (for example, gene) in a data set, such as returned by mattest.

LabelsValue	Cell array of labels (typically gene names or probe set IDs) for the data. After creating the plot, you can click a data point to display the label associated with it. If you do not provide a <i>LabelsValue</i> , data points are labeled with row numbers from <i>DataX</i> and <i>DataY</i> .
LogTransValue	Property to control the conversion of data in <i>DataX</i> and <i>DataY</i> from natural scale to \log_2 scale. Enter true to convert data to \log_2 scale, or false. Default is false, which assumes data is already \log_2 scale.
PCutoffValue	Lets you specify a cutoff p-value to define data points that are statistically significant. This value is displayed graphically as a horizontal line on the plot. Default is 0.05 , which is equivalent to 1.3010 on the $-\log_{10}$ (p-value) scale.
	Note You can also change the p-value cutoff interactively after creating the plot.

	FoldchangeValue	Lets you specify a ratio fold change to define data points that are differentially expressed. Default is 2, which corresponds to a ratio of 1 and -1 on a \log_2 (ratio) scale.
		Note You can also change the fold change interactively after creating the plot.
	PlotOnlyValue	Controls the display of the volcano plot without user interface components. Choices are true or false (default).
		Note If you set the 'PlotOnly' property to true, you can still display labels for data points by clicking a data point, and you can still adjust vertical fold change lines and the horizontal p-value cutoff line by click-dragging the lines.
Return Values	SigStructure	Structure containing information for genes that are considered to be both statistically significant (above the p-value cutoff) and significantly differentially expressed (outside of the fold change values). The fields are listed below.
Description	expression data, plo expression ratios of as the $-\log_{10}$ (p-valu	X, DataY, PValues) creates a scatter plot of gene tting significance versus fold change of gene two data sets, DataX and DataY. It plots significance e) from the input, PValues. DataX and DataY can be DataMatrix objects. PValues is a clumn vector ect.

SigStructure = mavolcanoplot(DataX, DataY, PValues) returns a structure containing information for genes that are considered to be both statistically significant (above the p-value cutoff) and significantly differentially expressed (outside of the fold change values). The fields within SigStructure are sorted by p-value and include:

- Name
- PCutoff
- FCThreshold
- GeneLabels
- PValues
- FoldChanges

Note The fields PValues and FoldChanges will be either vectors or DataMatrix objects depending on the type of input *PValues*.

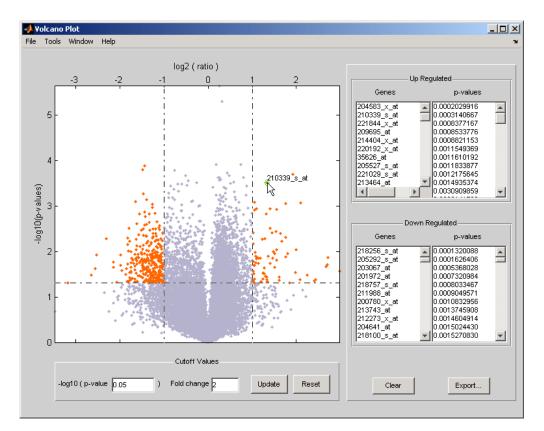
... mavolcanoplot(..., '*PropertyName*', *PropertyValue*, ...) defines optional properties that use property name/value pairs in any order. These property name/value pairs are as follows:

... mavolcanoplot(..., 'Labels', *LabelsValue*, ...) lets you provide a cell array of labels (typically gene names or probe set IDs) for the data. After creating the plot, you can click a data point to display the label associated with it. If you do not provide a *LabelsValue*, data points are labeled with row numbers from *DataX* and *DataY*.

... mavolcanoplot(..., 'LogTrans', *LogTransValue*, ...) controls the conversion of data from *DataX* and *DataY* to \log_2 scale. When *LogTransValue* is true, mavolcanoplot converts data from natural to \log_2 scale. Default is false, which assumes the data is already \log_2 scale.

... mavolcanoplot(..., 'PCutoff', *PCutoffValue*, ...) lets you specify a p-value cutoff to define data points that are statistically

significant. This value displays graphically as a horizontal line on the plot. Default is 0.05, which is equivalent to 1.3010 on the $-\log_{10}$ (p-value) scale.


Note You can also change the p-value cutoff interactively after creating the plot.

... mavolcanoplot (..., 'Foldchange', FoldchangeValue, ...) lets you specify a ratio fold change to define data points that are differentially expressed. Fold changes display graphically as two vertical lines on the plot. Default is 2, which corresponds to a ratio of 1 and -1 on a \log_2 (ratio) scale.

Note You can also change the fold change interactively after creating the plot.

... mavolcanoplot(..., 'PlotOnly', *PlotOnlyValue*, ...) controls the display of the volcano plot without user interface components. Choices are true or false (default).

Note If you set the 'PlotOnly' property to true, you can still display labels for data points by clicking a data point, and you can still adjust vertical fold change lines and the horizontal p-value cutoff line by click-dragging the lines.

The volcano plot displays the following:

- -log₁₀ (p-value) versus log₂ (ratio) scatter plot of genes
- Two vertical fold change lines at a fold change level of 2, which corresponds to a ratio of 1 and -1 on a \log_2 (ratio) scale. (Lines will be at different fold change levels, if you used the 'Foldchange' property.)
- One horizontal line at the 0.05 p-value level, which is equivalent to 1.3010 on the $-\log_{10}$ (p-value) scale. (The line will be at a different p-value level, if you used the 'PCutoff' property.)

• Data points for genes that are considered both statistically significant (above the p-value line) and differentially expressed (outside of the fold changes lines) appear in orange.

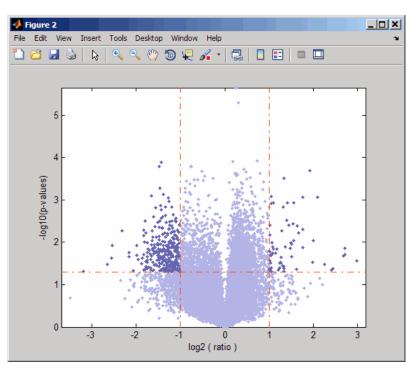
After you display the volcano scatter plot, you can interactively:

- Adjust the vertical fold change lines by click-dragging one line or entering a value in the **Fold Change** text box.
- Adjust the horizontal p-value cutoff line by click-dragging or entering a value in the **p-value Cutoff** text box.
- Display labels for data points by clicking a data point.
- Select a gene from the **Up Regulated** or **Down Regulated** list to highlight the corresponding data point in the plot. Press and hold **Ctrl** or **Shift** to select multiple genes.
- Zoom the plot by selecting **Tools > Zoom In** or **Tools > Zoom Out**.
- View lists of significantly up-regulated and down-regulated genes and their associated p-values, and optionally, export the labels, p-values, and fold changes to a structure in the MATLAB Workspace by clicking **Export**.

Examples 1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains Affymetrix data variables, including dependentData and independentData, two matrices of gene expression values from two experimental conditions.

load prostatecancerexpdata

2 Use the mattest function to calculate p-values for the gene expression values in the two matrices.


```
pvalues = mattest(dependentData, independentData);
```

3 Using the two matrices, the pvalues calculated by mattest, and the probesetIDs column vector of labels provided, use mavolcanoplot to

create a significance versus gene expression ratio scatter plot of the microarray data from the two experimental conditions.

```
mavolcanoplot(dependentData, independentData, pvalues,...
'Labels', probesetIDs)
```

4 View the volcano plot without the user interface components.

mavolcanoplot(dependentData, independentData, pvalues,...
'Labels', probesetIDs,'Plotonly', true)

The prostatecancerexpdata.mat file used in the previous example contains data from Best et al., 2005.

References	[1] Cui, X., Churchill, G.A. (2003). Statistical tests for differential expression in cDNA microarray experiments. Genome Biology 4, 210.			
	 [2] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research <i>11</i>, 6823–6834. 			
See Also	Bioinformatics Toolbox functions: maboxplot, maimage, mainvarsetnorm, mairplot, maloglog, malowess, manorm, mapcaplot, mattest			

molweight

Purpose	Calculate molecular weight of amino acid sequence		
Syntax	<pre>molweight(SeqAA)</pre>		
Arguments	SeqAA	Amino acid sequence. Enter a character string or a vector of integers from the tableAmino Acid Lookup on page 2-91. Examples: 'ARN', [1 2 3]. You can also enter a structure with the field Sequence.	
Description	molweight(SeqAA) calculates the molecular weight for the amino acid sequence SeqAA.		
Examples	<pre>1 Get an amino acid sequence from the NCBI GenPept database. rhodopsin = getgenpept('NP_000530');</pre>		
	<pre>2 Calculate the molecular weight of the sequence. rhodopsinMW = molweight(rhodopsin)</pre>		
	rhodopsinMW = molweight(rhodopsin)		
	3.889	92e+004	
See Also	Bioinformatic proteinplot	es Toolbox functions: aacount, atomiccomp, isoelectric,	

Purpose	Display and manipulate 3-D molecule structure
Syntax	<pre>molviewer molviewer(File) molviewer(pdbID) molviewer(pdbStruct) FigureHandle = molviewer()</pre>

Arguments

File

String specifying one of the following:

- File name of a file on the MATLAB search path or in the MATLAB Current Directory
- Path and file name
- URL pointing to a file (URL must begin with a protocol such as http://, ftp://, or file://)

The referenced file is a molecule model file, such as a Protein Data Bank (PDB)-formatted file (ASCII text file). Valid file types include:

- PDB
- MOL (MDL)
- SDF
- XYZ
- SMOL
- JVXL
- CIF/mmCIF
- *pdbID* String specifying a unique identifier for a protein structure record in the PDB database.

Note Each structure in the PDB database is represented by a four-character alphanumeric identifier. For example, 4hhb is the identifier for hemoglobin.

pdbStruct A structure containing a field for each PDB record, such as returned by the getpdb or pdbread function.

Return Values	<i>FigureHandle</i> Figure handle to a Molecule Viewer window.		
Description	<pre>escription molviewer opens a blank Molecule Viewer window. You can display 3-D molecular structures by selecting File > Open, File > Load PDB ID, or File > Open URL. molviewer(File) reads the data in a molecule model file, File, and opens a Molecule Viewer window displaying the 3-D molecular structure for viewing and manipulation. molviewer(pdbID) retrieves the data for a protein structure record, pdbID, from the PDB database and opens a Molecule Viewer window displaying the 3-D molecular structure for viewing and manipulation.</pre>		
	molviewer(<i>pdbStruct</i>) reads the data from <i>pdbStruct</i> , a structure containing a field for each PDB record, and opens a Molecule Viewer window displaying a 3-D molecular structure for viewing and manipulation.		
	<i>FigureHandle</i> = molviewer() returns the figure handle to the Molecule Viewer window.		
	Tip You can pass the <i>FigureHandle</i> to the evalrasmolscript function, which sends RasMol script commands to the Molecule Viewer window.		
	Tip If you receive any errors related to memory or Java [™] heap space, try increasing your Java heap space as described at:		

http://www.mathworks.com/support/solutions/data/1-18I2C.html

After displaying the 3-D molecule structure, you can:

- Click-drag the molecule to spin, rotate, and view it from different angles.
- Hover the mouse over a subcomponent of the molecule to display an identification label for it.
- Zoom the plot by turning the mouse scroll wheel or clicking the following buttons:

- Spin the molecule by clicking 🦃.
- Change the background color between black and white by clicking
- Reset the molecule position by clicking
- Show or hide the Control Panel by clicking
- Manipulate and annotate the 3-D structure by selecting options in the Control Panel or, for a complete list of options, by right-clicking the Molecule Viewer window to select commands:

• Display the Jmol Script Console by clicking

molviewer

Script completed	2DHB						
Script completed Script completed							
Script completed							
Script completed							
\$ wireframe 0.3							
Script completed							
\$ wireframe off; backbone	on						
Script completed							
\$ ribbons 1.0							
Script completed							
\$ ribbons off; trace on							
Script completed							
\$ trace off; cartoons on							
Script completed	_						
\$ cartoons off; strands 1.5	1						
Script completed \$							
₽I							
Run Halt	Clear	History	State	Help	Close	Undo	Redo

Examples Vie

View the acetylsalicylic acid (aspirin) molecule, whose structural information is contained in the Elsevier MDL molecule file aspirin.mol.

molviewer('aspirin.mol')

View the H5N1 influenza virus hemagglutinin molecule, whose structural information is located at www.rcsb.org/pdb/files/2FK0.pdb.gz.

molviewer('http://www.rcsb.org/pdb/files/2FK0.pdb.gz')

View the molecule with a PDB identifier of 2DHB.

molviewer('2DHB')

View the molecule with a PDB identifier of 4hhb, and create a figure handle for the molecule viewer.

FH = molviewer('4hhb')

Use the getpdb function to retrieve protein structure data from the PDB database and create a MATLAB structure. Then view the protein molecule.

```
pdbstruct = getpdb('1vqx')
molviewer(pdbstruct)
```

See Also Bioinformatics Toolbox functions: evalrasmolscript, getpdb, pdbread, pdbsuperpose, pdbtransform, pdbwrite

Purpose	Align peaks in mass spectrum to reference peaks		
Syntax (1997)	<pre> = msalign(, '' = msalign(, '' WidthOfPulsesValue, = msalign(, '') = msalign(, '' = msalign(, '' = msalign(, '') = msalign(, '')</pre>		
Arguments	MZ	Vector of mass/charge (m/z) values for a spectrum or set of spectra. The number of elements in the vector equals n or the number of rows in the matrix <i>Intensities</i> .	
	Intensities	Either of the following:	
		• Column vector of intensity values for a spectrum, where each row corresponds to an m/z value.	
		• Matrix of intensity values for a set of mass spectra that share the same m/z range, where each row corresponds to an m/z value, and each column corresponds to a spectrum.	
		The number of rows equals n or the number of elements in vector MZ .	

msalign

RefMZ	Vector of m/z values of known reference masses in a sample spectrum.		
	Tip For reference peaks, select compounds that do not undergo structural transformation, such as phosphorylation. Doing so will increase the accuracy of your alignment and allow you to detect compounds that do exhibit structural transformations among the sample spectra.		
WeightsValue	Vector of positive values, with the same number of elements as <i>RefMZ</i> . The default vector is ones(size(<i>RefMZ</i>)).		
RangeValue	Two-element vector, in which the first element is negative and the second element is positive, that specifies the lower and upper limits of a range, in m/z units, relative to each peak. No peak will shift beyond these limits. Default is [-100 100].		
WidthOfPulsesValue	Positive value that specifies the width, in m/z units, for all the Gaussian pulses used to build the correlating synthetic spectrum. The point of the peak where the Gaussian pulse reaches 60.65% of its maximum is set to the width specified by <i>WidthOfPulsesValue</i> . Default is 10.		

WindowSizeRatioValue	Positive value that specifies a scaling factor that determines the size of the window around every alignment peak. The synthetic spectrum is compared to the sample spectrum only within these regions, which saves computation time. The size of the window is given in m/z units by WidthOfPulsesValue * WindowSizeRatioValue. Default is 2.5, which means at the limits of the window, the Gaussian pulses have a value of 4.39% of their maximum.
IterationsValue	Positive integer that specifies the number of refining iterations. At every iteration, the search grid is scaled down to improve the estimates. Default is 5.
GridStepsValue	Positive integer that specifies the number of steps for the search grid. At every iteration, the search area is divided by <i>GridStepsValue</i> ^2. Default is 20.
SearchSpaceValue	 String that specifies the type of search space. Choices are: 'regular' — Default. Evenly spaced lattice.
	 'latin' — Random Latin hypercube with GridStepsValue^2 samples.

msalign

ShowPlotValue	Controls the display of a plot of an original and aligned spectrum over the reference masses specified by <i>RefMZ</i> . Choices are true, false, or <i>I</i> , an integer specifying the index of a spectrum in <i>Intensities</i> . If set to true, the first spectrum in <i>Intensities</i> is plotted. Default is:
	• false — When return values are specified.
	 true — When return values are not specified.
GroupValue	Controls the creation of <i>RefMZOut</i> , a new vector of m/z values to be used as reference masses for aligning the peaks. This vector is created by adjusting the values in <i>RefMZ</i> , based on the sample data from multiple spectra in <i>Intensities</i> , such that the overall shifting and scaling of the peaks.

overall shifting and scaling of the peaks is minimized. Choices are true or false (default).

Tip Set *GroupValue* to true only if *Intensities* contains data for a large number of spectra, and you are not confident of the m/z values used for your reference peaks in *RefMZ*. Leave *GroupValue* set to false if you are confident of the m/z values used for your reference peaks in *RefMZ*.

Return Values	IntensitiesOut	Either of the following:Column vector intensity values for a spectrum, where each row corresponds to an m/z value.
		• Matrix of intensity values for a set of mass spectra that share the same mass/charge (m/z) range, where each row corresponds to an m/z value, and each column corresponds to a spectrum.
		The intensity values represent a shifting and scaling of the data.
	RefMZOut	Vector of m/z values of reference masses, calculated from <i>RefMZ</i> and the sample data from multiple spectra in <i>Intensities</i> , when <i>GroupValue</i> is set to true.

Description IntensitiesOut = msalign(MZ, Intensities, RefMZ) aligns the peaks in a raw mass spectrum or spectra, represented by Intensities and MZ, to reference peaks, provided by RefMZ. First, it creates a synthetic spectrum from the reference peaks using Gaussian pulses centered at the m/z values specified by RefMZ. Then, it shifts and scales the m/z scale to find the maximum alignment between the input spectrum or spectra and the synthetic spectrum. (It uses an iterative multiresolution grid search until it finds the best scale and shift factors for each spectrum.) Once the new m/z scale is determined, the corrected spectrum or spectra are created by resampling their intensities at the original m/z values, creating IntensitiesOut, a vector or matrix of corrected intensity values. The resampling method preserves the shape of the peaks. **Note** The msalign function works best with three to five reference peaks (marker masses) that you know will appear in the spectrum. If you use a single reference peak (internal standard), there is a possibility of aligning sample peaks to the incorrect reference peaks as msalign both scales and shifts the *MZ* vector. If using a single reference peak, you might need to only shift the *MZ* vector. To do this, use *IntensitiesOut* = interp1(*MZ*, *Intensities*, *MZ*-(*ReferenceMass-ExperimentalMass*). For more information, see Aligning Mass Spectrum with One Reference Peak on page 2-665.

... = msalign(..., 'PropertyName', PropertyValue, ...) calls msalign with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = msalign(..., 'Weights', WeightsValue, ...) specifies the relative weight for each mass in RefMZ, the vector of reference m/z values. WeightsValue is a vector of positive values, with the same number of elements as RefMZ. The default vector is ones(size(RefMZ)), which means each reference peak is weighted equally, so that more intense reference peaks have a greater effect in the alignment algorithm. If you have a less intense reference peak, you can increase its weight to emphasize it more in the alignment algorithm.

... = msalign(..., 'Range', RangeValue, ...) specifies the lower and upper limits of the range, in m/z units, relative to each peak. No peak will shift beyond these limits. RangeValue is a two-element vector, in which the first element is negative and the second element is positive. Default is [-100 100]. **Note** Use these values to tune the robustness of the algorithm. Ideally, you should keep the range within the maximum expected shift. If you try to correct larger shifts by increasing the limits, you increase the possibility of picking incorrect peaks to align to the reference masses.

... = msalign(..., 'WidthOfPulses', WidthOfPulsesValue, ...) specifies the width, in m/z units, for all the Gaussian pulses used to build the correlating synthetic spectrum. The point of the peak where the Gaussian pulse reaches 60.65% of its maximum is set to the width specified by WidthOfPulsesValue. Choices are any positive value. Default is 10. WidthOfPulsesValue may also be a function handle. The function is evaluated at the respective m/z values and returns a variable width for the pulses. Its evaluation should give reasonable values between 0 and max(abs(Range)); otherwise, the function returns an error.

Note Tuning the spread of the Gaussian pulses controls a tradeoff between robustness (wider pulses) and precision (narrower pulses). However, the spread of the pulses is unrelated to the shape of the observed peaks in the spectrum. The purpose of the pulse spread is to drive the optimization algorithm.

```
.. = msalign(..., 'WindowSizeRatio',
```

WindowSizeRatioValue, ...) specifies a scaling factor that determines the size of the window around every alignment peak. The synthetic spectrum is compared to the sample spectrum only within these regions, which saves computation time. The size of the window is given in m/z units by WidthOfPulsesValue * WindowSizeRatioValue. Choices are any positive value. Default is 2.5, which means at the limits of the window, the Gaussian pulses have a value of 4.39% of their maximum. ... = msalign(..., 'Iterations', *IterationsValue*, ...) specifies the number of refining iterations. At every iteration, the search grid is scaled down to improve the estimates. Choices are any positive integer. Default is 5.

... = msalign(..., 'GridSteps', GridStepsValue, ...) specifies the number of steps for the search grid. At every iteration, the search area is divided by GridStepsValue^2. Choices are any positive integer. Default is 20.

... = msalign(..., 'SearchSpace', SearchSpaceValue, ...)
specifies the type of search space. Choices are:

- 'regular' Default. Evenly spaced lattice.
- 'latin' Random Latin hypercube with *GridStepsValue*^2 samples.

... = msalign(..., 'ShowPlot', ShowPlotValue, ...) controls the display of a plot of an original and aligned spectrum over the reference masses specified by *RefMZ*. Choices are true, false, or *I*, an integer specifying the index of a spectrum in *Intensities*. If set to true, the first spectrum in *Intensities* is plotted. Default is:

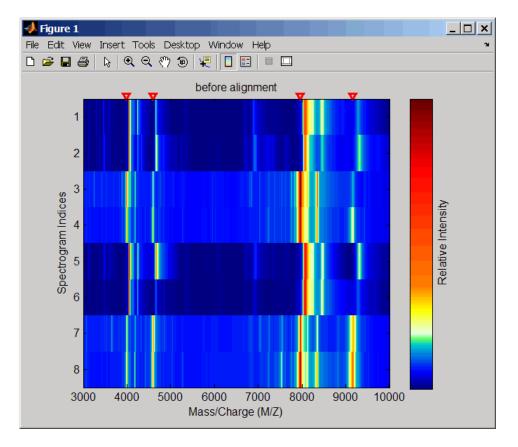
- false When return values are specified.
- true When return values are not specified.

[IntensitiesOut, RefMZOut] = msalign(...,

'Group', GroupValue, ...) controls the creation of RefMZOut, a new vector of m/z values to be used as reference masses for aligning the peaks. This vector is created by adjusting the values in RefMZ, based on the sample data from multiple spectra in Intensities, such that the overall shifting and scaling of the peaks is minimized. Choices are true or false (default).

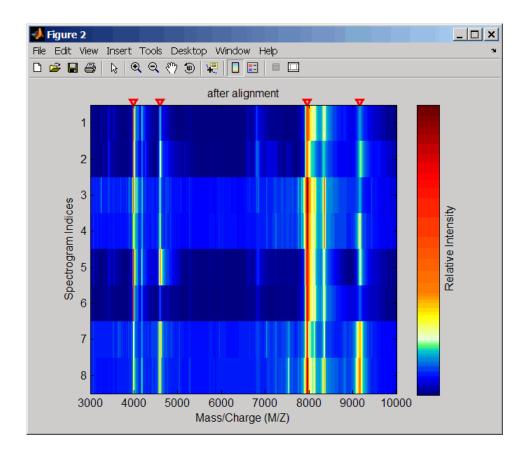
Tip Set *GroupValue* to true only if *Intensities* contains data for a large number of spectra, and you are not confident of the m/z values used for your reference peaks in *RefMZ*. Leave *GroupValue* set to false if you are confident of the m/z values used for your reference peaks in *RefMZ*.

Examples Aligning Mass Spectrum with Three or More Reference Peaks


1 Load sample data, reference masses, and parameter data for synthetic peak width.

load sample_lo_res R = [3991.4 4598 7964 9160]; W = [60 100 60 100];

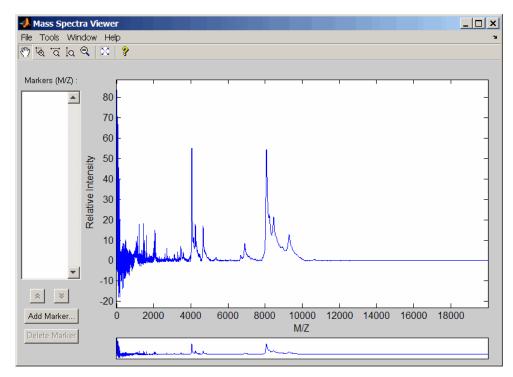
2 Display a color image of the mass spectra before alignment.


```
msheatmap(MZ_lo_res,Y_lo_res,'markers',R,'range',[3000 10000])
title('before alignment')
```

msalign

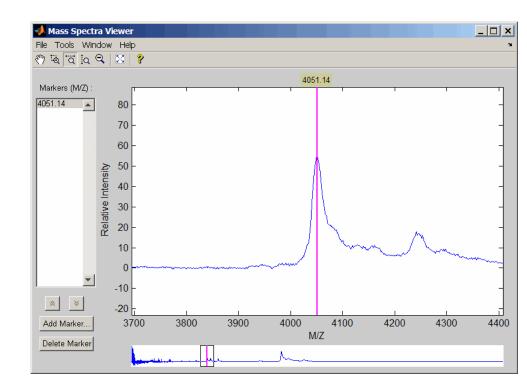
3 Align spectra with reference masses and display a color image of mass spectra after alignment.

```
YA = msalign(MZ_lo_res,Y_lo_res,R,'weights',W);
msheatmap(MZ_lo_res,YA,'markers',R,'range',[3000 10000])
title('after alignment')
```



Aligning Mass Spectrum with One Reference Peak

It is not recommended to use the msalign function if you have only one reference peak. Instead, use the following procedure, which shifts the *MZ* vector, but does not scale it.

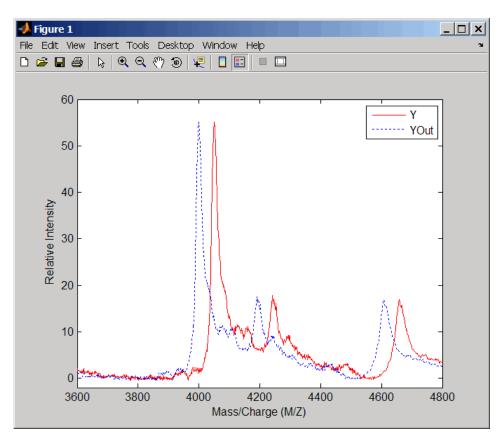
1 Load sample data and view the first sample spectrum.


load sample_lo_res
MZ = MZ_lo_res;
Y = Y_lo_res(:,1);

msviewer(MZ, Y)

2 Use the tall peak around 4000 m/z as the reference peak. To

determine the reference peak's m/z value, click Q, and then click-drag to zoom in on the peak. Right-click in the center of the peak, and then click **Add Marker** to label the peak with its m/z value.


3 Shift a spectrum by the difference between RP, the known reference mass of 4000 m/z, and SP, the experimental mass of 4051.14 m/z.

```
RP = 4000;
SP = 4051.14;
YOut = interp1(MZ, Y, MZ-(RP-SP));
```

4 Plot the original spectrum in red and the shifted spectrum in blue and zoom in on the reference peak.

```
plot(MZ,Y,'r',MZ,YOut,'b:')
xlabel('Mass/Charge (M/Z)')
ylabel('Relative Intensity')
```

legend('Y','YOut') axis([3600 4800 -2 60])

References [1] Monchamp, P., Andrade-Cetto, L., Zhang, J.Y., and Henson, R. (2007) Signal Processing Methods for Mass Spectrometry. In Systems Bioinformatics: An Engineering Case-Based Approach, G. Alterovitz and M.F. Ramoni, eds. (Artech House Publishers).

See Also Bioinformatics Toolbox functions: msbackadj, msheatmap, mspalign, mspeaks, msresample, msviewer

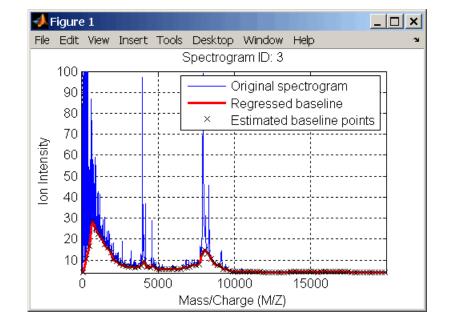
Purpose	Correct baseline of mass spectrum		
Syntax (1997)	<pre>Yout = msbackadj(MZ, Y) Yout = msbackadj(MZ, Y,'WindowSize', WindowSizeValue,) Yout = msbackadj(MZ, Y,'StepSize', StepSizeValue,) Yout = msbackadj(MZ, Y,'RegressionMethod',</pre>		
	<i>QuantileV</i> Yout = msbac <i>PreserveH</i>	kadj(MZ, Y,'QuantileValue', alueValue,) kadj(MZ, Y,'PreserveHeights', eightsValue,) kadj(MZ, Y,'ShowPlot', ShowPlotValue,)	
Arguments	MZ	Range of mass/charge ions. Enter a vector with the range of ions in the spectra.	
	Y	Ion intensity vector with the same length as the mass/charge vector (MZ) . Y can also be a matrix with several spectra that share the same mass/charge (MZ) range.	
Description	Yout = msbackadj(MZ, Y) adjusts the variable baseline of a raw ma spectrum by following three steps:		
	1 Estimates the baseline within multiple shifted windows of width 200 m/z $$		
	2 Regresses the varying baseline to the window points using a splin approximation		

3 Adjusts the baseline of the spectrum (Y)

Yout = msbackadj (MZ, Y, ...'PropertyName', PropertyValue, ...) calls msbackadj with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

Yout = msbackadj (*MZ*, *Y*, ...'WindowSize', *WindowSizeValue*, ...) specifies the width for the shifting window. *WindowSizeValue* can also be a function handle. The function is evaluated at the respective MZ values and returns a variable width for the windows. This option is useful for cases where the resolution of the signal is dissimilar at different regions of the spectrogram. The default value is 200 (baseline point estimated for windows with a width of 200 m/z).

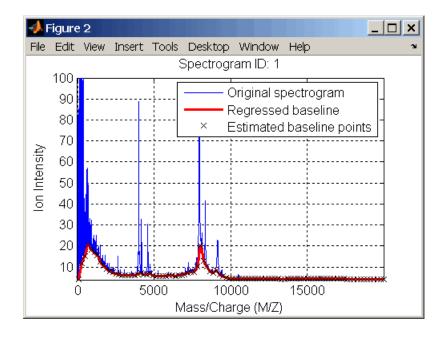
Note The result of this algorithm depends on carefully choosing the window size and the step size. Consider the width of your peaks in the spectrum and the presence of possible drifts. If you have wider peaks toward the end of the spectrum, you may want to use variable parameters.


Yout = msbackadj (MZ, Y, ...'StepSize', StepSizeValue, ...) specifies the steps for the shifting window. The default value is 200 m/z (baseline point is estimated for windows placed every 200 m/z). StepSizeValue may also be a function handle. The function is evaluated at the respective m/z values and returns the distance between adjacent windows.

Yout = msbackadj(MZ, Y, ...'RegressionMethod', RegressionMethodValue, ...) specifies the method to regress the window estimated points to a soft curve. Enter 'pchip' (shape-preserving piecewise cubic interpolation), 'linear' (linear interpolation), or 'spline' (spline interpolation). The default value is 'pchip'.

```
Yout = msbackadj(MZ, Y, ... 'EstimationMethod',
EstimationMethodValue, ...) specifies the method for finding the
likely baseline value in every window. Enter 'quantile' (quantile
value is set to 10%) or 'em' (assumes a doubly stochastic model). With
em, every sample is the independent and identically distributed (i.i.d.)
draw of any of two normal distributed classes (background or peaks).
Because the class label is hidden, the distributions are estimated with
an Expectation-Maximization algorithm. The ultimate baseline value is
the mean of the background class.
Yout = msbackadj(MZ, Y, ... 'SmoothMethod',
SmoothMethodValue, ...) specifies the method for smoothing the
curve of estimated points and eliminating the effects of possible outliers.
Enter 'none', 'lowess' (linear fit), 'loess' (quadratic fit), 'rlowess'
(robust linear), or 'rloess' (robust guadratic fit). Default is 'none'.
Yout = msbackadj(MZ, Y, ...'QuantileValue',
QuantileValueValue, ...) specifies the quantile value.
The default value is 0.10.
Yout = msbackadj(MZ, Y, ... 'PreserveHeights',
PreserveHeightsValue, ...), when PreserveHeightsValue is true,
sets the baseline subtraction mode to preserve the height of the tallest
peak in the signal. The default value is false and peak heights are
not preserved.
Yout = msbackadj(MZ, Y, ... 'ShowPlot', ShowPlotValue, ...)
plots the baseline estimated points, the regressed baseline, and
the original spectrum. When msbackadj is called without output
arguments, the spectra are plotted unless ShowPlotValue is false.
When ShowPlotValue is true, only the first spectrum in Y is plotted.
ShowPlotValue can also contain an index to one of the spectra in Y.
1 Load sample data.
     load sample lo res
```

2 Adjust the baseline for a group of spectra and show only the third spectrum and its estimated background.


Examples

YB = msbackadj(MZ_lo_res,Y_lo_res,'SHOWPLOT',3);

3 Plot the estimated baseline for the fourth spectrum in Y_lo_res using an anonymous function to describe an m/z dependent parameter.

wf = @(mz) 200 + .001 .* mz; msbackadj(MZ_lo_res,Y_lo_res(:,4),'STEPSIZE',wf);

See Also Bioinformatics Toolbox functions: msalign, mslowess, msheatmap, msnorm, mspeaks, msresample, mssgolay, msviewer

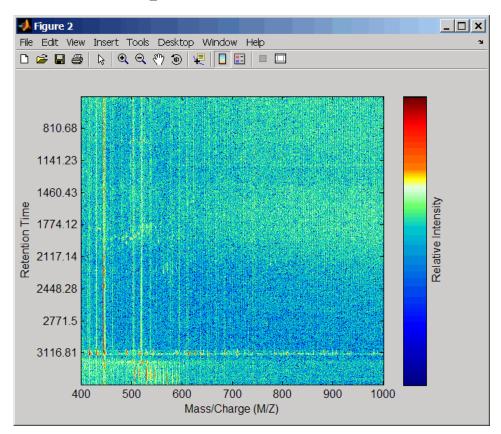
msdotplot

Purpose	Plot set of peak lists from LC/MS or GC/MS data set			
Syntax	<pre>msdotplot(Peaks, Times) msdotplot(FigHandle, Peaks, Times) msdotplot(, 'Quantile', QuantileValue) PlotHandle = msdotplot()</pre>			
Arguments	Peaks	Cell array of peak lists, where each element is a two-column matrix with m/z values in the first column and ion intensity values in the second column. Each element corresponds to a spectrum or retention time.		
		Tip You can use the mzxml2peaks function to create the <i>Peaks</i> cell array.		
	Times	Vector of retention times associated with an LC/MS or GC/MS data set. The number of elements in <i>Times</i> equals the number of elements in the cell array <i>Peaks</i> .		
		Tip You can use the mzxml2peaks function to create the <i>Times</i> vector.		
	FigHandle	Handle to an open Figure window such as one created by the msheatmap function.		
	QuantileValue	Value that specifies a percentage. When peaks are ranked by intensity, only those that rank above this percentage are plotted. Choices are any value ≥ 0 and ≤ 1 . Default is 0. For example, setting <i>QuantileValue</i> = 0 plots all peaks, and setting <i>QuantileValue</i> = 0.8 plots only the 20% most intense peaks.		

Return Values	PlotHandleHandle to the line series object (figure plot).				
Description	<pre>msdotplot(Peaks, Times) plots a set of peak lists from a liquid chromatography/mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set represented by Peaks, a cell array of peak lists, where each element is a two-column matrix with m/z values in the first column and ion intensity values in the second column, and Times, a vector of retention times associated with the spectra. Peaks and Times have the same number of elements. The data is plotted into any existing figure generated by the msheatmap function; otherwise, the data is plotted into a new Figure window.</pre>				
	msdotplot(FigHandle, Peaks, Times) plots the set of peak lists into the axes contained in an open Figure window with the handle FigHandle.				
	Tip This syntax is useful to overlay a dot plot on top of a heat map of mass spectrometry data created with the msheatmap function.				
	msdotplot(, 'Quantile', QuantileValue) plots only the most intense peaks, specifically those in the percentage above the specified QuantileValue. Choices are any value \geq 0 and \leq 1. Default is 0. For example, setting QuantileValue = 0 plots all peaks, and setting QuantileValue = 0.8 plots only the 20% most intense peaks.				
	<i>PlotHandle</i> = msdotplot() returns a handle to the line series object (figure plot). You can use this handle as input to the get function to display a list of the plot's properties. You can use this handle as input to the set function to change the plot's properties, including showing and hiding points.				
Examples	1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains LC/MS data variables, including peaks and ret_time. peaks is a cell array of peak lists, where each element is a two-column				

matrix of m/z values and ion intensity values, and each element corresponds to a spectrum or retention time. ret_time is a column vector of retention times associated with the LC/MS data set.

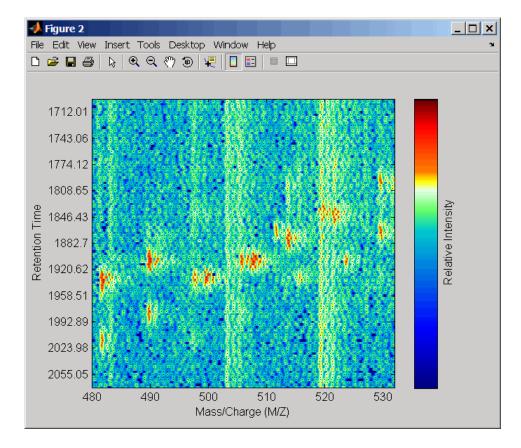
load lcmsdata


2 Create a dot plot with only the 5% most intense peaks.

_ 🗆 🗙 🣣 Figure 1 File Edit View Insert Tools Desktop Window Help 🗅 🚅 🔚 🎒 \mathbf{b} 🔍 🔍 🥙 🐌 🐙 3000 2500 Retention Time 2000 1500 1000 500 600 700 900 800 Mass/Charge (M/Z)

msdotplot(peaks,ret_time,'Quantile',0.95)

3 Resample the data, then create a heat map of the LC/MS data.


[MZ,Y] = msppresample(peaks,5000); msheatmap(MZ,ret_time,log(Y))

4 Overlay the dot plot on the heat map, and then zoom in to see the detail.

```
msdotplot(peaks,ret_time)
axis([480 532 375 485])
```

msdotplot

See Also Bioinformatics Toolbox functions: msheatmap, mspalign, mspeaks, msppresample, mzcdf2peaks, mzcdfread, mzxml2peaks, mzxmlread

```
PurposeCreate pseudocolor image of set of mass spectraSyntaxmsheatmap(MZ, Intensities)<br/>msheatmap(..., 'Midpoint', MidpointValue, ...)<br/>msheatmap(..., 'Range', RangeValue, ...)<br/>msheatmap(..., 'SpecIdx', SpecIdxValue, ...)<br/>msheatmap(..., 'Group', GroupValue, ...)<br/>msheatmap(..., 'Resolution', ResolutionValue, ...)
```

Arguments

ΜZ

Times

Column vector of common mass/charge (m/z) values for a set of spectra. The number of elements in the vector equals the number of rows in the matrix *Intensities*.

Note You can use the msppresample function to create the *MZ* vector.

Column vector of retention times associated with a liquid chromatography/mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set. The number of elements in the vector equals the number of columns in the matrix *Intensities*. The retention times are used to label the y-axis of the heat map.

Tip You can use the mzxml2peaks function to create the *Times* vector.

Intensities Matrix of intensity values for a set of mass spectra that share the same m/z range. Each row corresponds to an m/z value, and each column corresponds to a spectrum or retention time. The number of rows equals the number of elements in vector MZ. The number of columns equals the number of elements in vector Times.

Note You can use the msppresample function to create the *Intensities* matrix.

MidpointValue	Value specifying a quantile of the ion intensity values to fall below the midpoint of the colormap, meaning they do not represent peaks. msheatmap uses a custom colormap where cool colors represent nonpeak regions, white represents the midpoint, and warm colors represent peaks. Choices are any value \geq 0 and \leq 1. Default is:	
	• 0.99 — For LC/MS or GC/MS data or when input 7 is provided. This means that 1% of the pixels are warm colors and represent peaks.	
	• 0.95 — For non-LC/MS or non-GC/MS data or when input <i>T</i> is not provided. This means that 5% of the pixels are warm colors and represent peaks.	
	Tip You can also change the midpoint interactively after creating the heat map by right-clicking the color bar, selecting Interactive Colormap Shift , and then click-dragging the cursor vertically on the color bar. This technique is useful when comparing multiple heat maps.	
RangeValue	1-by-2 vector specifying the m/z range for the x-axis of the heat map. <i>RangeValue</i> must be within [min(MZ) max(MZ)]. Default is the full range [min(MZ) max(MZ)].	
MarkersValue	Vector of m/z values to mark on the top horizontal axis of the heat map. Default is [].	

SpecIdxValue Either of the following:

- Vector of values with the same number of elements as columns (spectra) in the matrix *Intensities*.
- Cell array of strings with the same number of elements as columns (spectra) in the matrix *Intensities*.

Each value or string specifies a label for the corresponding spectrum. These values or strings are used to label the *y*-axis of the heat map.

Note If input *Times* is provided, it is assumed that *Intensities* contains LC/MS or GC/MS data, and *SpecIdxValue* is ignored.

	GroupValue	 Either of the following: Vector of values with the same number of elements as rows in the matrix <i>Intensities</i> Cell array of strings with the same number of elements as rows (spectra) in the matrix <i>Intensities</i> Each value or string specifies a group to which the corresponding spectrum belongs. The spectra are sorted and combined into groups along the <i>y</i>-axis in the heat map. 	
		Note If input <i>Times</i> is provided, it is assumed that <i>Intensities</i> contains LC/MS or GC/MS data, and <i>GroupValue</i> is ignored.	
	ResolutionValue	 Value specifying the horizontal resolution of the heat map image. Increase this value to enhance details. Decrease this value to reduce memory usage. Default is: 0.5 — When <i>MZ</i> contains > 2,500 elements. 	
		• 0.05 — When <i>MZ</i> contains <= 2,500 elements.	
Description		tensities) displays a pseudocolor heat map image or the spectra in matrix Intensities.	
	map image of the i	mes, Intensities) displays a pseudocolor heat ntensities for the spectra in matrix Intensities, a times in vector Times to label the y-axis.	
	msheatmap(, ' <i>PropertyName</i> ', <i>PropertyValue</i> ,) calls msheatmap with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each <i>PropertyName</i> must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:		

msheatmap(..., 'Midpoint', *MidpointValue*, ...) specifies a quantile of the ion intensity values to fall below the midpoint of the colormap, meaning they do not represent peaks. msheatmap uses a custom colormap where cool colors represent nonpeak regions, white represents the midpoint, and warm colors represent peaks. Choices are any value between 0 and 1. Default is:

- 0.99 For LC/MS or GC/MS data or when input *T* is provided. This means that 1% of the pixels are warm colors and represent peaks.
- 0.95 For non-LC/MS or non-GC/MS data or when input *T* is not provided. This means that 5% of the pixels are warm colors and represent peaks.

Tip You can also change the midpoint interactively after creating the heat map by right-clicking the color bar, selecting **Interactive Colormap Shift**, then click-dragging the cursor vertically on the color bar. This technique is useful when comparing multiple heat maps.

msheatmap(..., 'Range', RangeValue, ...) specifies the m/z range for the x-axis of the heat map. RangeValue is a 1-by-2 vector that must be within [min(MZ) max(MZ)]. Default is the full range [min(MZ) max(MZ)].

msheatmap(..., 'Markers', MarkersValue, ...) places markers along the top horizontal axis of the heat map for the m/z values specified in the vector MarkersValue. Default is [].

msheatmap(..., 'SpecIdx', SpecIdxValue, ...) labels the spectra along the y-axis in the heat map. The labels are specified by SpecIdxValue, a vector of values or cell array of strings. The number of values or strings is the same as the number of columns (spectra) in the matrix Intensities. Each value or string specifies a label for the corresponding spectrum.

msheatmap(..., 'Group', GroupValue, ...) sorts and combines
spectra into groups along the y-axis in the heat map. The groups are

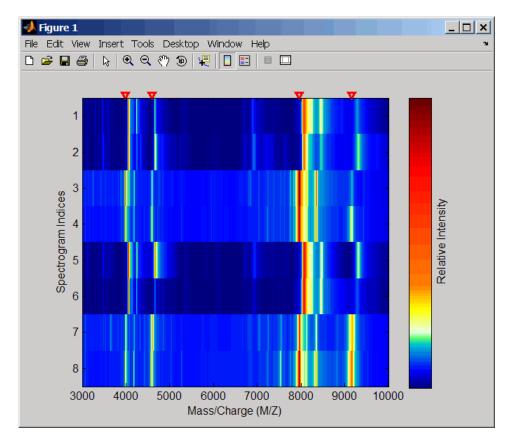
specified by *GroupValue*, a vector of values or cell array of strings. The number of values or strings is the same as the number of rows in the matrix *Intensities*. Each value or string specifies a group to which the corresponding spectrum belongs.

msheatmap(..., 'Resolution', *ResolutionValue*, ...) specifies the horizontal resolution of the heat map image. Increase this value to enhance details. Decrease this value to reduce memory usage. Default is:

- 0.5 When *MZ* contains > 2,500 elements.
- 0.05 When MZ contains <= 2,500 elements.

Examples SELDI-TOF Data

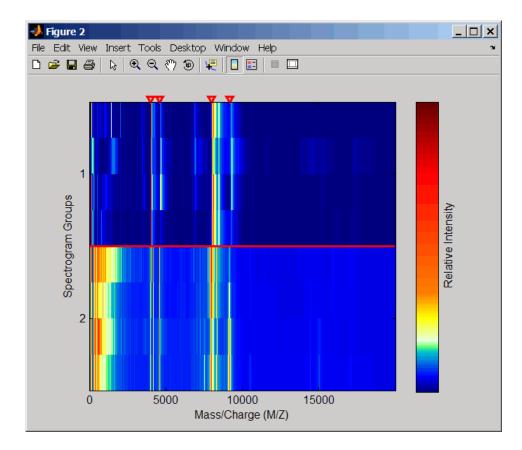
1 Load SELDI-TOF sample data.


load sample_lo_res

2 Create a vector of four m/z values to mark along the top horizontal axis of the heat map.

M = [3991.4 4598 7964 9160];

3 Display the heat map with m/z markers and a limited m/z range.


msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'range',[3000 10000])

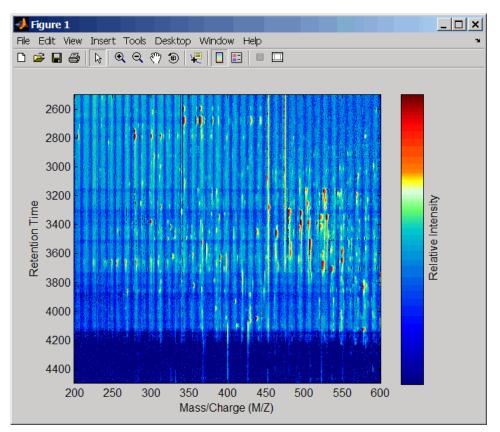
4 Display the heat map again grouping each spectrum into one of two groups.

TwoGroups = [1 1 2 2 1 1 2 2];
msheatmap(MZ_lo_res,Y_lo_res,'markers',M,'group',TwoGroups)

msheatmap

Liquid Chromatography/Mass Spectrometry (LC/MS) Data

1 Load LC/MS sample data.


load lcmsdata

2 Resample the peak lists to create a vector of m/z values and a matrix of intensity values.

[MZ, Intensities] = msppresample(peaks, 5000);

3 Display the heat map showing mass spectra at different retention times.

msheatmap(MZ, ret_time, log(Intensities))

See Also

Bioinformatics Toolbox functions: msalign, msbackadj, msdotplot, mslowess, msnorm, mspalign, msresample, mssgolay, msviewer

Purpose	Smooth mass spectrum using nonparametric method	
Syntax	<pre>mslowess(, mslowess(, mslowess(, mslowess(,</pre>	'Span', <i>SpanValue</i>)
Arguments	MZ	Mass/charge vector with the range of ions in the spectra.
	Y	Ion intensity vector with the same length as the mass/charge vector (MZ) . Y can also be a matrix with several spectra that share the same mass/charge (MZ) range.
Description	Yout = mslowess(MZ, Y, ' <i>PropertyName</i> ', <i>PropertyValue</i>) smoothes a mass spectrum (Y) using a locally weighted linear regression (lowess) method with a default span of 10 samples.	
	Note 1) mslowess assumes that a mass/charge vector (MZ) might not be uniformly spaced. Therefore, the sliding window for smoothing is centered using the closest samples in terms of the MZ value and not in terms of the MZ indices.	
	2) When the vector MZ does not have repeated values or NaNs, the algorithm is approximately twice as fast.	
	<pre>mslowess(, 'Order', OrderValue) specifies the order (OrderValue) of the Lowess smoother. Enter 1 (linear polynomial fit or Lowess), 2 (quadratic polynomial fit or Loess), or 0 (equivalent to a weighted local mean estimator and presumably faster because only a</pre>	

mean computation is performed instead of a least squares regression). The default value is 1.

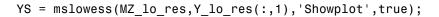
Note Curve Fitting Toolbox software also refers to Lowess smoothing of order 2 as Loess smoothing.

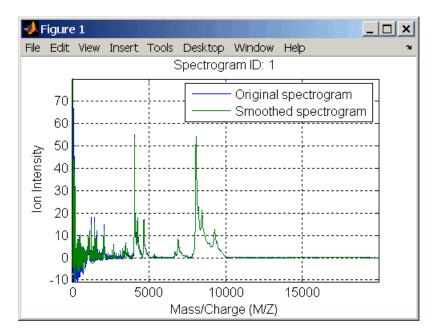
mslowess(..., 'Span', SpanValue) specifies the window size for the smoothing kernel. If SpanValue is greater than 1, the window is equal to SpanValue number of samples independent of the mass/charge vector (MZ). The default value is 10 samples. Higher values will smooth the signal more at the expense of computation time. If SpanValue is less than 1, the window size is taken to be a fraction of the number of points in the data. For example, when SpanValue is 0.005, the window size is equal to 0.50% of the number of points in MZ.

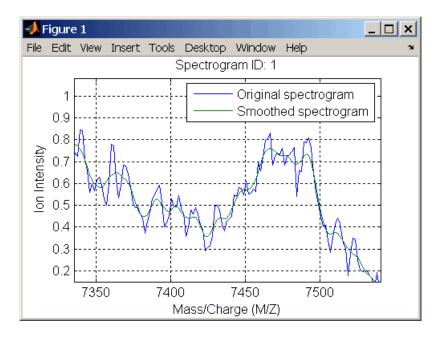
mslowess(..., 'Kernel', KernelValue) selects the function
(KernelValue) for weighting the observed ion intensities. Samples close
to the MZ location being smoothed have the most weight in determining
the estimate. Enter

'tricubic' (default)	(1 - (dist/dmax).^3).^3
'gaussian'	exp(-(2*dist/dmax).^2)
'linear'	1-dist/dmax

mslowess(..., 'RobustIterations', RobustIterationsValue) specifies the number of iterations (RobustValue) for a robust fit. If RobustIterationsValue is 0 (default), no robust fit is performed. For robust smoothing, small residual values at every span are outweighed to improve the new estimate. 1 or 2 robust iterations are usually adequate while, larger values might be computationally expensive.

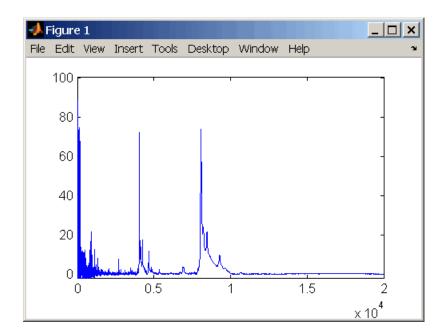

Note For a uniformly spaced MZ vector, a nonrobust smoothing with Order equal to 0 is equivalent to filtering the signal with the kernel vector.


mslowess(..., 'ShowPlot', ShowPlotValue) plots the smoothed spectrum over the original spectrum. When mslowess is called without output arguments, the spectra are plotted unless ShowPlotValue is false. When ShowPlotValue is true, only the first spectrum in Y is plotted. ShowPlotValue can also contain an index to one of the spectra in Y.

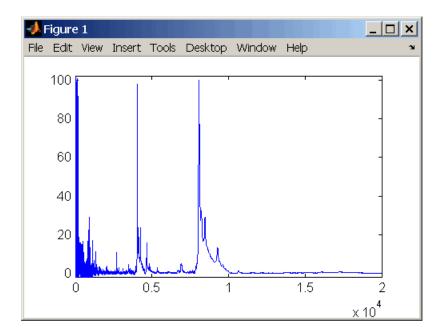

Example 1 Load sample data.

load sample lo res

2 Smooth spectrum and draw figure with unsmoothed and smoothed spectra.



See Also Bioinformatics Toolbox functions: msalign, msbackadj, msheatmap, msheatmap,msnorm, mspeaks, msresample, mssgolay, msviewer


Purpose	Normalize set of mass spectra	
Syntax	<pre>Yout = msnorm(MZ, Y) [Yout, NormParameters] = msnorm() msnorm(MZ, NewY, NormParameters) msnorm(, 'PropertyName', PropertyValue,) msnorm(, 'Quantile', QuantileValue) msnorm(, 'Limits', LimitsValue) msnorm(, 'Consensus', ConsensusValue) msnorm(, 'Method', MethodValue) msnorm(, 'Max', MaxValue)</pre>	
Arguments	 MZ Mass/charge vector with the range of ions in the spectra. Y Ion intensity vector with the same length as the mass/charge vector (MZ). Y can also be a matrix with several spectra that share the same mass/charge (MZ) range. 	
Description	<pre>Yout = msnorm(MZ, Y) normalizes a group of mass spectra by standardizing the area under the curve (AUC) to the group median. [Yout, NormParameters] = msnorm() returns a structure with the parameters to normalize another group of spectra. msnorm(MZ, NewY, NormParameters) uses the parameter information from a previous normalization (NormParameters) to normalize a new set of spectra (NewY) with the MZ positions and output scale from the previous normalization. NormParameters is a structure created by msnorm. If a consensus proportion (ConsensusValue) was given in the previous normalization, no new MZ positions are selected, and normalization is performed using the same MZ positions. msnorm(, 'PropertyName', PropertyValue,) defines optional properties using property name/value pairs.</pre>	

	<pre>msnorm(, 'Quantile', QuantileValue)specifies a 1-by-2 vector with the quantile limits for reducing the set of MZ values. For example, when QuantileValue is [0.9 1], only the largest 10% of ion intensities in every spectrum are used to compute the AUC. When QuantileValue is a scalar, the scalar value represents the lower quantile limit and the upper quantile limit is set to 1. The default value is [0 1] (use the whole area under the curve, AUC). msnorm(, 'Limits', LimitsValue) specifies a 1-by-2 vector with</pre>		
	an MZ range for picking normalization points. This parameter is useful to eliminate low-mass noise from the AUC calculation. The default value is [1, max(MZ)].		
	<pre>msnorm(, 'Consensus', ConsensusValue) selects MZ positions with a consensus rule to include an MZ position into the AUC. Its ion intensity must be within the quantile limits of at least part (ConsensusValue) of the spectra in Y. The same MZ positions are used to normalize all the spectrums. Enter a scalar between 0 and 1.</pre>		
	Use the Consensus property to eliminate low-intensity peaks and noise from the normalization.		
	<pre>msnorm(, 'Method', MethodValue) selects a method for normalizing the AUC of every spectrum. Enter either 'Median' (default) or 'Mean'.</pre>		
	<pre>msnorm(, 'Max', MaxValue), after individually normalizing every spectrum, scales each spectrum to an overall maximum intensity (Max). Max is a scalar. if omitted, no postscaling is performed. If QuantileValue is [1 1], then a single point (peak height of the tallest peak) is normalized to Max.</pre>		
Example 1	1 Load sample data and plot one of the spectra.		
	<pre>load sample_lo_res; Y = Y_lo_res(:,[1 2 5 6]); MZ = MZ_lo_res; plot(MZ, Y(:, 4));</pre>		

2 Normalize the AUC of every spectrum to its median, eliminating low-mass noise, and post-rescaling such that the maximum intensity is 100.

```
Y1 = msnorm(MZ,Y,'Limits',[1000 inf],'Max',100);
plot(MZ, Y1(:, 4));
```


3 Normalize the ion intensity of every spectrum to the maximum intensity of the single highest peak from any of the spectra in the range above 100 m/z.

Y2 = msnorm(MZ,Y,'QUANTILE', [1 1],'LIMITS',[1000 inf]);

Example 2 1 Select MZ regions where the intensities are within the third quartile in at least 90% of the spectrograms.

[Y3,S] = msnorm(MZ,Y,'Quantile',[0.5 0.75],'Consensus',0.9);

2 Use the same MZ regions to normalize another set of spectrograms.

Y4 = msnorm(MZ, Y, S);

See Also Bioinformatics Toolbox functions: msalign, msbackadj, msheatmap, mslowess, msresample, mssgolay, msviewer

Purpose	Align mass spectra from data set	multiple peak lists from LC/MS or GC/MS
Syntax (1997)	<pre>[CMZ, AlignedPeaks] = mspalign(Peaks) [CMZ, AlignedPeaks] = mspalign(Peaks,'Quantile', QuantileValue,) [CMZ, AlignedPeaks] = mspalign(Peaks, 'EstimationMethod', EstimationMethodValue,) [CMZ, AlignedPeaks] = mspalign(Peaks, 'CorrectionMethodValue,) [CMZ, AlignedPeaks] = mspalign(Peaks,'ShowEstimation', ShowEstimationValue,)</pre>	
Arguments	Peaks	Cell array of peak lists from a liquid chromatography/mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set. Each element in the cell array is a two-column matrix with m/z values in the first column and ion intensity values in the second column. Each element corresponds to a spectrum or retention time.
		Note You can use the mzxml2peaks function or the mspeaks function to create the <i>Peaks</i> cell array.
	QuantileValue	Value that determines which peaks are selected by the estimation method to create <i>CMZ</i> , the vector of common m/z values. Choices are any value \geq 0 and \leq 1. Default is 0.95.

EstimationMethodValue String specifying the method to estimate CMZ, the vector of common mass/charge (m/z) values. Choices are:

- histogram Default method. Peak locations are clustered using a kernel density estimation approach. The peak ion intensity is used as a weighting factor. The center of all the clusters conform to the *CMZ* vector.
- regression Takes a sample of the distances between observed significant peaks and regresses the inter-peak distance to create the *CMZ* vector with similar inter-element distances.

	CorrectionMethodValu	<i>ve</i> String specifying the method to align each peak list to the <i>CMZ</i> vector. Choices are:
		• nearest-neighbor — Default method. For each common peak in the <i>CMZ</i> vector, its counterpart in each peak list is the peak that is closest to the common peak's m/z value.
		• shortest-path — For each common peak in the <i>CMZ</i> vector, its counterpart in each peak list is selected using the shortest path algorithm.
	ShowEstimationValue	Controls the display of an assessment plot relative to the estimation method and the vector of common mass/charge (m/z) values. Choices are true or false. Default is either:
		 false — When return values are specified.
		 true — When return values are not specified.
Return Values	CMZ	Vector of common mass/charge (m/z) values estimated by the mspalign function.
	AlignedPeaks	Cell array of peak lists, with the same form as <i>Peaks</i> , but with corrected m/z values in the first column of each matrix.
Description	multiple peak lists (centr common mass/charge (m	mspalign(<i>Peaks</i>) aligns mass spectra from roided data), by first estimating <i>CMZ</i> , a vector of /z) values estimated by considering the peaks a cell array of peak lists, where each element

corresponds to a spectrum or retention time. It then aligns the peaks

in each spectrum to the values in *CMZ*, creating *AlignedPeaks*, a cell array of aligned peak lists.

[CMZ, AlignedPeaks] = mspalign(Peaks, ...'PropertyName', PropertyValue, ...) calls mspalign with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

[*CMZ*, *AlignedPeaks*] = mspalign(*Peaks*, ...'Quantile', *QuantileValue*, ...) determines which peaks are selected by the estimation method to create *CMZ*, the vector of common m/z values. Choices are a scalar between 0 and 1. Default is 0.95.

```
[CMZ, AlignedPeaks] = mspalign(Peaks,
```

... 'EstimationMethod', *EstimationMethodValue*, ...) specifies the method used to estimate *CMZ*, the vector of common mass/charge (m/z) values. Choices are:

- histogram Default method. Peak locations are clustered using a kernel density estimation approach. The peak ion intensity is used as a weighting factor. The center of all the clusters conform to the *CMZ* vector.
- regression Takes a sample of the distances between observed significant peaks and regresses the inter-peak distance to create the *CMZ* vector with similar inter-element distances.

[CMZ, AlignedPeaks] = mspalign(Peaks,

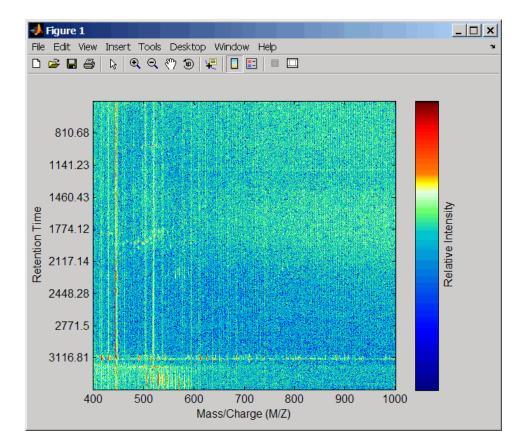
... 'CorrectionMethod', *CorrectionMethodValue*, ...) specifies the method used to align each peak list to the *CMZ* vector. Choices are:

• nearest-neighbor — Default method. For each common peak in the *CMZ* vector, its counterpart in each peak list is the peak that is closest to the common peak's m/z value.

• shortest-path — For each common peak in the CMZ vector, its counterpart in each peak list is selected using the shortest path algorithm.

[*CMZ*, *AlignedPeaks*] = mspalign(*Peaks*, ...'ShowEstimation', *ShowEstimationValue*, ...) controls the display of an assessment plot relative to the estimation method and the estimated vector of common mass/charge (m/z) values. Choices are true or false. Default is either:

- false When return values are specified.
- true When return values are not specified.

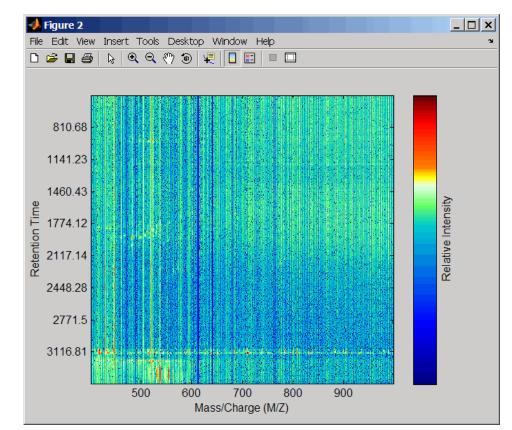

Examples Load a MAT-file, included with the Bioinformatics Toolbox software, which contains liquid chromatography/mass spectrometry (LC/MS) data variables, including peaks and ret_time. peaks is a cell array of peak lists, where each element is a two-column matrix of m/z values and ion intensity values, and each element corresponds to a spectrum or retention time. ret_time is a column vector of retention times associated with the LC/MS data set.

load lcmsdata

2 Resample the unaligned data, display it in a heat map, and then overlay a dot plot.

```
[MZ,Y] = msppresample(peaks,5000);
msheatmap(MZ,ret_time,log(Y))
```

mspalign

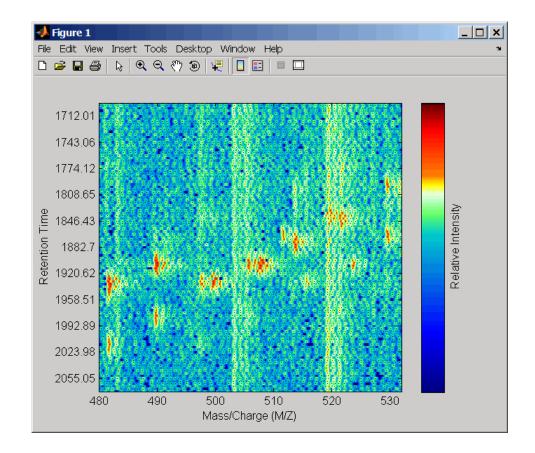

msdotplot(peaks,ret_time)

3 Align the peak lists from the mass spectra using the default estimation and correction methods.

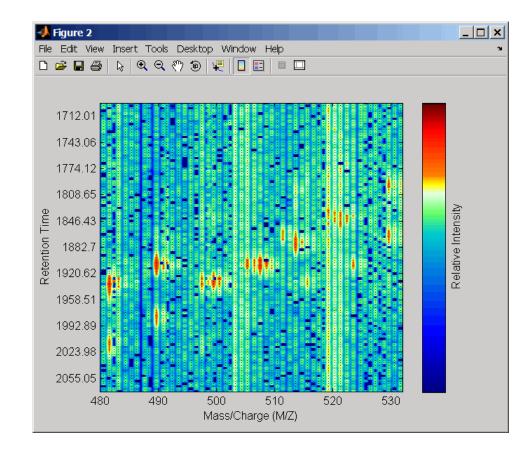
[CMZ, aligned_peaks] = mspalign(peaks);

4 Resample the unaligned data, display it in a heat map, and then overlay a dot plot.

[MZ2,Y2] = msppresample(aligned_peaks,5000);


msheatmap(MZ2,ret_time,log(Y2))

msdotplot(aligned_peaks,ret_time)


5 Link the axes of the two heat plots and zoom in to observe the detail to compare the unaligned and aligned LC/MS data sets.

```
linkaxes(findobj(0, 'Tag', 'MSHeatMap'))
axis([480 532 375 485])
```

mspalign

mspalign

References [1] Jeffries, N. (2005) Algorithms for alignment of mass spectrometry proteomic data. Bioinfomatics *21:14*, 3066–3073.

[2] Purvine, S., Kolker, N., and Kolker, E. (2004) Spectral Quality Assessment for High-Throughput Tandem Mass Spectrometry Proteomics. OMICS: A Journal of Integrative Biology 8:3, 255–265.

See Also Bioinformatics Toolbox functions: msalign, msdotplot, msheatmap, mspeaks, msppresample, mzcdf2peaks, mzxml2peaks

Purpose	Convert raw mass spectrometry data to peak list (centroided data)
Syntax	<pre>Peaks = mspeaks(MZ, Intensities) Peaks = mspeaks(MZ, Intensities,'Base', BaseValue,) Peaks = mspeaks(MZ, Intensities,'Levels', LevelsValue,</pre>
	<pre>Peaks = mspeaks(MZ, Intensities,'Multiplier', MultiplierValue,) Peaks = mspeaks(MZ, Intensities,'Denoising', DenoisingValue,) Peaks = mspeaks(MZ, Intensities,'PeakLocation', PeakLocationValue,) Peaks = mspeaks(MZ, Intensities,'FWHHFilter', FWHHFilterValue,) Peaks = mspeaks(MZ, Intensities, 'OverSegmentationFilter', OverSegmentationFilterValue,) Peaks = mspeaks(MZ, Intensities,'HeightFilter', HeightFilterValue,) Peaks = mspeaks(MZ, Intensities,'ShowPlot', ShowPlotValue,)</pre>

Arguments	MZ	Vector of mass/charge (m/z) values for a set of spectra. The number of elements in the vector equals n or the number of rows in matrix <i>Intensities</i> .
	Intensities	Matrix of intensity values for a set of mass spectra that share the same mass/charge (m/z) range. Each row corresponds to an m/z value, and each column corresponds to a spectrum or retention time. The number of rows equals n or the number of elements in vector MZ .
	BaseValue	An integer between 2 and 20 that specifies the wavelet base. Default is 4.
	LevelsValue	An integer between 1 and 12 that specifies the number of levels for the wavelet decomposition. Default is 10.

NoiseEstimatorValue	String or scalar that specifies the method to estimate the threshold, T, to filter out noisy components in the first high-band decomposition (y_h) . Choices are:
	 mad — Default. Median absolute deviation, which calculates T = sqrt(2*log(n))*mad(y_h) / 0.6745, where n = the number of rows in the <i>Intensities</i> matrix.
	 std — Standard deviation, which calculates T = std(y_h).
	• A positive real value.
MultiplierValue	A positive real value that specifies the threshold multiplier constant. Default is 1.0.
DenoisingValue	Controls the use of wavelet denoising to smooth the signal. Choices are true (default) or false.
	Note If your data has previously been smoothed, for example, with the mslowess or mssgolay function, it is not necessary to use wavelet denoising. Set this property to false.

PeakLocationValue	Value that specifies the proportion of the peak height that selects the points used to compute the centroid mass of the respective peak. The value must be ≥ 0 and ≤ 1 . Default is 1.0.
FWHHFilterValue	Positive real value that specifies the minimum full width at half height (FWHH), in m/z units, for reported peaks. Peaks with FWHH below this value are not included in the output list <i>Peaks</i> . Default is 0 .
OverSegmentationFilterValue	Positive real value that specifies the minimum distance, in m/z units, between neighboring peaks. When the signal is not smoothed appropriately, multiple maxima can appear to represent the same peak. By increasing this filter value, oversegmented peaks are joined into a single peak. Default is 0.

	<i>HeightFilterValue</i>	Positive real value that specifies the minimum height for reported peaks. Default is 0.
	ShowPlotValue	Controls the display of a plot of the original and the smoothed signal, with the peaks included in the output matrix <i>Peaks</i> marked. Choices are true, false, or <i>I</i> , an integer specifying the index of a spectrum in <i>Intensities</i> . If set to true, the first spectrum in <i>Intensities</i> is plotted. Default is:
		• false — When return values are specified.
		 true — When return values are not specified.
Return Values	Peaks	Two-column matrix where each row corresponds to a peak. The first column contains mass/charge (m/z) values, and the second column contains ion intensity values.
Description	<pre>Peaks = mspeaks(MZ, Intensities) finds relevant peaks in raw mass spectrometry data, and creates Peaks, a two-column matrix, containin the m/z value and ion intensity for each peak. mspeaks finds peaks by first smoothing the signal using undecimated wavelet transform with Daubechies coefficients, then assigning peak locations, and lastly, eliminating peaks that do not satisfy specified criteria.</pre>	
		nsities,'PropertyName', mspeaks with optional properties that

use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

Peaks = mspeaks(MZ, Intensities, ... 'Base', BaseValue, ...)
specifies the wavelet base. BaseValue must be an integer between 2
and 20. Default is 4.

Peaks = mspeaks(MZ, Intensities, ... 'Levels', LevelsValue, ...) specifies the number of levels for the wavelet decomposition. LevelsValue must be an integer between 1 and 12. Default is 10.

Peaks = mspeaks(MZ, Intensities, ...'NoiseEstimator', NoiseEstimatorValue, ...) specifies the method to estimate the threshold, T, to filter out noisy components in the first high-band decomposition (y_h). Choices are:

- mad Default. Median absolute deviation, which calculates T = sqrt(2*log(n))*mad(y_h) / 0.6745, where n = the number of rows in the *Intensities* matrix.
- std Standard deviation, which calculates T = std(y_h).
- A positive real value.

Peaks = mspeaks(MZ, Intensities, ...'Multiplier', MultiplierValue, ...) specifies the threshold multiplier constant. MultiplierValue must be a positive real value. Default is 1.0.

Peaks = mspeaks(MZ, Intensities, ... 'Denoising', DenoisingValue, ...) controls the use of wavelet denoising to smooth the signal. Choices are true (default) or false. **Note** If your data has previously been smoothed, for example, with the mslowess or mssgolay function, it is not necessary to use wavelet denoising. Set this property to false.

 $Peaks = mspeaks(MZ, Intensities, ... 'PeakLocation', PeakLocationValue, ...) specifies the proportion of the peak height that selects the points used to compute the centroid mass of the respective peak. PeakLocationValue must be a value <math>\geq 0$ and ≤ 1 . Default is 1.0.

Note When *PeakLocationValue* = 1.0, the peak location is exactly at the maximum of the peak, while when *PeakLocationValue* = 0, the peak location is computed with all the points from the closest minimum to the left of the peak to the closest minimum to the right of the peak.

Peaks = mspeaks(MZ, Intensities, ...'FWHHFilter', FWHHFilterValue, ...) specifies the minimum full width at half height (FWHH), in m/z units, for reported peaks. Peaks with FWHH below this value are not included in the output list Peaks. FWHHFilterValue must be a positive real value. Default is 0.

```
Peaks = mspeaks(MZ, Intensities,
```

... 'OverSegmentationFilter', OverSegmentationFilterValue, ...) specifies the minimum distance, in m/z units, between neighboring peaks. When the signal is not smoothed appropriately, multiple maxima can appear to represent the same peak. By increasing this filter value, oversegmented peaks are joined into a single peak. OverSegmentationFilterValue must be a positive real value. Default is 0.

Peaks = mspeaks(MZ, Intensities, ...'HeightFilter', HeightFilterValue, ...) specifies the minimum height for reported peaks. Peaks with heights below this value are not included in the output list *Peaks*. *HeightFilterValue* must be a positive real value. Default is 0.

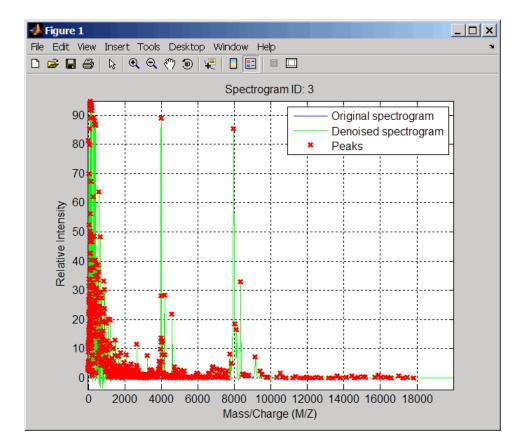
Peaks = mspeaks(MZ, Intensities, ...'ShowPlot', ShowPlotValue, ...) controls the display of a plot of the original and the smoothed signal, with the peaks included in the output matrix Peaks marked. Choices are true, false, or I, an integer specifying the index of a spectrum in Intensities. If set to true, the first spectrum in Intensities is plotted. Default is either:

- false When return values are specified.
- true When return values are not specified.

Examples Load a MAT-file, included with the Bioinformatics Toolbox software, which contains mass spectrometry data variables, including MZ_lo_res, a vector of m/z values for a set of spectra, and Y_lo_res, a matrix of intensity values for a set of mass spectra that share the same m/z range.

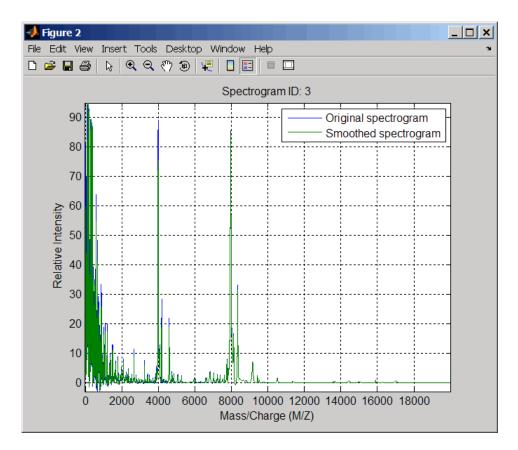
load sample_lo_res

2 Adjust the baseline of the eight spectra stored in Y_lo_res.

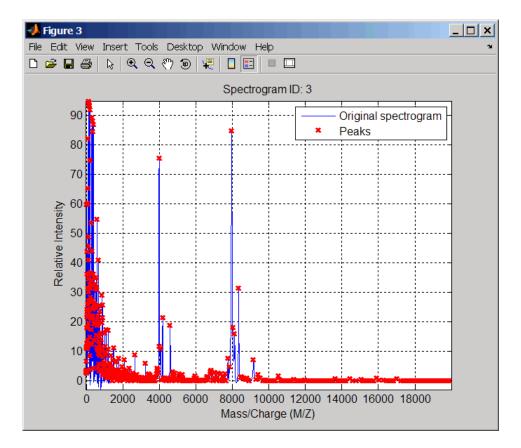

YB = msbackadj(MZ_lo_res,Y_lo_res);

3 Convert the raw mass spectrometry data to a peak list by finding the relevant peaks in each spectrum.

P = mspeaks(MZ_lo_res,YB);

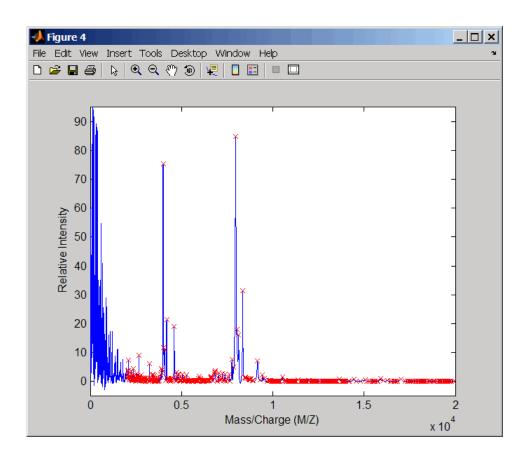

4 Plot the third spectrum in YB, the matrix of baseline-corrected intensity values, with the detected peaks marked.

P = mspeaks(MZ_lo_res,YB,'SHOWPLOT',3);



5 Smooth the signal using the mslowess function. Then convert the smoothed data to a peak list by finding relevant peaks and plot the third spectrum.

YS = mslowess(MZ_lo_res,YB, 'SHOWPLOT',3);



P = mspeaks(MZ_lo_res,YS, 'DENOISING',false, 'SHOWPLOT',3);

6 Use the cellfun function to remove all peaks with m/z values less than 2000 from the eight peaks lists in output P. Then plot the peaks of the third spectrum (in red) over its smoothed signal (in blue).

```
Q = cellfun(@(p) p(p(:,1)>2000,:),P,'UniformOutput',false);
figure
plot(MZ_lo_res,YS(:,3),'b',Q{3}(:,1),Q{3}(:,2),'rx')
xlabel('Mass/Charge (M/Z)')
ylabel('Relative Intensity')
axis([0 20000 -5 95])
```


References [1] Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., and Kobayash, R. (2005) Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum.

Bioinfomatics 21:9, 1764-1775.

[2] Yasui, Y., Pepe, M., Thompson, M.L., Adam, B.L., Wright, G.L., Qu, Y., Potter, J.D., Winget, M., Thornquist, M., and Feng, Z. (2003) A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection. Biostatistics *4:3*, 449–463.

[3] Donoho, D.L., and Johnstone, I.M. (1995) Adapting to unknown smoothness via wavelet shrinkage. J. Am. Statist. Asso. *90*, 1200–1224.

[4] Strang, G., and Nguyen, T. (1996) Wavelets and Filter Banks (Wellesley: Cambridge Press).

[5] Coombes, K.R., Tsavachidis, S., Morris, J.S., Baggerly, K.A., Hung, M.C., and Kuerer, H.M. (2005) Improved peak detection and quantification of mass spectrometry data acquired from surface-enhanced laser desorption and ionization by denoising spectra with the undecimated discrete wavelet transform. Proteomics 5(16), 4107-4117.

See Also Bioinformatics Toolbox functions: msbackadj, msdotplot, mslowess, mspalign, msppresample, mssgolay

Purpose	Resample mass spectrometry signal while preserving peaks	
Syntax	<pre>[MZ, Intensities] = msppresample(Peaks, N) [MZ, Intensities] = msppresample(Peaks, N, 'Range', RangeValue,) [MZ, Intensities] = msppresample(Peaks, N,'FWHH', FWHHValue,) [MZ, Intensities] = msppresample(Peaks, N,'ShowPlot', ShowPlotValue,)</pre>	
Arguments	Peaks	 Either of the following: Two-column matrix, where the first column contains mass/charge (m/z) values and the second column contains ion intensity values. Cell array of peak lists, where each element is a two-column matrix of m/z values and ion intensity values, and each element corresponds to a spectrum or retention time.
		Note You can use the mzxml2peaks function or the mspeaks function to create the <i>Peaks</i> matrix or cell array.
	Ν	Integer specifying the number of equally spaced points (m/z values) in the resampled signal.
	RangeValue	1-by-2 vector specifying the minimum and maximum m/z values for the output matrix <i>Intensities</i> . <i>RangeValue</i> must be within [min(<i>inputMZ</i>) max(<i>inputMZ</i>)], where <i>inputMZ</i> is the concatenated m/z values from the input <i>Peaks</i> . Default is the full range [min(<i>inputMZ</i>) max(<i>inputMZ</i>)].

	FWHHValue	Value that specifies the full width at half height (FWHH) in m/z units. The FWHH is used to convert each peak to a Gaussian shaped curve. Default is median(diff(<i>inputMZ</i>))/2, where <i>inputMZ</i> is the concatenated m/z values from the input <i>Peaks</i> . The default is a rough approximation of resolution observed in the input data, <i>Peaks</i> .
		Tip To ensure that the resolution of the peaks is preserved, set <i>FWHHValue</i> to half the distance between the two peaks of interest that are closest to each other.
	ShowPlotValue	Controls the display of a plot of an original and resampled spectrum. Choices are true, false, or <i>I</i> , an integer specifying the index of a spectrum in <i>Intensities</i> . If set to true, the first spectrum in <i>Intensities</i> is plotted. Default is:
		• false — When return values are specified.
		• true — When return values are not specified.
Return Values	MZ	Vector of equally spaced, common mass/charge (m/z) values for a set of spectra. The number of elements in the vector equals N or the number of rows in matrix <i>Intensities</i> .
	Intensities	Matrix of reconstructed intensity values for a set of mass spectra that share the same mass/charge (m/z) range. Each row corresponds to an m/z value, and each column corresponds to a spectrum or retention time. The number of rows equals N or the number of elements in vector MZ .

Description

[*MZ*, *Intensities*] = msppresample(*Peaks*, *N*) resamples *Peaks*, a mass spectrometry peak list, by converting centroided peaks to a semicontinuous, raw signal that preserves peak information. The resampled signal has *N* equally spaced points. Output *MZ* is a vector of *N* elements specifying the equally spaced, common m/z values for the spectra. Output *Intensities* is a matrix of reconstructed intensity values for a set of mass spectra that share the same m/z range. Each row corresponds to an m/z value, and each column corresponds to a spectrum or retention time. The number of rows equals *N*.

msppresample uses a Gaussian kernel to reconstruct the signal. The ion intensity at any given m/z value is taken from the maximum intensity of any contributing (overlapping) peaks.

Tip msppresample is useful to prepare a set of spectra for imaging functions such as msheatmap and preprocessing functions such as msbackadj and msnorm.

```
[MZ, Intensities] = msppresample(Peaks, N,
... 'PropertyName', PropertyValue, ...) calls msppresample
with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:
```

[MZ, Intensities] = msppresample(Peaks, N, ...'Range', RangeValue, ...) specifies an m/z range for the output matrix Intensities using the minimum and maximum m/z values specified in the 1-by-2 vector RangeValue. RangeValue must be within [min(inputMZ) max(inputMZ)], where inputMZ is the concatenated m/z values from the input Peaks. Default is the full range [min(inputMZ) max(inputMZ)]

```
[MZ, Intensities] = msppresample(Peaks, N,
...'FWHH', FWHHValue, ...) sets the full width at half
height (FWHH) in m/z units. The FWHH is used to convert each peak
```

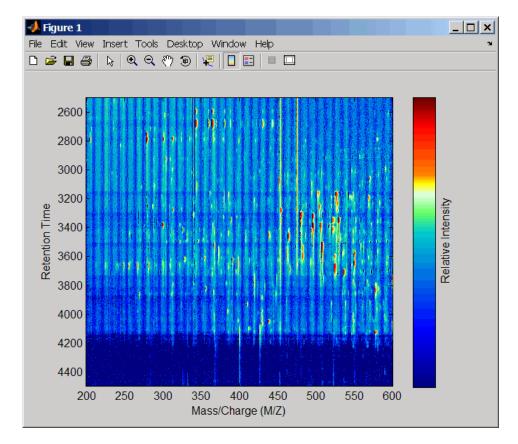
to a Gaussian shaped curve. Default is median(diff(inputMZ))/2, where inputMZ is the concatenated m/z values from the input Peaks. The default is a rough approximation of resolution observed in the input data, Peaks.

Tip To ensure that the resolution of the peaks is preserved, set *FWHHValue* to half the distance between the two peaks of interest that are closest to each other.

```
[MZ, Intensities] = msppresample(Peaks, N,
...'ShowPlot', ShowPlotValue, ...) controls the display
of a plot of an original and resampled spectrum. Choices are
true, false, or I, an integer specifying the index of a spectrum in
Intensities. If set to true, the first spectrum in Intensities is
plotted. Default is:
```

- false When return values are specified.
- true When return values are not specified.

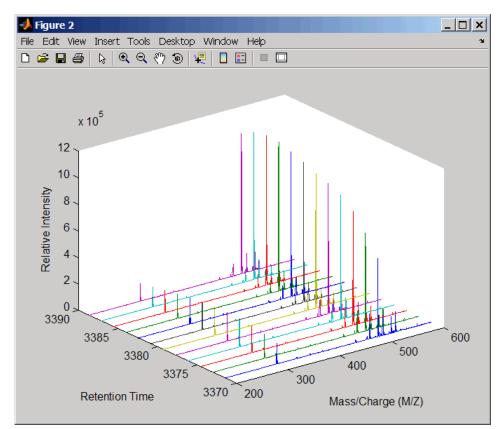
Examples


Load a MAT-file, included with the Bioinformatics Toolbox software, which contains liquid chromatography/mass spectrometry (LC/MS) data variables, including peaks, a cell array of peak lists, where each element is a two-column matrix of m/z values and ion intensity values, and each element corresponds to a spectrum or retention time.

load lcmsdata

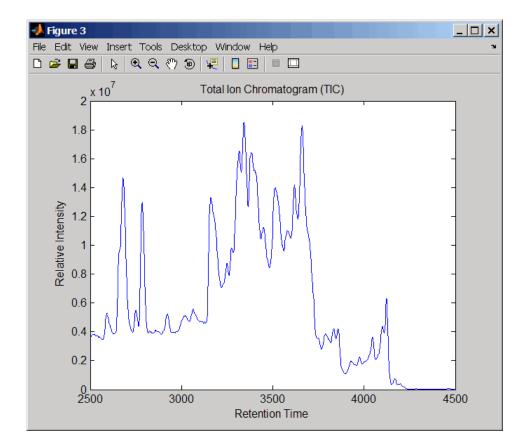
2 Resample the data, specifying 5000 m/z values in the resampled signal. Then create a heat map of the LC/MS data.

```
[MZ,Y] = msppresample(peaks,5000);
msheatmap(MZ,ret_time,log(Y))
```


msppresample

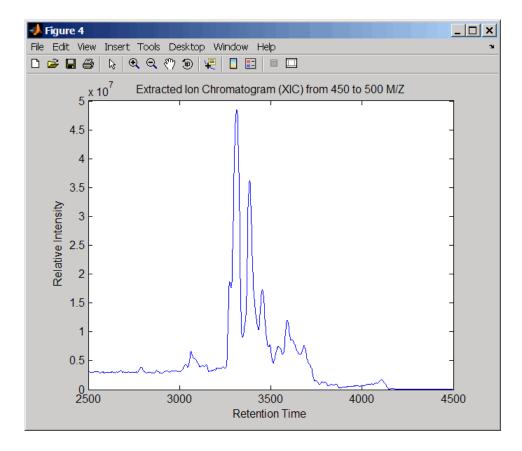
3 Plot the reconstructed profile spectra between two retention times.

```
figure
t1 = 3370;
t2 = 3390;
h = find(ret_time>t1 & ret_time<t2);
[MZ,Y] = msppresample(peaks(h),10000);
plot3(repmat(MZ,1,numel(h)),repmat(ret_time(h)',10000,1),Y)
xlabel('Mass/Charge (M/Z)')
ylabel('Retention Time')
```


zlabel('Relative Intensity')

4 Resample the data to plot the Total Ion Chromatogram (TIC).

```
figure
[MZ,Y] = msppresample(peaks,5000);
plot(ret_time,sum(Y))
title('Total Ion Chromatogram (TIC)')
xlabel('Retention Time')
ylabel('Relative Intensity')
```


msppresample

5 Resample the data to plot the Extracted Ion Chromatogram (XIC) in the 450 to 500 m/z range.

```
figure
```

```
[MZ,Y] = msppresample(peaks,5000,'Range',[450 500]);
plot(ret_time,sum(Y))
title('Extracted Ion Chromatogram (XIC) from 450 to 500 M/Z')
xlabel('Retention Time')
ylabel('Relative Intensity')
```


See Also Bioinformatics Toolbox functions: msdotplot, mspeaks, mspalign, msresample, mzcdf2peaks, mzcdfread, mzxml2peaks, mzxmlread

Purpose	Resample mass spectrometry signal		
Syntax	<pre>[MZout, Yout] = msresample(MZ, Y, N) msresample(, 'Uniform', UniformValue,) msresample(, 'Range', RangeValue,) msresample(, 'RangeWarnOff', RangeWarnOffValue,) msresample(, 'Missing', MissingValue,) msresample(, 'Window', WindowValue,) msresample(, 'Cutoff', CutoffValue,) msresample(, 'ShowPlot', ShowPlotValue,)</pre>		
Arguments	 MZ Mass/charge vector with the range of ions in the spectra. Y Ion intensity vector with the same length as the mass/charge vector (MZ). Y can also be a matrix with several spectra that share the same mass/charge (MZ) range. N Total number of samples. 		
Description	<pre>[MZout, Yout] = msresample(MZ, Y, N) resamples a raw mass spectrum (Y). The output spectrum will have N samples with a spacing that increases linearly within the range [min(MZ) max(MZ)]. MZ can be a linear or a quadratic function of its index. When input arguments are set such that down-sampling takes place, msresample applies a lowpass filter before resampling to minimize aliasing. For the antialias filter, msresample uses a linear-phase FIR filter with a least-squares error minimization. The cutoff frequency is set by the largest down-sampling ratio when comparing the same regions in the MZ and MZout vectors.</pre>		

msresample(..., 'PropertyName', PropertyValue, ...) calls msresample with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

msresample(..., 'Uniform', UniformValue, ...), when UniformValue is true, forces the vector MZ to be uniformly spaced. The default value is false.

msresample(..., 'Range', RangeValue, ...) specifies a 1-by-2 vector with the mass/charge range for the output spectrum, Yout. RangeValue must be within [min(MZ) max(MZ)]. Default value is the full range [min(MZ) max(MZ)]. When RangeValue values go beyond the values in MZ, msresample extrapolates the signal with zeros and returns a warning message.

msresample(..., 'RangeWarnOff', *RangeWarnOffValue*, ...) controls the return of a warning message when *RangeValue* values go beyond the values in *MZ*. *RangeWarnOffValue* can be true or false (default).

msresample(..., 'Missing', MissingValue, ...), when MissingValue is true, analyzes the mass/charge vector (MZ) for dropped samples. The default value is false. If the down-sample factor is large, checking for dropped samples might not be worth the extra computing time. Dropped samples can only be recovered if the original MZ values follow a linear or a quadratic function of the MZ vector index.

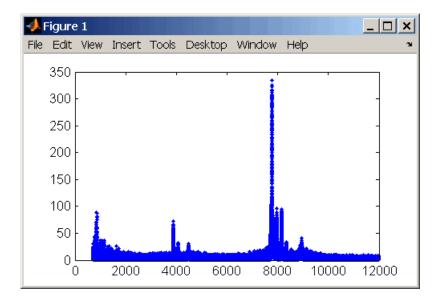
msresample(..., 'Window', WindowValue, ...) specifies the window used when calculating parameters for the lowpass filter. Enter 'Flattop', 'Blackman', 'Hamming', or 'Hanning'. The default value is 'Flattop'.

msresample(..., 'Cutoff', CutoffValue, ...) specifies the cutoff frequency. Enter a scalar value between 0 and 1 (Nyquist frequency or half the sampling frequency). By default, msresample estimates the cutoff value by inspecting the mass/charge vectors (MZ, MZout). However, the cutoff frequency might be underestimated if MZ has anomalies.

msresample(..., 'ShowPlot', ShowPlotValue, ...) plots
the original and the resampled spectrum. When msresample is
called without output arguments, the spectra are plotted unless
ShowPlotValue is false. When ShowPlotValue is true, only the first
spectrum in Y is plotted. ShowPlotValue can also contain an index
to one of the spectra in Y.

Tip LC/MS data analysis requires extended amounts of memory from the operating system. If you receive any errors related to memory, increase the virtual memory (or swap space) of your operating system or set the 3 GB switch (32-bit Windows[®] XP only) as described at:

http://www.mathworks.com/support/tech-notes/1100/1107.html

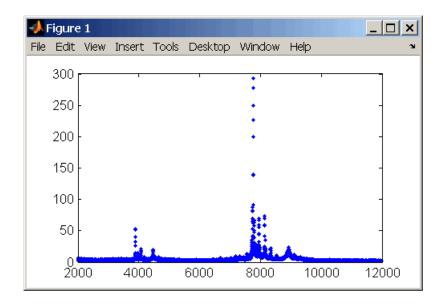

Examples 1 Load mass spectrometry data and extract m/z and intensity value vectors.

```
load sample_hi_res;
mz = MZ_hi_res;
y = Y_hi_res;
```

2 Plot original data to a lower resolution.

plot(mz, y, '.')

A figure displays.


3 Resample data.

[mz1,y1] = msresample(mz, y, 10000, 'range',[2000 max(mz)]);

4 Plot resampled data.

plot(mz1,y1,'.')

A figure displays with the down sampled data.

See Also Bioinformatics Toolbox functions: msalign, msbackadj, msheatmap, mslowess, msnorm, msppresample, mssgolay, msviewer

mssgolay

Purpose	Smooth mass spectrum with least-squares polynomial	
Syntax	Yout = mssgolay(MZ, Y) mssgolay(, 'PropertyName', PropertyValue,) mssgolay(, 'Span', SpanValue) mssgolay(, 'Degree', DegreeValue) mssgolay(, 'ShowPlot', ShowPlotValue)	
Arguments	MZ	Mass/charge vector with the range of ions in the spectra.
	Y	Ion intensity vector with the same length as the mass/charge vector (MZ) . Y can also be a matrix with several spectra that share the same mass/charge (MZ) range.
Description	Yout = mssgolay(<i>MZ</i> , Y) smoothes a raw mass spectrum (Y) using a least squares digital polynomial filter (Savitzky and Golay filters). The default span or frame is 15 samples.	
	<pre>mssgolay(, 'PropertyName', PropertyValue,) defines optional properties using property name/value pairs.</pre>	
	mssgolay(, 'Span', SpanValue) modifies the frame size for the smoothing function. If SpanValue is greater than 1, the window is the size of SpanValue in samples independent of the MZ vector. Higher values will smooth the signal more with an increase in computation time. If SpanValue is less than 1, the window size is a fraction of the number of points in the data (MZ). For example, if SpanValue is 0.05, the window size is equal to 5% of the number of points in MZ.	

Note 1) The original algorithm by Savitzky and Golay assumes a
uniformly spaced mass/charge vector (MZ), while mssgolay also allows
one that is not uniformly spaced. Therefore, the sliding frame for
smoothing is centered using the closest samples in terms of the MZ value
and not in terms of the MZ index.

2) When the vector *MZ* does not have repeated values or NaNs, the algorithm is approximately twice as fast.

3) When the vector MZ is evenly spaced, the least-squares fitting is performed once so that the spectrum is filtered with the same coefficients, and the speed of the algorithm increases considerably.

4) If the vector *MZ* is evenly spaced and *SpanValue* is even, Span is incriminated by 1 to include both edge samples in the frame.

mssgolay(..., 'Degree', *DegreeValue*) specifies the degree of the polynomial (*DegreeValue*) fitted to the points in the moving frame. The default value is 2. *DegreeValue* must be smaller than *SpanValue*.

mssgolay(..., 'ShowPlot', ShowPlotValue) plots smoothed spectra over the original. When mssgolay is called without output arguments, the spectra are plotted unless ShowPlotValue is false. When ShowPlotValue is true, only the first spectrum in Y is plotted. ShowPlotValue can also contain an index to one of the spectra in Y.

Examples load sample_lo_res YS = mssgolay(MZ_low_res, Y_low_res(:,1)); plot(MZ,[Y(:,1) YS])

See Also Bioinformatics Toolbox functions: msalign, msbackadj, msheatmap, mslowess, msnorm, mspeaks, msresample, msviewer

msviewer

Purpose	Explore mass spectrum or set of mass spectra		
Syntax		Y) 'Markers', <i>MarkersValue</i>) 'Group', <i>GroupValue</i>)	
Arguments	MZ	Mass/charge vector with the range of ions in the spectra.	
	Y	Ion intensity vector with the same length as the mass/charge vector (MZ). Y can also be a matrix with several spectra that share the same mass/charge (MZ) range.	
Description	msviewer(MZ, (Y).	Y) creates a GUI to display and explore a mass spectrum	
	<pre>msviewer(, 'Markers', MarkersValue)specifies a list of marker positions from the mass/charge vector (MZ) for exploration and easy navigation. Enter a column vector with MZ values. msviewer(, 'Group', GroupValue) specifies a class label for every spectrum with a different color for every class. Enter a column vector of size [numSpectra x 1] with integers. The default value is [numSpectra].</pre>		
	MSViewer GUI features include the following:		
	 Plot mass spectra. The spectra are plotted with different colors according to their class labels. An overview displays a full spectrum, and a box indicates the region that is currently displayed in the main window. Five different zoom in options, one zoom out option, and a reset view option resize the spectrum. 		
	Add/focus/mo	ove/delete marker operations	

- Import/Export markers from/to MATLAB workspace
- Print and preview the spectra plot
- Print the spectra plot to a MATLAB Figure window

MSViewer has five components:

- Menu bar: File, Tools, Window, and Help
- Toolbar: Zoom XY, Zoom X, Zoom Y, Reset view, Zoom out, and Help
- Main window: display the spectra
- Overview window: display the overview of a full spectrum (the average of all spectra in display)
- Marker control panel: a list of markers, Add marker, Delete marker, up and down buttons
- **Examples** 1 Load and plot sample data

load sample_lo_res
msviewer(MZ_lo_res, Y_lo_res)

- **2** Add a marker by pointing to a mass peak, right-clicking, and then clicking **Add Marker**.
- 3 From the File menu, select
 - **Import Markers from Workspace** Opens the Import Markers From MATLAB Workspace dialog. The dialog should display a list of double Mx1 or 1xM variables. If the selected variable is out of range, the viewer displays an error message
 - **Export Markers to Workspace** Opens the Export Markers to MATLAB Workspace dialog. You can enter a variable name for the markers. All markers are saved. If there is no marker available, this menu item should be disabled.
 - **Print to Figure** Prints the spectra plot in the main display to a MATLAB Figure window

- 4 From the Tools menu, click
 - Add Marker Opens the Add Marker dialog. Enter an m/z marker.
 - Delete Marker Removes the currently selected m/z marker from the Markers (m/z) list.
 - Next Marker or Previous Marker Moves the selection up and down the Markers (m/z) list.
 - Zoom XY, Zoom X, Zoom Y, or Zoom Out Changes the cursor from an arrow to crosshairs. Left-click and drag a rectangle box over an area and then release the mouse button. The display zooms the area covered by the box.
- **5** Move the cursor to the range window at the bottom. Click and drag the view box to a new location.
- **See Also** Bioinformatics Toolbox functions: msalign, msbackadj, mslowess, msnorm, msheatmap, msresample, mssgolay

Purpose	Align multiple sequences using progressive method		
Syntax	<pre>SeqsMultiAligned = multialign(Seqs) SeqsMultiAligned = multialign(Seqs, Tree) multialign(, 'PropertyName', PropertyValue,) multialign(, 'Weights', WeightsValue) multialign(, 'ScoringMatrix', ScoringMatrixValue) multialign(, 'SMInterp', SMInterpValue) multialign(, 'GapOpen', GapOpenValue) multialign(, 'ExtendGap', ExtendGapValue) multialign(, 'DelayCutoff', DelayCutoffValue) multialign(, 'JobManager', JobManagerValue) multialign(, 'WaitInQueue', WaitInQueueValue) multialign(, 'Verbose', VerboseValue) multialign(, 'ExistingGapAdjust', ExistingGapAdjustValue) multialign(, 'TerminalGapAdjust', TerminalGapAdjustValue)</pre>		
Arguments	Seqs	Vector of structures with the fields 'Sequence' for the residues and 'Header' or 'Name' for the labels. Seqs may also be a cell array of strings	
	SeqsMultiAligned	or a char array. Vector of structures (same as <i>Seqs</i>) but	
		with the field 'Sequence' updated with the alignment.	
		When Seqs is a cell or char array, SeqsMultiAligned is a char array with the output alignment following the same order as the input.	

multialign

Tree	Phylogenetic tree calculated with either of the functions seqlinkage or seqneighjoin.
WeightsValue	Property to select the sequence weighting method. Enter either 'THG' (default) or 'equal'.
ScoringMatrixValue	 Property to select or specify the scoring matrix. Enter an [MxM] matrix or [MxMxN] array of matrixes withN user-defined scoring matrices. ScoringMatrixValuemay also be a cell array of strings with matrix names. The default is the BLOSUM80 to BLOSUM30 series for amino acids or a fixed matrix NUC44 for nucleotides. When passing your own series of scoring matrices make sure all of them share the same scale.
SMInterpValue	Property to specify whether linear interpolation of the scoring matrices is on or off. When false, scoring matrix is assigned to a fixed range depending on the distances between the two profiles (or sequences) being aligned. Default is true.
GapOpenValue	Scalar or a function specified using @. If you enter a function,multialign passes four values to the function: the average score for two matched residues (sm), the average score for two mismatched residues (sx), and, the length of both profiles or sequences (len1, len2). Default is @(sm,sx,len1,len2) 5*sm.

ExtendGapValue	Scalar or a function specified using @. IF you enter a function, multialign passes four values to the function: the average score for two matched residues (sm), the average score for two mismatched residues (sx), and the length of both profiles or sequences (len1, len2). Default is @(sm,sx,len1,len2) sm/4.
DelayCutoffValue	Property to specify the threshold delay of divergent sequences. The default is unity where sequences with the closest sequence farther than the median distance are delayed.
<i>JobManagerValue</i>	JobManager object representing an available distributed MATLAB resource. Enter a jobmanager object returned by the Parallel Computing Toolbox TM function findResource.
WaitInQueueValue	Property to control waiting for a distributed MATLAB resource to be available. Enter either true or false. The default value is false.
VerboseValue	Property to control displaying the sequences with sequence information. Default value is false.
ExistingGagAdjustValue	Property to control automatic adjustment based on existing gaps. Default value is true.
TerminalGapAdjustValue	Property to adjusts the penalty for opening a gap at the ends of the sequence. Default value is false.

Description

SeqsMultiAligned = multialign(Seqs) performs a progressive multiple alignment for a set of sequences (Seqs). Pairwise distances between sequences are computed after pairwise alignment with the Gonnet scoring matrix and then by counting the proportion of sites at which each pair of sequences are different (ignoring gaps). The guide tree is calculated by the neighbor-joining method assuming equal variance and independence of evolutionary distance estimates.

SeqsMultiAligned = multialign(Seqs, Tree) uses a tree (Tree) as a guide for the progressive alignment. The sequences (Seqs) should have the same order as the leaves in the tree (Tree) or use a field ('Header' or 'Name') to identify the sequences.

multialign(..., 'PropertyName', PropertyValue,...) enters
optional arguments as property name/value pairs.

multialign(..., 'Weights', WeightsValue) selects the sequence weighting method. Weights emphasize highly divergent sequences by scaling the scoring matrix and gap penalties. Closer sequences receive smaller weights.

Values of the property Weights:

- 'THG'(default) Thompson-Higgins-Gibson method using the phylogenetic tree branch distances weighted by their thickness.
- 'equal' Assigns same weight to every sequence.

multialign(..., 'ScoringMatrix', ScoringMatrixValue)
selects the scoring matrix (ScoringMatrixValue) for the progressive
alignment. Match and mismatch scores are interpolated from the
series of scoring matrices by considering the distances between the
two profiles or sequences being aligned. The first matrix corresponds
to the smallest distance and the last matrix to the largest distance.
Intermediate distances are calculated using linear interpolation.

multialign(..., 'SMInterp', SMInterpValue), when SMInterpValue is false, turns off the linear interpolation of the scoring matrices. Instead, each supplied scoring matrix is assigned to a fixed range depending on the distances between the two profiles or sequences being aligned.

multialign(..., 'GapOpen', GapOpenValue) specifies the initial
penalty for opening a gap.

multialign(..., 'ExtendGap', ExtendGapValue) specifies the initial penalty for extending a gap.

multialign(..., 'DelayCutoff', *DelayCutoffValue*) specifies a threshold to delay the alignment of divergent sequences whose closest neighbor is farther than

```
(DelayCutoffValue) * (median patristic distance
between sequences)
```

multialign(..., 'JobManager', *JobManagerValue*) distributes pairwise alignments into a cluster of computers using the Parallel Computing Toolbox software.

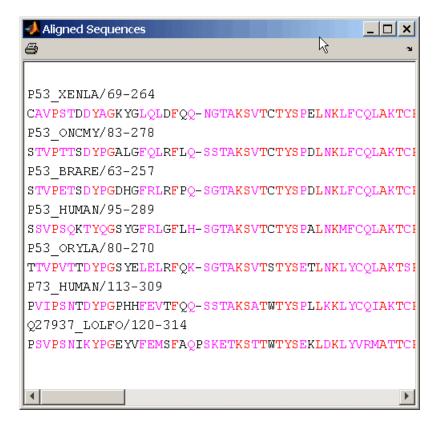
multialign(..., 'WaitInQueue', WaitInQueueValue) when WaitInQueueValue is true, waits in the job manager queue for an available worker. When WaitInQueueValue is false (default) and there are no workers immediately available, multialign errors out. Use this property with the Parallel Computing Toolbox software and the multialign property WaitInQueue.

multialign(..., 'Verbose', VerboseValue), when VerboseValue is true, turns on verbosity.

The remaining input optional arguments are analogous to the function profalign and are used through every step of the progressive alignment of profiles.

multialign(..., 'ExistingGapAdjust', ExistingGapAdjustValue), if ExistingGapAdjustValue is false, turns off the automatic adjustment based on existing gaps of the position-specific penalties for opening a gap.

When *ExistingGapAdjustValue* is true, for every profile position, profalign proportionally lowers the penalty for opening a gap toward

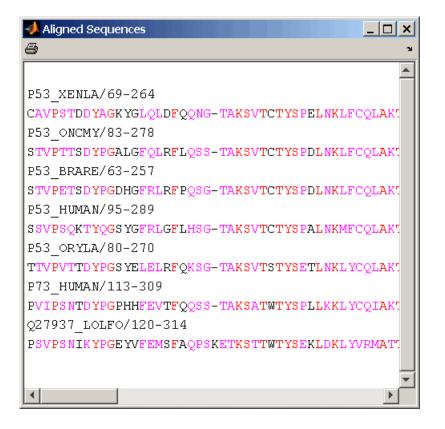

multialign

the penalty of extending a gap based on the proportion of gaps found in the contiguous symbols and on the weight of the input profile.

multialign(..., 'TerminalGapAdjust', TerminalGapAdjustValue), when TerminalGapAdjustValue is true, adjusts the penalty for opening a gap at the ends of the sequence to be equal to the penalty for extending a gap.

Example1 1 Align seven cellular tumor antigen p53 sequences. p53 = fastaread('p53samples.txt') ma = multialign(p53,'verbose',true) showalignment(ma)

multialign



2 Use an UPGMA phylogenetic tree instead as a guiding tree.

```
dist = seqpdist(p53,'ScoringMatrix',gonnet);
tree = seqlinkage(dist,'UPGMA',p53)
```

- Phylogenetic tree object with 7 leaves (6 branches)
- **3** Score the progressive alignment with the PAM family.

```
ma = multialign(p53,tree,'ScoringMatrix',...
{'pam150','pam200','pam250'})
showalignment(ma)
```


Example 2 1 Enter an array of sequences.

```
seqs = {'CACGTAACATCTC', 'ACGACGTAACATCTTCT', 'AAACGTAACATCTCGC'};
```

2 Promote terminations with gaps in the alignment.

multialign(seqs,'terminalGapAdjust',true)

```
ans =
--CACGTAACATCTC--
ACGACGTAACATCTTCT
-AAACGTAACATCTCGC
```

3 Compare alignment without termination gap adjustment.

multialign(seqs)

ans = CA--CGTAACATCT--C ACGACGTAACATCTTCT AA-ACGTAACATCTCGC

See Also Bioinformatics Toolbox functions: hmmprofalign, multialignread, multialignwrite, nwalign, profalign, seqprofile, seqconsensus, seqneighjoin, showalignment

multialignread

Purpose	Read multiple sequence alignment file	
Syntax	S = multialignread(File) [Headers, Sequences] = multialignread(File) = multialignread(File, 'IgnoreGaps', IgnoreGapsValue)	
Arguments	File	Multiple sequence alignment file specified by one of the following:
		• File name or path and file name
		• URL pointing to a file
		• MATLAB character array that contains the text of a multiple sequence alignment file
		You can read common multiple sequence alignment file types, such as ClustalW (.aln), GCG (.msf), and PHYLIP.
	IgnoreGapsValue	Controls removing gap symbols, such as '-' or '.', from the sequences. Choices are true or false (default).
Return Values	S	MATLAB structure array containing the following fields:
		• Header — Header information from the file.
		• Sequence — Amino acid or nucleotide sequences.
	Headers	Cell array containing the header information from the file.
	Sequences	Cell array containing the amino acid or nucleotide sequences.

Description S = multialignread(File) reads a multiple sequence alignment file. The file contains multiple sequence lines that start with a sequence header followed by an optional number (not used by multialignread) and a section of the sequence. The multiple sequences are broken into blocks with the same number of blocks for every sequence. To view an example multiple sequence alignment file, type open aagag.aln at the MATLAB command line. The output, S, is a structure array where S.Header contains the header information and S.Sequence contains the amino acid or nucleotide sequences. [Headers, Sequences] = multialignread(File) reads the file into separate variables, *Headers* and *Sequences*, which are cell arrays containing header information and amino acid or nucleotide sequences, respectively. = multialignread(File, 'IgnoreGaps', IgnoreGapsValue) . . . controls the removal of any gap symbol, such as '-' or '.', from the sequences. Choices are true or false (default). **Examples** Read a multiple sequence alignment of the gag polyprotein for several HIV strains. gagaa = multialignread('aagag.aln') gagaa = 1x16 struct array with fields: Header Sequence See Also Bioinformatics Toolbox functions: fastaread, gethmmalignment, multialign, multialignviewer, multialignwrite, seqconsensus, seqdisp, seqprofile

multialignviewer

Purpose	Open viewer for multiple sequence alignments		
Syntax	multialignviewer(<i>Alignment</i>) multialignviewer(<i>Alignment</i> , 'Alphabet', <i>AlphabetValu</i> e)		
Arguments	Alignment	A structure with a field Sequence, a character array, or a file name.	
	AlphabetValue	String specifying the alphabet type for the sequences. Choices are 'AA' for amino acids or 'NT' for nucleotides. Default is 'AA'.	
Description	The multialignviewer function provides an interactive graphical user interface (GUI) for viewing multiple sequence alignments. For examples of using this GUI, see "Multiple Sequence Alignment Viewer".		
	multialignviewer(<i>Alignment</i>) loads a group of previously multiple aligned sequences into the viewer. <i>Alignment</i> is a structure with a field Sequence, a character array, or a file name.		
	multialignviewer(<i>Alignment</i> , 'Alphabet', <i>AlphabetValue</i>) specifies the alphabet type for the sequences. <i>AlphabetValue</i> can be 'AA' for amino acids or 'NT' for nucleotides. Default is 'AA'. If <i>AlphabetValue</i> is not specified, multialignviewer guesses the alphabet type.		
Examples	multialignviewer('aagag.aln')		
See Also	Bioinformatics Toolbox functions: fastaread, gethmmalignment, multialign, multialignread, multialignwrite, seqtool		

Purpose	Write multiple alignment to file using ClustalW ALN format	
Syntax	<pre>multialignwrite(File, Alignment) multialignwrite(, 'Header', HeaderValue,) multialignwrite(, 'WriteCount', WriteCountValue,)</pre>	
Arguments	File	String specifying either a file name or a path and file name for saving the ClustalW ALN-formatted data. If you specify only a file name, the file is saved to the MATLAB Current Directory.
	Alignment	An alignment, such as returned by the multialign function, represented by either a:
		• Vector of structures, each containing the fields Header and Sequence.
		Character array
	HeaderValue	String that specifies the first line of the file. Default is 'MATLAB multiple sequence alignment'.
		Tip Use the 'Header' property if your file header needs to be a specific format for a third-party software application.
	WriteCountValue	Determines whether to add the residue counts to the end of each line. Choices are true (default) or false.
Description	multialignwrite(<i>File</i> , <i>Alignment</i>) writes the contents of <i>Alignment</i> to <i>File</i> , a ClustalW ALN-formatted file.	

multialignwrite(..., '*PropertyName*', *PropertyValue*, ...) calls multialignwrite with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

multialignwrite(..., 'Header', *HeaderValue*, ...) specifies the first line of the file. Default is 'MATLAB multiple sequence alignment'.

Tip Use the 'Header' property if your file header needs to be a specific format for a third-party software application.

multialignwrite(..., 'WriteCount', WriteCountValue, ...)
determines whether to add the residue counts to the end of each line.
Choices are true (default) or false.

	Note Below the columns of the ClustalW ALN-formatted file, symbols may appear that denote:			
	 * — Residues or nucleotides in the column are identical in all sequences in the alignment. : — Conserved substitutions exist in the column for all sequences the alignment. 			
• . — Semiconserved substitutions exist in the column for all in the alignment.				
	For more information on these symbols, see http://www.ebi.ac.uk/help/formats.html#aln.			
	For more information on the groups of residues considered conserved and semiconserved, see section 12 of "Changes since version 1.6" at http://web.mit.edu/clustalw_v1.83/README.			
Examples	I Use the fastaread function to read p53samples.txt, a FASTA-formatted file included with the Bioinformatics Toolbox software, which contains seven cellular tumor antigen p53 sequences			
	p53 = fastaread('p53samples.txt')			
	p53 =			
	7x1 struct array with fields: Header Sequence			
	2 Use the multialign function to align the seven cellular tumor antigen p53 sequences.			
	<pre>ma = multialign(p53,'verbose',true);</pre>			
	3 Write the alignment to a file named p53.aln.			

multialignwrite

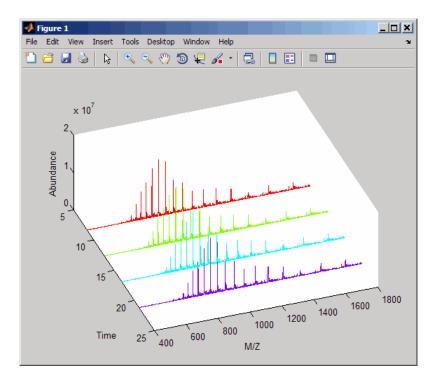
multialignwrite('p53.aln',ma)

See Also Bioinformatics Toolbox functions: fastawrite, gethmmalignment, multialign, multialignread, multialignviewer, phytreewrite, seqconsensus, seqdisp, seqprofile

mzcdf2peaks

Purpose	Convert mzCDF structure to peak list		
Syntax	[Peaks, Times] = mzcdf2peaks(mzCDFStruct)		
Arguments	mzCDFStruct	MATLAB structure containing information from a netCDF file, such as one created by the mzcdfread function. Its fields correspond to the variables and global attributes in a netCDF file. If a netCDF variable contains local attributes, an additional field is created, with the name of the field being the variable name appended with the _attributes string. The number and names of the fields will vary, depending on the mass spectrometer software, but typically there are mass_values and intensity_values fields.	
Return Values	Peaks	 Either of the following: Two-column matrix, where the first column contains mass/charge (m/z) values and the second column contains ion intensity values. 	
		• Cell array of peak lists, where each element is a two-column matrix of m/z values and ion intensity values, and each element corresponds to a spectrum or retention time.	
	Times	Scalar of vector of retention times associated with a liquid chromatography/mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set. If <i>Times</i> is a vector, the number of elements equals the number of peak lists contained in <i>Peaks</i> .	
Description	[<i>Peaks, Times</i>] = mzcdf2peaks(<i>mzCDFStruct</i>) extracts peak information from <i>mzCDFStruct</i> , a MATLAB structure containing		

Examples


information from a netCDF file, such as one created by the mzcdfread function, and creates *Peaks*, a single matrix or a cell array of matrices containing mass/charge (m/z) values and ion intensity values, and *Times*, a scalar or vector of retention times associated with a liquid chromatography/mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set. *mzCDFStruct* contains fields that correspond to the variables and global attributes in a netCDF file. If a netCDF variable contains local attributes, an additional field is created, with the name of the field being the variable name appended with the attributes string. The number and names of the fields will vary, depending on the mass spectrometer software, but typically there are mass values and intensity values fields. In the following example, the file results.cdf is not provided. 1 Use the mzcdfread function to read a netCDF file into the MATLAB software as a structure. Then extract the peak information from the structure. mzcdf struct = mzcdfread('results.cdf'); [peaks,time] = mzcdf2peaks(mzcdf struct) peaks = [7008x2 single] [7008x2 single] [7008x2 single] [7008x2 single] time = 8.3430 12.6130 16.8830 21.1530

2 Create a color map containing a color for each peak list (retention time).

colors = hsv(numel(peaks));

3 Create a 3-D figure of the peaks and add labels to it.

```
figure
hold on
for i = 1:numel(peaks)
    t = repmat(time(i),size(peaks{i},1),1);
    plot3(t,peaks{i}(:,1),peaks{i}(:,2),'color',colors(i,:))
end
view(70,60)
xlabel('Time')
ylabel(mzcdf_struct.mass_axis_label)
zlabel(mzcdf_struct.intensity axis label)
```


See Also Bioinformatics Toolbox functions: msdotplot, mspalign, msppresample, mzcdfread

Purpose	Return information about netCDF file containing mass spectrometry data			
Syntax	<pre>InfoStruct = mzcdfinfo(File)</pre>			
Arguments	File	file name, of a mass spectrome ANDI/MS or the	ng a file name, or a path and netCDF file that contains etry data and conforms to the e ASTM E2077-00 (2005) standard earlier specifications.	
			nly a file name, that file must be B search path or in the current	
Return Values	InfoStruct	MATLAB structure containing information from a netCDF file. It includes the fields in the following table.		
Description	<pre>InfoStruct = mzcdfinfo(File) returns a MATLAB structure, InfoStruct, containing summary information about a netCDF file, File.</pre>			
	<i>File</i> is a string containing a file name, or a path and file name, of a netCDF file that contains mass spectrometry data. The file must conform to the ANDI/MS or the ASTM E2077-00 (2005) standard specification or earlier specifications. <i>InfoStruct</i> includes the following fields.			
	Field		Description	
	Filename		Name of the netCDF file.	

Field	Description	
FileTimeStamp	Date time stamp of the netCDF file.	
FileSize	Size of the file in bytes.	
NumberOfScans	Number of scans in the file.	
StartTime	Run start time.	
EndTime	Run end time.	
TimeUnits	Units for time.	
GlobalMassMin	Minimum m/z value in all scans.	
GlobalMassMax	Maximum m/z value in all scans.	
GlobalIntensityMin	Minimum intensity value in all scans.	
GlobalIntensityMax	Maximum intensity value in all scans.	
ExperimentType	Indicates if data is raw or centroided.	

Note If any of the associated attributes are not in the netCDF file (because they are optional in the specifications), the value for that field will be set to N/A or NaN.

ExamplesIn the following example, the file results.cdf is not provided.Return a MATLAB structure containing summary information about
a netCDF file.info = mzcdfinfo('results.cdf')

info =

Filename: 'results.cdf' FileTimeStamp: '19930703134354-700' FileSize: 339892 NumberOfScans: 4 StartTime: 8.3430 EndTime: 21.1530 TimeUnits: 'N/A' GlobalMassMin: 399.9990 GlobalMassMax: 1.8000e+003 GlobalIntensityMin: NaN GlobalIntensityMax: NaN ExperimentType: 'Continuum Mass Spectrum'

See Also Bioinformatics Toolbox function: mzcdfread

mzcdfread

Purpose	Read mass spectrometry data from netCDF file		
Syntax	<pre>mzCDFStruct = mzcdfread(File) mzCDFStruct = mzcdfread(File,'TimeRange', TimeRangeValue,)</pre>		
	<pre>mzCDFStruct = mzcdfread(File,'ScanIndices', ScanIndicesValue,) mzCDFStruct = mzcdfread(File,'Verbose', VerboseValue,)</pre>		

Arguments	File	String containing a file name, or a path and file name, of a netCDF file that contains mass spectrometry data and conforms to the ANDI/MS or the ASTM E2077-00 (2005) standard specification or earlier specifications.
		If you specify only a file name, that file must be on the MATLAB search path or in the current directory.
	TimeRangeValue	Two-element numeric array [Start End] that specifies the time range in <i>File</i> for which to read spectra. Default is to read spectra from all times [0 Inf].
		Tip Time units are indicated in the netCDF global attributes. For summary information about the time ranges in a netCDF file, use the mzcdfinfo function.
		Note If you specify a <i>TimeRangeValue</i> , you cannot specify a <i>ScanIndicesValue</i> .

	ScanIndicesV	alue Positive integer, vector of integers, or a two-element numeric array [Start_Ind End_Ind] that specifies a scan, multiple scans, or a range of scans in <i>File</i> to read. Start_Ind and End_Ind are each positive integers indicating a scan index number. Start_Ind must be less than End_Ind. Default is to read all scans.
		Tip For information about the scan indices in a netCDF file, check the NumberOfScans field in the structure returned by the mzcdfinfo function.
		Note If you specify a <i>ScanIndicesValue</i> , you
		cannot specify <i>TimeRangeValue</i> .
	VerboseValue	Controls the display of the progress of the reading of <i>File</i> . Choices are true (default) or false.
Return Values	mzCDFStruct	MATLAB structure containing mass spectrometry information from a netCDF file. Its fields correspond to the variables and global attributes in a netCDF file. If a netCDF variable contains local attributes, an additional field is created, with the name of the field being the variable name appended with the _attributes string. The number and names of the fields will vary, depending on the mass spectrometer software, but typically there are mass_values and intensity_values fields.
Description		mzcdfread(File) reads a netCDF file, File, and then AB structure, mzCDFStruct.

File is a string containing a file name, or a path and file name, of a netCDF file that contains mass spectrometry data. The file must conform to the ANDI/MS or the ASTM E2077-00 (2005) standard specification or earlier specifications.

mzCDFStruct contains fields that correspond to the variables and global attributes in a netCDF file. If a netCDF variable contains local attributes, an additional field is created, with the name of the field being the variable name appended with the _attributes string. The number and names of the fields will vary, depending on the mass spectrometer software, but typically there are mass_values and intensity_values fields.

Tip LC/MS data analysis requires extended amounts of memory from the operating system. If you receive any errors related to memory, try the following:

• Increase the virtual memory (or swap space) of your operating system or set the 3 GB switch (32-bit Windows XP only) as described at:

http://www.mathworks.com/support/tech-notes/1100/1107.html

mzCDFStruct = mzcdfread(File, ...'PropertyName', PropertyValue, ...) calls mzcdfread with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

mzCDFStruct = mzcdfread(File, ...'TimeRange', TimeRangeValue, ...) specifies the range of time in File to read. TimeRangeValue is a two-element numeric array [Start End]. Default is to read spectra from all times [0 Inf]. **Tip** Time units are indicated in the netCDF global attributes. For summary information about the time ranges in a netCDF file, use the mzcdfinfo function.

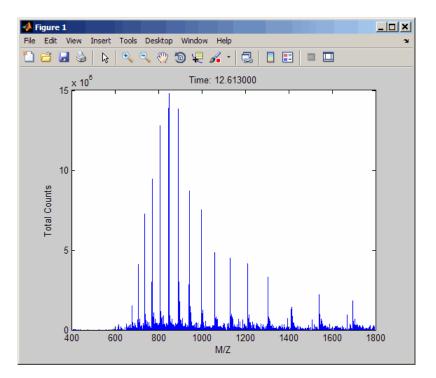
Note If you specify a *TimeRangeValue*, you cannot specify *ScanIndicesValue*.

```
mzCDFStruct = mzcdfread(File, ...'ScanIndices',
ScanIndicesValue, ...) specifies a scan, multiple scans, or range of
scans in File to read. ScanIndicesValue is a positive integer, vector
of integers, or a two-element numeric array [Start_Ind End_Ind].
Start_Ind and End_Ind are each positive integers indicating a scan
index number. Start_Ind must be less than End_Ind. Default is to
read all scans.
```

Tip For information about the scan indices in a netCDF file, check the NumberOfScans field in the structure returned by the mzcdfinfo function.

Note If you specify a *ScanIndicesValue*, you cannot specify a *TimeRangeValue*.

mzCDFStruct = mzcdfread(File, ...'Verbose', VerboseValue, ...) controls the progress display when reading File. Choices are true (default) or false.


Examples In the following example, the file results.cdf is not provided.

1 Read a netCDF file into the MATLAB software as a structure.

out = mzcdfread('results.cdf');

2 View the second scan in the netCDF file by creating separate variables containing the intensity and m/z values, and then plotting these values. Add a title and x- and y-axis labels using fields in the output structure.

```
idx1 = out.scan_index(2)+1;
idx2 = out.scan_index(3);
y = out.intensity_values(idx1:idx2);
z = out.mass_values(idx1:idx2);
stem(z,y,'marker','none')
title(sprintf('Time: %f',out.scan_acquisition_time(2)))
xlabel(out.mass_axis_units)
ylabel(out.intensity_axis_units)
```


See Also Bioinformatics Toolbox functions: jcampread, mzcdf2peaks, mzcdfinfo, mzxmlread

Purpose	Convert mzXML structure to peak list	
Syntax	[Peaks, Times] = mzxml2peaks(mzXMLStruct) [Peaks, Times] = mzxml2peaks(mzXMLStruct, 'Levels', LevelsValue)	
Arguments	mzXMLStruct	MATLAB structure containing information from an mzXML file, such as one created by the mzxmlread function. It includes the fields shown in the table below.
	LevelsValue	Positive integer or vector of integers that specifies the level(s) of spectra in <i>mzXMLStruct</i> to convert, assuming the spectra are from tandem MS data sets. Default is 1, which converts only the first-level spectra, that is, spectra containing precursor ions. Setting <i>LevelsValue</i> to 2 converts only the second-level spectra, which are the fragment spectra (created from a precursor ion).
Return Values	Peaks	 Either of the following: Two-column matrix, where the first column contains mass/charge (m/z) values and the second column contains ion intensity values.
		• Cell array of peak lists, where each element is a two-column matrix of m/z values and ion intensity values, and each element corresponds to a spectrum or retention time.
	Times	Vector of retention times associated with a liquid chromatography/mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set. The number of elements in <i>Times</i> equals the number of elements in <i>Peaks</i> .

Description

[Peaks, Times] = mzxml2peaks(mzXMLStruct) extracts peak information from mzXMLStruct, a MATLAB structure containing information from an mzXML file, such as one created by the mzxmlread function, and creates Peaks, a cell array of matrices containing mass/charge (m/z) values and ion intensity values, and Times, a vector of retention times associated with a liquid chromatography/mass spectrometry (LC/MS) or gas chromatography/mass spectrometry (GC/MS) data set. mzXMLStruct includes the following fields:

Field	Description	
scan	Structure array containing the data pertaining to each individual scan, such as mass spectrometry level, total ion current, polarity, precursor mass (when it applies), and the spectrum data.	
index	Structure containing indices to the positions of scan elements in the XML document.	
mzXML	Structure containing:	
	• Information in the root element of the mzXML schema, such as instrument details, experiment details, and preprocessing method	
	• URLs pointing to schemas for the individual scans	
	• Indexing approach	
	• Digital signature calculated for the current instance of the document	

[Peaks, Times] = mzxml2peaks(mzXMLStruct,

'Levels', LevelsValue) specifies the level(s) of the spectra in *mzXMLStruct* to convert, assuming the spectra are from tandem MS data sets. Default is 1, which converts only the first-level spectra, that is, spectra containing precursor ions. Setting LevelsValue to 2 converts only the second-level spectra, which are the fragment spectra (created from a precursor ion).

Examples

Note In the following example, the file results.mzxml is not provided. Sample mzXML files can be found at:

- Open Proteomics Database
- Peptide Atlas Repository at the Institute for Systems Biology (ISB)
- The Sashimi Project

1 Use the mzxmlread function to read an mzXML file into the MATLAB software as structure. Then extract the peak information of only the first-level ions from the structure.

mzxml_struct = mzxmlread('results.mzxml'); [peaks,time] = mzxml2peaks(mzxml_struct);

2 Create a dot plot of the LC/MS data.

```
msdotplot(peaks,time)
```

See Also Bioinformatics Toolbox functions: msdotplot, mspalign, msppresample, mzxmlread

mzxmlinfo

Purpose	Return information about mzXML file	
Syntax	<pre>InfoStruct = mzxmlinfo(File) InfoStruct = mzxmlinfo(File, 'NumOfLevels', NumOfLevelsValue)</pre>	
Arguments	File	String containing a file name, or a path and file name, of an mzXML file that conforms to the mzXML 2.1 specification or earlier specifications.
		If you specify only a file name, that file must be on the MATLAB search path or in the current directory.
	NumOfLevelsValu	e Controls the return of NumOfLevels, an additional field in <i>InfoStruct</i> , that contains the number of mass spectrometry (MS) levels of spectra in <i>File</i> . Choices are true or false (default).
Return Values	InfoStruct	MATLAB structure containing information from an mzXML file. It includes the fields shown in the table below.
Description	<pre>InfoStruct = mzxmlinfo(File) returns a MATLAB structure, InfoStruct, containing summary information about an mzXML file, File.</pre>	
	<i>File</i> is a string containing a file name, or a path and file name, of an mzXML file. The file must conform to the mzXML 2.1 specification or earlier specifications. You can view the mzXML 2.1 specification at:	
	http://sashimi.sou	urceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf
	InfoStruct includes the following fields.	

Field	Description
Filename	Name of the mzXML file.
FileModDate	Modification date of the file.
FileSize	Size of the file in bytes.
NumberOfScans	Number of scans in the file.*
StartTime	Run start time.*
EndTime	Run end time.*
DataProcessingIntensityCutoff	Minimum mass/charge (m/z) intensity value.*
DataProcessingCentroided	Indicates if data is centroided.*
DataProcessingDeisotoped	Indicates if data is deisotoped.*
DataProcessing ChargeDeconvoluted	Indicates if data is deconvoluted.*
DataProcessingSpotIntegration	For LC/MALDI experiments, indicates if peaks eluting over multiple spots have been integrated into a single spot.*

* — These fields contain N/A if the mzXML file does not include the associated attributes. The associated attributes are optional in the mzXML file, per the mzXML 2.1 specification.

InfoStruct = mzxmlinfo(File, 'NumOfLevels', NumOfLevelsValue) controls the return of NumOfLevels, an additional field in mzXMLInfo, that contains the number of mass spectrometry levels of spectra in File. Choices are true or false (default).

mzxmlinfo

Examples

Note In the following example, the file results.mzxml is not provided. Sample mzXML files can be found at:

- Open Proteomics Database
- Peptide Atlas Repository at the Institute for Systems Biology (ISB)
- The Sashimi Project

Return a MATLAB structure containing summary information about an mzXML file.

```
info = mzxmlinfo('results.mzxml');
```

```
info =
```

Filename:	'results.mzxml'
FileModDate:	'07-May-2008 13:39:12'
FileSize:	10607
NumberOfScans:	2
StartTime:	'PT0.00683333S'
EndTime:	'PT200.036S'
DataProcessingIntensityCutoff:	'N/A'
DataProcessingCentroided:	'false'
DataProcessingDeisotoped:	'N/A'
DataProcessingChargeDeconvoluted:	'N/A'
DataProcessingSpotIntegration:	'N/A'

Return a MATLAB structure containing summary information, including the number of mass spectrometry levels, about an mzXML file.

```
info = mzxmlinfo('results.mzxml','numoflevels',true);
info =
```

Filename: 'results.mzxml'

FileSize: NumberOfScans: StartTime: EndTime: DataProcessingIntensityCutoff: DataProcessingCentroided: DataProcessingDeisotoped:	2 'PT0.00683333S' 'PT200.036S' 'N/A' 'false' 'N/A'
DataProcessingDeisotoped: DataProcessingChargeDeconvoluted: DataProcessingSpotIntegration: NumberOfMSLevels:	'N/A' 'N/A'

See Also Bioinformatics Toolbox function: mzxmlread

mzxmlread

Purpose	Read data from mzXML file		
Syntax	<pre>mzXMLStruct = mzxmlread(File) mzXMLStruct = mzxmlread(File,'Levels', LevelsValue,) mzXMLStruct = mzxmlread(File,'TimeRange', TimeRangeValue,) mzXMLStruct = mzxmlread(File,'ScanIndices', ScanIndicesValue,) mzXMLStruct = mzxmlread(File,'Verbose', VerboseValue,)</pre>		
Arguments	File	String containing a file name, or a path and file name, of an mzXML file that conforms to the mzXML 2.1 specification or earlier specifications. If you specify only a file name, that file must be on the MATLAB search path or in the current directory.	
	LevelsValue	Positive integer or vector of integers specifying the level(s) of spectra in <i>File</i> to read. Default is to read all levels of spectra.	
		Tip For summary information about the levels of spectra in an mzXML file, use the mzxmlinfo function.	

Note If you specify a *LevelsValue*, you cannot specify *TimeRangeValue* or *ScanIndicesValue*.

TimeRangeValue Two-element numeric array [Start End] that specifies the range of time in *File* to read. Start is a scalar between the startTime and endTime attributes of the msRun element in *File*. End is a scalar between Start and the endTime attribute of the msRun element in *File*. Default is to read spectra from all times.

Tip For summary information about the time ranges in an mzXML file, use the mzxmlinfo function.

Note If you specify a *TimeRangeValue*, you cannot specify *LevelsValue* or *ScanIndicesValue*.

	<i>ScanIndicesValue</i>	Positive integer, vector of integers, or a two-element numeric array [Start_Ind End_Ind] that specifies a scan, multiple scans, or a range of scans in <i>File</i> to read. Start_Ind and End_Ind are each positive integers indicating a scan number in the num attribute of the msRun element in <i>File</i> . Start_Ind must be less than End_Ind. Default is to read all scans.
		Tip For summary information about the scan indices in an mzXML file, use the mzxmlinfo function.
		Note If you specify a <i>ScanIndicesValue</i> , you cannot specify <i>LevelsValue</i> or <i>TimeRangeValue</i> .
	VerboseValue	Controls the display of the progress of the reading of <i>File</i> . Choices are true (default) or false.
Return Values	<i>mzXMLStruct</i> MATLAB structure containing information from an mzXML file. It includes the fields shown in the table below.	
Description	<pre>mzXMLStruct = mzxmlread(File) reads an mzXML file, File, and then creates a MATLAB structure, mzXMLStruct.</pre>	
	<i>File</i> is a string containing a file name, or a path and file name, of an mzXML file. The file must conform to the mzXML 2.1 specification or earlier specifications. You can view the mzXML 2.1 specification at:	
	http://sashimi.sour	<pre>cceforge.net/schema_revision/mzXML_2.1/Doc/mzXML_2.1_tutorial.pdf</pre>

mzXMLStruct includes the following fields.

Field	Description
scan	Structure array containing the data pertaining to each individual scan, such as mass spectrometry level, total ion current, polarity, precursor mass (when it applies), and the spectrum data.
index	Structure containing indices to the positions of scan elements in the XML document.
mzXML	Structure containing:
	• Information in the root element of the mzXML schema, such as instrument details, experiment details, and preprocessing method
	• URLs pointing to schemas for the individual scans
	Indexing approach
	• Digital signature calculated for the current instance of the document

Tip LC/MS data analysis requires extended amounts of memory from the operating system. If you receive any errors related to memory or Java heap space, try the following:

• Increase the virtual memory (or swap space) of your operating system or set the 3 GB switch (32-bit Windows XP only) as described at:

http://www.mathworks.com/support/tech-notes/1100/1107.html

• Increase your Java heap space as described at:

http://www.mathworks.com/support/solutions/data/1-18I2C.html

mzXMLStruct = mzxmlread(File, ...'PropertyName', PropertyValue, ...) calls mzxmlread with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

mzXMLStruct = mzxmlread(File, ...'Levels', LevelsValue, ...) specifies the level(s) of spectra in File to read. LevelsValue is a positive integer or vector of integers. Default is to read all levels of spectra.

Tip For summary information about the levels of spectra in an mzXML file, use the mzxmlinfo function.

Note If you specify a *LevelsValue*, you cannot specify *TimeRangeValue* or *ScanIndicesValue*.

```
mzXMLStruct = mzxmlread(File, ...'TimeRange',
TimeRangeValue, ...) specifies the range of time in File to read.
TimeRangeValue is two-element numeric array [Start End]. Start is
a scalar between the startTime and endTime attributes of the msRun
element in File. End is a scalar between Start and the endTime
attribute of the msRun element in File. Default is to read spectra
from all times.
```

Tip For summary information about the time ranges in an mzXML file, use the mzxmlinfo function.

Note If you specify a *TimeRangeValue*, you cannot specify *LevelsValue* or *ScanIndicesValue*.

mzXMLStruct = mzxmlread(File, ... 'ScanIndices', ScanIndicesValue, ...) specifies a scan, multiple scans, or range of scans in File to read. ScanIndicesValue is a positive integer, vector of integers, or a two-element numeric array [Start_Ind End_Ind]. Start_Ind and End_Ind are each positive integers indicating a scan number in the num attribute of the msRun element in File. Start_Ind must be less than End_Ind. Default is to read all scan.

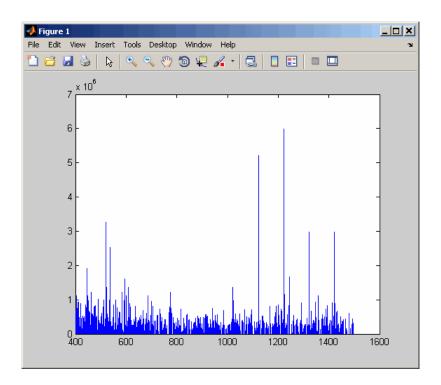
Tip For summary information about the scan indices in an mzXML file, use the mzxmlinfo function.

Note If you specify a *ScanIndicesValue*, you cannot specify *LevelsValue* or *TimeRangeValue*.

mzXMLStruct = mzxmlread(File, ...'Verbose', VerboseValue, ...) controls the display of the progress of the reading of File. Choices are true (default) or false.

Examples

Note In the following example, the file results.mzxml is not provided. Sample mzXML files can be found at:


- Open Proteomics Database
- Peptide Atlas Repository at the Institute for Systems Biology (ISB)
- The Sashimi Project

1 Read an mzXML file into the MATLAB software as a structure.

```
out = mzxmlread('results.mzxml')
out =
    mzXML: [1x1 struct]
    index: [1x1 struct]
    scan: [2000x1 struct]
```

2 View the first scan in the mzXML file by creating separate variables containing the mass and charge values respectively, and then plotting these values.

```
m = out.scan(1).peaks.mz(1:2:end);
z = out.scan(1).peaks.mz(2:2:end);
stem(m,z,'marker','none')
```


See Also Bioinformatics Toolbox functions: jcampread, mzcdfread, mzxml2peaks, mzxmlinfo

MATLAB function: xmlread

nmercount

Purpose	Count n-mers in nucleotide or amino acid sequence	
Syntax	<pre>Nmer = nmercount(Seq, Length) Nmer = nmercount(Seq, Length, C)</pre>	
Arguments	Seq	One of the following:
		• String of codes specifying a nucleotide sequence or amino acid sequence. For valid letter codes, see the table Mapping Nucleotide Letter Codes to Integers on page 2-794 or the table Mapping Amino Acid Letter Codes to Integers on page 2-2.
		• MATLAB structure containing a Sequence field that contains a nucleotide sequence or an amino acid sequence, such as returned by fastaread, emblread, getembl, genbankread, getgenbank, getgenpept, genpeptread, getpdb, or pdbread.
	Length	Integer specifying the length of n-mer to count.
Return Values	Nmer	Cell array containing the n-mer counts in Seq.
Description	<i>Nmer</i> = nmercount(<i>Seq</i> , <i>Length</i>) counts the n-mers or patterns of a specific length in <i>Seq</i> , a nucleotide sequence or amino acid sequence, and returns the n-mer counts in a cell array.	
	<i>Nmer</i> = nmercount(Seq, Length, C) returns only the n-mers with cardinality of at least C.	
Examples	Use the getgenpept function to retrieve the amino acid sequence for the human insulin receptor.	
	<pre>S = getgenpept('AAA59174','SequenceOnly',true);</pre>	

2 Count the number of four-mers in the amino acid sequence and display the first 20 rows in the cell array.

```
nmers = nmercount(S,4);
nmers(1:20,:)
ans =
     'APES'
                [2]
    'DFRD'
                [2]
    'ESLK'
                [2]
     'FRDL'
                [2]
     'GNYS'
                [2]
     'LKEL'
                [2]
    'SHCQ'
                [2]
    'SLKD'
                [2]
     'SVRI'
                [2]
    'TDYL'
                [2]
    'TSLA'
                [2]
    'TVIN'
                [2]
    'VING'
                [2]
     'VPLD'
                [2]
     'YALV'
                [2]
     'AAAA'
                [1]
     'AAAP'
                [1]
     'AAEI'
                [1]
     'AAEL'
                [1]
     'AAFP'
                [1]
```

See Also Bioinformatics Toolbox functions: aacount, basecount, codoncount, dimercount

nt2aa

Purpose	Convert nucleotide sequence to amino acid sequence						
Syntax	<pre>SeqAA = nt2aa(SeqNT) SeqAA = nt2aa(, 'Frame', FrameValue,) SeqAA = nt2aa(, 'GeneticCode', GeneticCodeValue,) SeqAA = nt2aa(, 'AlternativeStartCodons',</pre>						

Arguments

SegNT

FrameValue

One of the following:

- Character string of codes specifying a nucleotide sequence
- MATLAB structure containing a Sequence field that contains a nucleotide sequence, such as returned by fastaread, emblread, getembl, genbankread, or getgenbank

Valid characters include:

- A
- C
- G
- T
- U
- hyphen (-)

Note Hyphens are valid only if the codon to which it belongs represents a gap, that is, the codon contains all hyphens. Example: ACT---TGA

Tip Do not use a sequence with hyphens if you specify 'all' for *FrameValue*.

Integer or string specifying a reading frame in the nucleotide sequence. Choices are 1, 2, 3, or 'all'. Default is 1.

If FrameValue is 'all', then SeqAA 2-785 is a 3-by-1 cell array.

GeneticCodeValue Integer or string specifying a genetic code number or code name from the table Genetic Code on page 2-787. Default is 1 or 'Standard'. **Tip** If you use a code name, you can truncate the name to the first two letters of the name. AlternativeStartCodonsValue Controls the translation of alternative codons. Choices are true (default) or false. Return SeqAA Amino acid sequence specified by Values a character string of single-letter codes. **Description** SeqAA = nt2aa(SeqNT) converts a nucleotide sequence, specified by SeqNT, to an amino acid sequence, returned in SeqAA, using the standard genetic code. SeqAA = nt2aa(SeqNT, ... 'PropertyName', PropertyValue, ...) calls nt2aa with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows: SeqAA = nt2aa(..., 'Frame', FrameValue, ...) converts a nucleotide sequence for a specific reading frame to an amino acid sequence. Choices are 1, 2, 3, or 'all'. Default is 1. If FrameValue is 'all', then output SeqAA is a 3-by-1 cell array.

SeqAA = nt2aa(..., 'GeneticCode', GeneticCodeValue, ...) specifies a genetic code to use when converting a nucleotide sequence to an amino acid sequence. GeneticCodeValue can be an integer or string specifying a code number or code name from the table Genetic Code on page 2-787. Default is 1 or 'Standard'. The amino acid to nucleotide codon mapping for the Standard genetic code is shown in the table Standard Genetic Code on page 2-788.

Tip If you use a code name, you can truncate the name to the first two letters of the name.

```
SeqAA = nt2aa(...,
```

'AlternativeStartCodons', *AlternativeStartCodonsValue*, ...) controls the translation of alternative start codons. By default, *AlternativeStartCodonsValue* is set to true, and if the first codon of a sequence is a known alternative start codon, the codon is translated to methionine.

If this option is set to false, then an alternative start codon at the start of a sequence is translated to its corresponding amino acid in the genetic code that you specify, which might not necessarily be methionine. For example, in the human mitochondrial genetic code, AUA and AUU are known to be alternative start codons.

For more information about alternative start codons, see:

www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

Genetic Code

Code Number	Code Name
1	Standard
2	Vertebrate Mitochondrial
3	Yeast Mitochondrial

Genetic Code (Continued)

Code Number	Code Name
4	Mold, Protozoan, Coelenterate Mitochondrial, and Mycoplasma/Spiroplasma
5	Invertebrate Mitochondrial
6	Ciliate, Dasycladacean, and Hexamita Nuclear
9	Echinoderm Mitochondrial
10	Euplotid Nuclear
11	Bacterial and Plant Plastid
12	Alternative Yeast Nuclear
13	Ascidian Mitochondrial
14	Flatworm Mitochondrial
15	Blepharisma Nuclear
16	Chlorophycean Mitochondrial
21	Trematode Mitochondrial
22	Scenedesmus Obliquus Mitochondrial
23	Thraustochytrium Mitochondrial

Standard Genetic Code

Amino Acid Name	Amino Acid Code	Nucleotide Codon
Alanine	А	GCT GCC GCA GCG
Arginine	R	CGT CGC CGA CGG AGA AGG
Asparagine	Ν	ATT AAC

Standard	Genetic	Code	(Continued)
----------	---------	------	-------------

Amino Acid Name	Amino Acid Code	Nucleotide Codon
Aspartic acid (Aspartate)	D	GAT GAC
Cysteine	С	TGT TGC
Glutamine	Q	CAA CAG
Glutamic acid (Glutamate)	E	GAA GAG
Glycine	G	GGT GGC GGA GGG
Histidine	Н	CAT CAC
Isoleucine	I	ATT ATC ATA
Leucine	L	TTA TTG CTT CTC CTA CTG
Lysine	К	AAA AAG
Methionine	М	ATG
Phenylalanine	F	TTT TTC
Proline	Р	CCT CCC CCA CCG
Serine	S	TCT TCC TCA TCG AGT AGC
Threonine	Т	ACT ACC ACA ACG
Tryptophan	W	TGG
Tyrosine	Y	TAT, TAC
Valine	V	GTT GTC GTA GTG
Asparagine or Aspartic acid (Aspartate)	В	Random codon from D and N

Amino Acid Name	Amino Acid Code	Nucleotide Codon
Glutamine or Glutamic acid (Glutamate)	Z	Random codon from E and Q
Unknown amino acid (any amino acid)	Х	Random codon
Translation stop	*	TAA TAG TGA
Gap of indeterminate length	-	
Unknown character (any character or symbol not in table)	?	???

Standard Genetic Code (Continued)

Examples

Converting the ND1 Gene

1 Use the getgenbank function to retrieve the nucleotide sequence for the human mitochondrion from the GenBank database.

mitochondria = getgenbank('NC_001807', 'SequenceOnly', true);

2 Extract the sequence for the ND1 gene from the nucleotide sequence.

ND1gene = mitochondria (3308:4261);

3 Convert the ND1 gene on the human mitochondria genome to an amino acid sequence using the Vertebrate Mitochondrial genetic code.

protein1 = nt2aa(ND1gene, 'GeneticCode', 2);

4 Use the getgenpept function to retrieve the same amino acid sequence from the GenPept database.

```
protein2 = getgenpept('NP_536843', 'SequenceOnly', true);
```

5 Use the isequal function to compare the two amino acid sequences.

```
isequal (protein1, protein2)
ans =
1
```

Converting the ND2 Gene

1 Use the getgenbank function to retrieve the nucleotide sequence for the human mitochondrion from the GenBank database.

mitochondria = getgenbank('NC_001807', 'SequenceOnly', true);

2 Extract the sequence for the ND2 gene from the nucleotide sequence.

ND2gene = mitochondria (4471:5511);

3 Convert the ND2 gene on the human mitochondria genome to an amino acid sequence using the Vertebrate Mitochondrial genetic code.

protein1 = nt2aa(ND2gene, 'GeneticCode', 2);

Note In the ND2gene nucleotide sequence, the first codon is ATT, which is translated to M, while the subsequent ATT codons are translated to I. If you set 'AlternativeStartCodons' to false, then the first ATT codon is translated to I, the corresponding amino acid in the Vertebrate Mitochondrial genetic code.

See Also

```
4 Use the getgenpept function to retrieve the same amino acid
sequence from the GenPept database.
    protein2 = getgenpept('NP_536844', 'SequenceOnly', true);
5 Use the isequal function to compare the two amino acid sequences.
    isequal (protein1, protein2)
    ans =
        1
Bioinformatics Toolbox functions: aa2nt, aminolookup, baselookup,
```

codonbias, dnds, dndsml, geneticcode, revgeneticcode, seqtool

Purpose	Convert nucleotide sequence from letter to integer representation							
Syntax	<pre>SeqInt = nt2int(SeqChar) SeqInt = nt2int(SeqChar,'Unknown', UnknownValue,) SeqInt = nt2int(SeqChar,'ACGTOnly', ACGTOnlyValue,)</pre>							
Arguments	SeqChar One of the following:							
		• String of codes specifying a nucleotide sequence. For valid letter codes, see the table Mapping Nucleotide Letter Codes to Integers on page 2-794. Integers are arbitrarily assigned to IUB/IUPAC letters.						
		• MATLAB structure containing a Sequence field that contains a nucleotide sequence, such as returned by fastaread, emblread, getembl, genbankread, or getgenbank.						
	UnknownValue	Integer to represent unknown nucleotides. Choices are integers ≥ 0 and ≤ 255 . Default is 0.						
	ACGTOnlyValue	Controls the prohibition of ambiguous nucleotides. Choices are true or false (default). If <i>ACGTOnlyValue</i> is true, you can enter only the characters A, C, G, T, and U.						
Return Values	SeqInt	Nucleotide sequence specified by a row vector of integers.						
Description	<pre>SeqInt = nt2int(SeqChar) converts SeqChar, a string of codes specifying a nucleotide sequence, to SeqInt, a row vector of integers specifying the same nucleotide sequence. For valid codes, see the</pre>							

table Mapping Nucleotide Letter Codes to Integers on page 2-794. Unknown characters (characters not in the table) are mapped to 0. Gaps represented with hyphens are mapped to 16.

SeqInt = nt2int(SeqChar, ...'PropertyName', PropertyValue, ...) calls nt2int with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

SeqInt = nt2int(SeqChar, ... 'Unknown', UnknownValue, ...) specifies an integer to represent unknown nucleotides. UnknownValue can be an integer ≥ 0 and ≤ 255 . Default is 0.

SeqInt = nt2int(SeqChar, ... 'ACGTOnly', ACGTOnlyValue, ...)
controls the prohibition of ambiguous nucleotides (N, R, Y, K, M, S, W, B,
D, H, and V). Choices are true or false (default). If ACGTOnlyValue is
true, you can enter only the characters A, C, G, T, and U.

Nucleotide	Code	Integer
Adenosine	A	1
Cytidine	С	2
Guanine	G	3
Thymidine	Т	4
Uridine (if 'Alphabet' set to 'RNA')	U	4
Purine (A or G)	R	5
Pyrimidine (T or C)	Y	6
Keto (G or T)	к	7
Amino (A or C)	М	8
Strong interaction (3 H bonds) (G or C) $$	S	9

Mapping Nucleotide Letter Codes to Integers

Nucleotide	Code	Integer
Weak interaction (2 H bonds) (A or T) $$	W	10
Not A (C or G or T)	В	11
Not C (A or G or T)	D	12
Not G (A or C or T)	Н	13
Not T or U (A or C or G)	V	14
Any nucleotide (A or C or G or T or U) $(A = (A + C)^2 + (A + C)^$	N	15
Gap of indeterminate length	-	16
Unknown (any character not in table)	*	0 (default)

Mapping Nucleotide Letter Codes to Integers (Continued)

Examples Converting a Simple Sequence

Convert a nucleotide sequence from letters to integers.

s = nt2int('ACTGCTAGC')
s =
 1 2 4 3 2 4 1 3 2

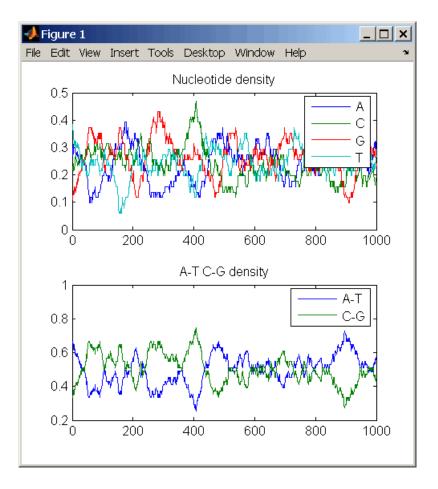
Converting a Random Sequence

1 Create a random character string to represent a nucleotide sequence.

SeqChar = randseq(20)

SeqChar =

TTATGACGTTATTCTACTTT


2 Convert the nucleotide sequence from letter to integer representation.

SeqInt = nt2int(SeqChar)

SeqInt =											
Column 4	-	h 13 4	3	1	2	3	4	4	1	4	4
Column 2		gh 20 2		4	4						

See Also Bioinformatics Toolbox functions: aa2int, baselookup, int2aa, int2nt

Purpose	Plot density of nucleotides along sequence	
Syntax	<pre>ntdensity(SeqNT) Density = ntdensity(SeqNT, 'PropertyName', PropertyValue) ntdensity(, 'Window', WindowValue) [Density, HighCG] = ntdensity(, 'CGThreshold',</pre>	
Description	ntdensity(SeqNT) plots the density of nucleotides A, T, C, G in sequence SeqNT.	
	<i>Density</i> = ntdensity(SeqNT, ' <i>PropertyName</i> ', <i>PropertyValue</i>) returns a MATLAB structure with the density of nucleotides A, C, G, and T.	
	ntdensity(, 'Window', <i>WindowValue</i>) uses a window of length Window for the density calculation. The default value is length(SeqNT)/20.	
	[Density, HighCG] = ntdensity(, 'CGThreshold', <i>CGThresholdValue</i>) returns indices for regions where the CG content of SeqNT is greater than CGThreshold. The default value for CGThreshold is 5.	
Examples	s = randseq(1000, 'alphabet', 'dna'); ndensity(s)	

See Also Bioinformatics Toolbox functions: basecount, codoncount, cpgisland, dimercount

MATLAB function: filter

Purpose	Return NUC44 scoring matrix for nucleotide sequences
Syntax	ScoringMatrix = nuc44 [ScoringMatrix, MatrixInfo] = nuc44
Description ScoringMatrix = nuc44 returns the scoring matrix. The nuc44 sematrix uses ambiguous nucleotide codes and probabilities rounded the nearest integer.	
	Scale = 0.277316
	Expected score = -1.7495024 , Entropy = 0.5164710 bits
	Lowest score = -4 , Highest score = 5
	Order: A C G T R Y K M S W B D H V N
	[ScoringMatrix, MatrixInfo] = nuc44 returns a structure with information about the matrix with fields Name and Order.

num2goid

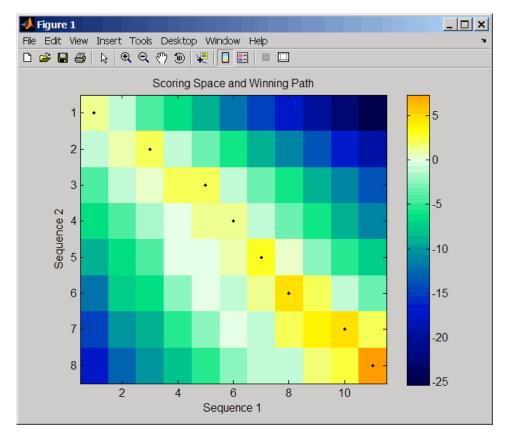
Purpose	Convert numbers to Gene Ontology IDs
Syntax	GOIDs = num2goid(X)
Description	<pre>GOIDs = num2goid(X) converts the numbers in X to strings with Gene Ontology IDs. IDs are a 7-digit number preceded by the prefix 'GO:'.</pre>
Examples	Get the Gene Ontology IDs of the following numbers. t = [5575 5622 5623 5737 5840 30529 43226 43228 43229 43232 43234];
	ids = num2goid(t)
See Also	Bioinformatics Toolbox functions: geneont (object constructor), goannotread
	Bioinformatics Toolbox methods of geneont object: getancestors, getdescendants, getmatrix, getrelatives

Purpose	Globally align two sequ	uences using Needleman-Wunsch algorithm
Syntax (1997)	<pre>Score = nwalign(Seq1,Seq2) [Score, Alignment] = nwalign(Seq1,Seq2) [Score, Alignment, Start] = nwalign(Seq1,Seq2) = nwalign(Seq1,Seq2,'Alphabet', AlphabetValue,) = nwalign(Seq1,Seq2,'ScoringMatrix', ScoringMatrixValue,) = nwalign(Seq1,Seq2,'Scale', ScaleValue,) = nwalign(Seq1,Seq2,'GapOpen', GapOpenValue,) = nwalign(Seq1,Seq2,'ExtendGap', ExtendGapValue,) = nwalign(Seq1,Seq2,'Showscore', ShowscoreValue,)</pre>	
Arguments	Seq1, Seq2	 Amino acid or nucleotide sequences. Enter any of the following: Character string of letters representing amino acids or nucleotides, such as returned by int2aa or int2nt Vector of integers representing amino acids or nucleotides, such as returned by aa2int or nt2int Structure containing a Sequence field Tip For help with letter and integer representations of amino acids and
		nucleotides, see Amino Acid Lookup on page 2-91 or Nucleotide Lookup on page 2-102.
	AlphabetValue	String specifying the type of sequence. Choices are 'AA' (default) or 'NT'.

ScoringMatrixValue String specifying the scoring matrix to use for the global alignment. Choices for amino acid sequences are:

- 'PAM40'
- 'PAM250'
- 'DAYHOFF'
- 'GONNET'
- 'BLOSUM30' increasing by 5 up to 'BLOSUM90'
- 'BLOSUM62'
- 'BLOSUM100'

Default is:


- 'BLOSUM50' (when *AlphabetValue* equals 'AA')
- 'NUC44' (when *AlphabetValue* equals 'NT')

Note All of the above scoring matrices have a built-in scale factor that returns *Score* in bits.

ScaleValue	Positive value that specifies the scale factor used to return <i>Score</i> in arbitrary units other than bits. For example, if you enter log(2) for <i>ScaleValue</i> , then nwalign returns <i>Score</i> in nats.
GapOpenValue	Positive integer specifying the penalty for opening a gap in the alignment. Default is 8 .

	ExtendGapValue ShowscoreValue	Positive integer specifying the penalty for extending a gap. Default is equal to <i>GapOpenValue</i> . Controls the display of the scoring space and
		the winning path of the alignment. Choices are true or false (default).
Return	Score	Optimal global alignment score in bits.
Values	Alignment	3-by-N character array showing the two sequences, <i>Seq1</i> and <i>Seq2</i> , in the first and third rows, and symbols representing the optimal global alignment for them in the second row.
	Start	2-by-1 vector of indices indicating the starting point in each sequence for the alignment. Because this is a global alignment, <i>Start</i> is always [1;1].
Description	<pre>Score = nwalign(Seq1,Seq2) returns the optimal global alignment score in bits. The scale factor used to calculate the score is provided by the scoring matrix. [Score, Alignment] = nwalign(Seq1,Seq2) returns a 3-by-N character array showing the two sequences, Seq1 and Seq2, in the first and third rows, and symbols representing the optimal global alignment for them in the second row. The symbol indicates amino acids or nucleotides that match exactly. The symbol : indicates amino acids or nucleotides that are related as defined by the scoring matrix (nonmatches with a zero or positive scoring matrix value).</pre>	
	vector of indices indica	<pre>Start] = nwalign(Seq1,Seq2) returns a 2-by-1 ting the starting point in each sequence for the is is a global alignment, Start is always [1;1].</pre>

```
= nwalign(Seq1,Seq2, ... 'PropertyName',
PropertyValue, ...) calls nwalign with optional properties
that use property name/property value pairs. You can specify one or
more properties in any order. Each PropertyName must be enclosed
in single quotation marks and is case insensitive. These property
name/property value pairs are as follows:
... = nwalign(Seq1,Seq2, ...'Alphabet',
AlphabetValue, ...) specifies the type of sequences. Choices are
'AA' (default) or 'NT'.
... = nwalign(Seq1,Seq2,
... 'ScoringMatrix', ScoringMatrixValue, ...) specifies the
scoring matrix to use for the global alignment. Default is:
• 'BLOSUM50' (when AlphabetValue equals 'AA')
• 'NUC44' (when AlphabetValue equals 'NT')
     = nwalign(Seq1,Seq2, ... 'Scale', ScaleValue, ...)
specifies the scale factor used to return Score in arbitrary units other
than bits. Choices are any positive value.
     = nwalign(Seq1,Seq2, ... 'GapOpen', GapOpenValue, ...)
. . .
specifies the penalty for opening a gap in the alignment. Choices are
any positive integer. Default is 8.
     = nwalign(Seq1,Seq2, ... 'ExtendGap',
. . .
ExtendGapValue, ...) specifies the penalty for extending a gap in
the alignment. Choices are any positive integer. Default is equal
to GapOpenValue.
... = nwalign(Seq1,Seq2, ... 'Showscore',
ShowscoreValue, ...) controls the display of the scoring space and
winning path of the alignment. Choices are true or false (default)
```


The scoring space is a heat map displaying the best scores for all the partial alignments of two sequences. The color of each (n1,n2) coordinate in the scoring space represents the best score for the pairing of subsequences Seq1(1:n1) and Seq2(1:n2), where n1 is a position in Seq1 and n2 is a position in Seq2. The best score for a pairing of specific subsequences is determined by scoring all possible alignments of the subsequences by summing matches and gap penalties.

The winning path is represented by black dots in the scoring space and represents the pairing of positions in the optimal global alignment. The color of the last point (lower right) of the winning path represents the optimal global alignment score for the two sequences and is the ${\it Score}$ output returned by nwalign.

Tip The scoring space visually indicates if there are potential alternate winning paths, which is useful when aligning sequences with big gaps. Visual patterns in the scoring space can also indicate a possible sequence rearrangement.

Examples 1 Globally align two amino acid sequences using the BLOSUM50 (default) scoring matrix and the default values for the GapOpen and ExtendGap properties. Return the optimal global alignment score in bits and the alignment character array.

```
[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD')
Score =
7.3333
Alignment =
VSPAGMASGYD
: | | || ||
I-P-GKAS-YD
```

2 Globally align two amino acid sequences specifying the PAM250 scoring matrix and a gap open penalty of **5**.

```
[Score, Alignment] = nwalign('IGRHRYHIGG','SRYIGRG',...
'scoringmatrix','pam250',...
'gapopen',5)
Score =
2.3333
Alignment =
```

IGRHRYHIG-G : || || | -S--RY-IGRG

3 Globally align two amino acid sequences returning the *Score* in nat units (nats) by specifying a scale factor of log(2).

```
[Score, Alignment] = nwalign('HEAGAWGHEE','PAWHEAE','Scale',log(2))
Score =
     0.2310
Alignment =
HEAGAWGHE-E
     || || |
--P-AW-HEAE
```

References [1] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis (Cambridge University Press).
 See Also Bioinformatics Toolbox functions: blosum, multialign, nt2aa, pam, profalign, seqdotplot, showalignment, swalign

oligoprop

Purpose	Calculate sequence	properties of DNA oligonucleotide
Syntax	SeqProperties = c SeqProperties = c PrimerconcValu	<pre>bligoprop(SeqNT,'Salt', SaltValue,) bligoprop(SeqNT,'Temp', TempValue,) bligoprop(SeqNT,'Primerconc',</pre>
)	<pre>bligoprop(SeqNT,'HPLoop', HPLoopValue,</pre>
	SeqProperties = c DimerlengthVal	oligoprop(SeqNT,'Dimerlength', lue,)
Arguments	SeqNT	 DNA oligonucleotide sequence represented by any of the following: Character string containing the letters A, C, G, T, or N
		 Vector of integers containing the integers 1, 2, 3, 4, or 15
		• Structure containing a Sequence field that contains a nucleotide sequence
	SaltValue	Value that specifies a salt concentration in moles/liter for melting temperature calculations. Default is 0.05 moles/liter.
	TempValue	Value that specifies the temperature in degrees Celsius for nearest-neighbor calculations of free energy. Default is 25 degrees Celsius.
	PrimerconcValue	Value that specifies the concentration in moles/liter for melting temperature calculations. Default is 50e-6 moles/liter.

<i>HPBaseValue</i>	Value that specifies the minimum number of paired bases that form the neck of the hairpin. Default is 4 base pairs.
HPLoopValue	Value that specifies the minimum number of bases that form the loop of a hairpin. Default is 2 bases.
DimerlengthValue	Value that specifies the minimum number of aligned bases between the sequence and its reverse. Default is 4 bases.
SeqProperties	Structure containing the sequence properties for a DNA oligonucleotide.

Description SeqProperties = oligoprop(SeqNT) returns the sequence properties for a DNA oligonucleotide as a structure with the following fields:

Return Values

Field	Description
GC	Percent GC content for the DNA oligonucleotide. Ambiguous N characters in <i>SeqNT</i> are considered to potentially be any nucleotide. If <i>SeqNT</i> contains ambiguous N characters, GC is the midpoint value, and its uncertainty is expressed by GCdelta.
GCdelta	The difference between GC (midpoint value) and either the maximum or minimum value GC could assume. The maximum and minimum values are calculated by assuming all N characters are G/C or not G/C, respectively. Therefore, GCdelta defines the possible range of GC content.

Field	Description
Hairpins	 H-by-length(SeqNT) matrix of characters displaying all potential hairpin structures for the sequence SeqNT. Each row is a potential hairpin structure of the sequence, with the hairpin forming nucleotides designated by capital letters. H is the number of potential hairpin structures for the sequence. Ambiguous N characters in SeqNT are considered to potentially complement any nucleotide.
Dimers	D-by-length(SeqNT) matrix of characters displaying all potential dimers for the sequence SeqNT. Each row is a potential dimer of the sequence, with the self-dimerizing nucleotides designated by capital letters. D is the number of potential dimers for the sequence. Ambiguous N characters in SeqNT are considered to potentially complement any nucleotide.
MolWeight	Molecular weight of the DNA oligonucleotide. Ambiguous N characters in <i>SeqNT</i> are considered to potentially be any nucleotide. If <i>SeqNT</i> contains ambiguous N characters, MolWeight is the midpoint value, and its uncertainty is expressed by MolWeightdelta.
MolWeightdelta	The difference between MolWeight (midpoint value) and either the maximum or minimum value MolWeight could assume. The maximum and minimum values are calculated by assuming all N characters are G or C, respectively. Therefore, MolWeightdelta defines the possible range of molecular weight for SeqNT.

Field	Description
Tm	A vector with melting temperature values, in degrees Celsius, calculated by six different methods, listed in the following order:Basic (Marmur et al., 1962)
	• Salt adjusted (Howley et al., 1979)
	• Nearest-neighbor (Breslauer et al., 1986)
	• Nearest-neighbor (SantaLucia Jr. et al., 1996)
	• Nearest-neighbor (SantaLucia Jr., 1998)
	• Nearest-neighbor (Sugimoto et al., 1996)
	Ambiguous N characters in <i>SeqNT</i> are considered to potentially be any nucleotide. If <i>SeqNT</i> contains ambiguous N characters, Tm is the midpoint value, and its uncertainty is expressed by Tmdelta.
Tmdelta	A vector containing the differences between Tm (midpoint value) and either the maximum or minimum value Tm could assume for each of the six methods. Therefore, Tmdelta defines the possible range of melting temperatures for SeqNT.

oligop<u>rop</u>

Field	Description
Thermo	4-by-3 matrix of thermodynamic calculations.
	The rows correspond to nearest-neighbor parameters from:
	• Breslauer et al., 1986
	• SantaLucia Jr. et al., 1996
	• SantaLucia Jr., 1998
	• Sugimoto et al., 1996
	The columns correspond to:
	 delta H — Enthalpy in kilocalories per mole, kcal/mol
	 delta S — Entropy in calories per mole-degrees Kelvin, cal/(K)(mol)
	 delta G — Free energy in kilocalories per mole, kcal/mol
	Ambiguous N characters in <i>SeqNT</i> are considered to potentially be any nucleotide. If <i>SeqNT</i> contains ambiguous N characters, Thermo is the midpoint value, and its uncertainty is expressed by Thermodelta.
Thermodelta	4-by-3 matrix containing the differences between Thermo (midpoint value) and either the maximum or minimum value Thermo could assume for each calculation and method. Therefore, Thermodelta defines the possible range of thermodynamic values for SeqNT.

SeqProperties = oligoprop(SeqNT, ...'PropertyName',
PropertyValue, ...) calls oligoprop with optional properties that

use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

SeqProperties = oligoprop(SeqNT, ...'Salt', SaltValue, ...) specifies a salt concentration in moles/liter for melting temperature calculations. Default is 0.05 moles/liter.

SeqProperties = oligoprop(SeqNT, ... 'Temp', TempValue, ...) specifies the temperature in degrees Celsius for nearest-neighbor calculations of free energy. Default is 25 degrees Celsius.

SeqProperties = oligoprop(SeqNT, ... 'Primerconc', PrimerconcValue, ...) specifies the concentration in moles/liter for melting temperatures. Default is 50e-6 moles/liter.

SeqProperties = oligoprop(SeqNT, ... 'HPBase', HPBaseValue, ...) specifies the minimum number of paired bases that form the neck of the hairpin. Default is 4 base pairs.

SeqProperties = oligoprop(SeqNT, ... 'HPLoop', HPLoopValue, ...) specifies the minimum number of bases that form the loop of a hairpin. Default is 2 bases.

SeqProperties = oligoprop(SeqNT, ...'Dimerlength', DimerlengthValue, ...) specifies the minimum number of aligned bases between the sequence and its reverse. Default is 4 bases.

Examples Calculating Properties for a DNA Sequence

1 Create a random sequence.

seq = randseq(25)

seq =

TAGCTTCATCGTTGACTTCTACTAA

2 Calculate sequence properties of the sequence.

3 List the thermodynamic calculations for the sequence.

S1.Thermo ans = -178.5000 -477.5700 -36.1125 -182.1000 -497.8000 -33.6809 -190.2000 -522.9000 -34.2974 -191.9000 -516.9000 -37.7863

Calculating Properties for a DNA Sequence with Ambiguous Characters

1 Calculate sequence properties of the sequence ACGTAGAGGACGTN.

```
S2 = oligoprop('ACGTAGAGGACGTN')
S2 =
GC: 53.5714
GCAlpha: 3.5714
Hairpins: 'ACGTagaggACGTn'
```

```
Dimers: [3x14 char]
MolWeight: 4.3329e+003
MolWeightAlpha: 20.0150
Tm: [38.8357 42.2958 57.7880 52.4180 49.9633 55.1330]
TmAlpha: [1.4643 1.4643 10.3885 3.4633 0.2829 3.8074]
Thermo: [4x3 double]
ThermoAlpha: [4x3 double]
```

2 List the potential dimers for the sequence.

S2.Dimers ans = ACGTagaggacgtn ACGTagaggACGTn acgtagagGACGTN

References [1] Breslauer, K.J., Frank, R., Blöcker, H., and Marky, L.A. (1986). Predicting DNA duplex stability from the base sequence. Proceedings of the National Academy of Science USA *83*, 3746–3750.

[2] Chen, S.H., Lin, C.Y., Cho, C.S., Lo, C.Z., and Hsiung, C.A. (2003). Primer Design Assistant (PDA): A web-based primer design tool. Nucleic Acids Research *31(13)*, 3751–3754.

[3] Howley, P.M., Israel, M.A., Law, M., and Martin, M.A. (1979). A rapid method for detecting and mapping homology between heterologous DNAs. Evaluation of polyomavirus genomes. The Journal of Biological Chemistry *254(11)*, 4876–4883.

[4] Marmur, J., and Doty, P. (1962). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. Journal Molecular Biology *5*, 109–118.

[5] Panjkovich, A., and Melo, F. (2005). Comparison of different melting temperature calculation methods for short DNA sequences. Bioinformatics 21(6), 711–722.

[6] SantaLucia Jr., J., Allawi, H.T., and Seneviratne, P.A. (1996). Improved Nearest-Neighbor Parameters for Predicting DNA Duplex Stability. Biochemistry *35*, 3555–3562.

[7] SantaLucia Jr., J. (1998). A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Science USA *95*, 1460–1465.

[8] Sugimoto, N., Nakano, S., Yoneyama, M., and Honda, K. (1996). Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Research *24(22)*, 4501–4505.

[9] http://www.basic.northwestern.edu/biotools/oligocalc.html for weight calculations.

See Also Bioinformatics Toolbox functions: isoelectric, molweight, ntdensity, palindromes, randseq

Purpose	Determine optimal le	eaf ordering for hierarchical binary cluster tree
Syntax	Order = optimallea CriteriaValue,	aforder(<i>Tree</i> , <i>Dist</i> ,'Transformation',
Arguments	Tree	Hierarchical binary cluster tree represented by an $(M - 1)$ -by-3 matrix, created by the linkage function, where M is the number of leaves.
	Dist	Distance matrix, such as that created by the pdist function.

	CriteriaValue	 String that specifies the optimization criteria. Choices are: adjacent (default) — Minimizes the sum of distances between adjacent leaves. group — Minimizes the sum of distances between every leaf and all other leaves in the adjacent cluster.
	TransformationValue	e Either of the following:
		• String that specifies the algorithm to transform the distances in <i>Dist</i> into similarity values. Choices are:
		 linear (default) — Similarity = max(all distances) - distance
		 quadratic — Similarity = (max(all distances) - distance)²
		 inverse — Similarity = 1/distance
		• A function handle created using @ to a function that transforms the distances in <i>Dist</i> into similarity values. The function is typically a monotonic decreasing function within the range of the distance values. The function must accept a vector input and return a vector of the same size.
Return Values	Order	Optimal leaf ordering for the hierarchical binary cluster tree represented by <i>Tree</i> .
Description	ordering for the hierarc $(M - 1)$ -by-3 matrix, created and the second	order(<i>Tree</i> , <i>Dist</i>) returns the optimal leaf chical binary cluster tree represented by <i>Tree</i> , an eated by the linkage function, where <i>M</i> is the mal leaf ordering of a binary tree maximizes the

	similarity between adjacent elements (clusters or leaves) by flipping tree branches, but without dividing the clusters. The input <i>Dist</i> is a distance matrix, such as that created by the pdist function.		
	Order = optimalleaforder(Tree, Dist,'PropertyName', PropertyValue,) calls optimalleaforder with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:		
	Order = optimalleaforder(Tree, Dist,'Criteria', CriteriaValue,) specifies the optimization criteria.		
	Order = optimalleaforder(Tree, Dist,'Transformation', TransformationValue,) specifies the algorithm to transform the distances in Dist into similarity values. The transformation is necessary because optimalleaforder maximizes the similarity between adjacent elements, which is comparable to minimizing the sum of distances between adjacent elements.		
Examples	I Use the rand function to create a 10-by-2 matrix of random values.		
	X = rand(10,2);		
2 Use the pdist function to create a distance matrix containing t block distances between the pairs of objects in matrix X.			
	2 Use the pdist function to create a distance matrix containing the city block distances between the pairs of objects in matrix X.		
	block distances between the pairs of objects in matrix X.		
	<pre>block distances between the pairs of objects in matrix X. Dist = pdist(X, 'cityblock'); 3 Use the linkage function to create a matrix, Tree, that represents a</pre>		
	<pre>block distances between the pairs of objects in matrix X. Dist = pdist(X, 'cityblock'); 3 Use the linkage function to create a matrix, Tree, that represents a hierarchical binary cluster tree, from the distance matrix, Dist.</pre>		

optimalleaforder

References	[1] Bar-Joseph, Z., Gifford, D.K., and Jaakkola, T.S. (2001). Fast optimal leaf ordering for hierarchical clustering. Bioinformatics <i>17</i> , Suppl 1:S22–9. PMID: 11472989.
See Also	Bioinformatics Toolbox function: clustergram Statistics Toolbox functions: linkage, pdist

Purpose	Find palindromes in sequence		
Syntax	<pre>[Position, Length] = palindromes(SeqNT, 'PropertyName', PropertyValue) [Position, Length, Pal] = palindromes(SeqNT) palindromes(, 'Length',LengthValue) palindromes(, 'Complement', ComplementValue)</pre>		
Description	[Position, Length] = palindromes(SeqNT, ' <i>PropertyName</i> ', <i>PropertyValue</i>) finds all palindromes in sequence SeqNT with a length greater than or equal to 6, and returns the starting indices, Position, and the lengths of the palindromes, Length. [Position, Length, Pal] = palindromes(SeqNT) also returns a cell array		
	Pal of the palindromes.		
	palindromes(, 'Length', <i>LengthValue</i>) finds all palindromes longer than or equal to Length. The default value is 6.		
	palindromes(, 'Complement', <i>ComplementValue</i>) finds complementary palindromes if Complement is true, that is, where the elements match their complementary pairs A-T(or U) and C-G instead of an exact nucleotide match.		
Examples	<pre>[p,l,s] = palindromes('GCTAGTAACGTATATATAAT')</pre>		
	p =11		
	12		
	1 =		
	7		
	7 s =		
	S - 'TATATAT'		
	'ATATATA'		
	<pre>[pc,lc,sc] = palindromes('GCTAGTAACGTATATATAAT', 'Complement',true);</pre>		

Find the palindromes in a random nucleotide sequence.

```
a = randseq(100)
a =
TAGCTTCATCGTTGACTTCTACTAA
AAGCAAGCTCCTGAGTAGCTGGCCA
AGCGAGCTTGCTTGTGCCCGGCTGC
GGCGGTTGTATCCTGAATACGCCAT
[pos,len,pal]=palindromes(a)
pos =
74
len =
6
pal =
'GCGGCG'
```

See Also Bioinformatics Toolbox functions: seqrcomplement, seqshowwords MATLAB functions: regexp, strfind

Purpose	Return PAM scoring matrix	
Syntax	<pre>ScoringMatrix = pam(N) [ScoringMatrix, MatrixInfo] = pam(N) = pam(N,'Extended', ExtendedValue,) = pam(N,'Order', OrderValue,)</pre>	
Arguments	Ν	Enter values 10:10:500. The default ordering of the output is A R N D C Q E G H I L K M F P S T W Y V B Z X *.
		Entering a larger value for N to allow sequence alignments with larger evolutionary distances.
	ExtendedValue	Property to add ambiguous characters to the scoring matrix. Enter either true or false. Default is false.
	OrderValue	Property to control the order of amino acids in the scoring matrix. Enter a string with at least the 20 standard amino acids.
Description	fion ScoringMatrix = pam(N) returns a PAM scoring matrix for amino acid sequences. [ScoringMatrix, MatrixInfo] = pam(N) returns a structure with information about the PAM matrix. The fields in the structure are Name, Scale, Entropy, Expected, and Order = pam(N,'PropertyName', PropertyValue,) calls pam with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows: = pam(N,'Extended', ExtendedValue,) if Extended is true, returns a scoring matrix with the 20 amino acid characters, the	

	ambiguous characters, and stop character (B, Z, X, $*$), . If Extended is false, only the standard 20 amino acids are included in the matrix.		
	\dots = pam(N, \dots 'Order', OrderValue, \dots) returns a PAM matrix ordered by the amino acid sequence in Order. If Order does not contain the extended characters B, Z, X, and *, then these characters are not returned.		
	PAM50 substitution matrix in $1/2$ bit units, Expected score = -3.70 , Entropy = 2.00 bits, Lowest score = -13 , Highest score = 13 .		
	PAM250 substitution matrix in 1/3 bit units, Expected score = -0.844, Entropy = 0.354 bits, Lowest score = -8, Highest score = 17.		
Examples	Return a PAM matrix with $N = 50$.		
	PAM50 = pam(50)		
	<pre>PAM250 = pam(250,'Order','CSTPAGNDEQHRKMILVFYW')</pre>		
See Also	Bioinformatics Toolbox functions: blosum, dayhoff, gonnet, nwalign, swalign		

Purpose	Visualize intermolecular distances in Protein Data Bank (PDB) file	
Syntax	pdbdistplot('PDBid') pdbdistplot('PDBid', Distance)	
Arguments	PDBid	Unique identifier for a protein structure record. Each structure in the PDB is represented by a 4-character alphanumeric identifier.
		For example, 4hhb is the identification code for hemoglobin.
	Distance	Threshold distance in Angstroms shown on a spy plot. Default value is 7.
Description	pdbdistplot displays the distances between atoms and amino acids in a PDB structure.	
	pdbdistplot('PDBid') retrieves the entry PDBid from the Protein Data Bank (PDB) database and creates a heat map showing interatom distances and a spy plot showing the residues where the minimum distances apart are less than 7 Angstroms. PDBid can also be the name of a variable or a file containing a PDB MATLAB structure.	
	pdbdistplot('P on a spy plot.	DBid', Distance) specifies the threshold distance shown
Examples	Show spy plot a tuna.	t 7 Angstroms of the protein cytochrome C from albacore
	pdbdistplot	t('5CYT');
	Now take a lool	k at 10 Angstroms.
	pdbdistplot	t('5CYT',10);

See Also Bioinformatics Toolbox functions: getpdb, molviewer, pdbread, proteinplot, ramachandran

Purpose	Read data from Protein Data Bank (PDB) file	
Syntax	<pre>PDBStruct = pdbread(File) PDBStruct = pdbread(File, 'ModelNum', ModelNumValue)</pre>	
Arguments	File	Either of the following:
		• String specifying a file name, a path and file name, or a URL pointing to a file. The referenced file is a Protein Data Bank (PDB)-formatted file (ASCII text file). If you specify only a file name, that file must be on the MATLAB search path or in the MATLAB Current Directory.
		• MATLAB character array that contains the text of a PDB-formatted file.
	<i>ModelNumValue</i>	Positive integer specifying a model in a PDB-formatted file.
Return Values	PDBStruct	MATLAB structure containing a field for each PDB record.
Description	The Protein Data Bank (PDB) database is an archive of experimentally determined 3-D biological macromolecular structure data. For more information about the PDB format, see:	
	http://www.wwpdb.org/documentation/format23/v2.3.html	
	<pre>PDBStruct = pdbread(File) reads the data from PDB-formatted text file File and stores the data in the MATLAB structure, PDBStruct, which contains a field for each PDB record. The following table summarizes</pre>	

PDB Database Record	Field in the MATLAB Structure
HEADER	Header
OBSLTE	Obsolete
TITLE	Title
CAVEAT	Caveat
COMPND	Compound
SOURCE	Source
KEYWDS	Keywords
EXPDTA	ExperimentData
AUTHOR	Authors
REVDAT	RevisionDate
SPRSDE	Superseded
JRNL	Journal
REMARK 1	Remark1
REMARK N	Remark <i>n</i>
Note <i>N</i> equals 2 through	Note <i>n</i> equals 2 through 999.
999.	
DBREF	DBReferences
SEQADV	SequenceConflicts
SEQRES	Sequence
FTNOTE	Footnote
MODRES	ModifiedResidues

the possible PDB records and the corresponding fields in the MATLAB structure $\ensuremath{\textit{PDBStruct}}$:

PDB Database Record	Field in the MATLAB Structure
HET	Heterogen
HETNAM	HeterogenName
HETSYN	HeterogenSynonym
FORMUL	Formula
HELIX	Helix
SHEET	Sheet
TURN	Turn
SSBOND	SSBond
LINK	Link
HYDBND	HydrogenBond
SLTBRG	SaltBridge
CISPEP	CISPeptides
SITE	Site
CRYST1	Cryst1
ORIGXn	OriginX
SCALEn	Scale
MTRIXn	Matrix
TVECT	TranslationVector
MODEL	Model
ATOM	Atom
SIGATM	AtomSD
ANISOU	AnisotropicTemp
SIGUIJ	AnisotropicTempSD
TER	Terminal

PDB Database Record	Field in the MATLAB Structure
HETATM	HeterogenAtom
CONECT	Connectivity

PDBStruct = pdbread(File, 'ModelNum', ModelNumValue) reads only the model specified by ModelNumValue from the PDB-formatted text file File and stores the data in the MATLAB structure PDBStruct. If ModelNumValue does not correspond to an existing mode number in File, then pdbread reads the coordinate information of all the models.

The Sequence Field

The Sequence field is also a structure containing sequence information in the following subfields:

- NumOfResidues
- ChainID
- ResidueNames Contains the three-letter codes for the sequence residues.
- Sequence Contains the single-letter codes for the sequence residues.

Note If the sequence has modified residues, then the ResidueNames subfield might not correspond to the standard three-letter amino acid codes. In this case, the Sequence subfield will contain the modified residue code in the position corresponding to the modified residue. The modified residue code is provided in the ModifiedResidues field.

The Model Field

The Model field is also a structure or an array of structures containing coordinate information. If the MATLAB structure contains one model, the Model field is a structure containing coordinate information for that model. If the MATLAB structure contains multiple models, the Model field is an array of structures containing coordinate information for each model. The Model field contains the following subfields:

- Atom
- AtomSD
- AnisotropicTemp
- AnisotropicTempSD
- Terminal
- HeterogenAtom

The Atom Field

The Atom field is also an array of structures containing the following subfields:

- AtomSerNo
- AtomName
- altLoc
- resName
- chainID
- resSeq
- iCode
- Х
- Y
- Z
- occupancy
- tempFactor
- segID
- element

- charge
- AtomNameStruct Contains three subfields: chemSymbol, remoteInd, and branch.

Examples 1 Use the getpdb function to retrieve structure information from the Protein Data Bank (PDB) for the nicotinic receptor protein with identifier 1abt, and then save the data to the PDB-formatted file nicotinic receptor.pdb in the MATLAB Current Directory.

getpdb('1abt', 'ToFile', 'nicotinic_receptor.pdb');

2 Read the data from the nicotinic_receptor.pdb file into a MATLAB structure pdbstruct.

```
pdbstruct = pdbread('nicotinic_receptor.pdb');
```

3 Read only the second model from the nicotinic_receptor.pdb file into a MATLAB structure pdbstruct_Model2.

pdbstruct_Model2 = pdbread('nicotinic_receptor.pdb', 'ModelNum', 2);

4 View the atomic coordinate information in the model fields of both MATLAB structures pdbstruct and pdbstruct_Model2.

pdbstruct.Model
ans =
1x4 struct array with fields:
 MDLSerNo
 Atom
 Terminal
pdbstruct_Model2.Model
ans =

MDLSerNo: 2

	Atom: [1x1205 struct] Terminal: [1x2 struct]
	5 Read the data from an URL into a MATLAB structure, gfl_pdbstruct.
	gfl_pdbstruct = pdbread('http://www.rcsb.org/pdb/files/1gfl.pdb')
See Also	Bioinformatics Toolbox functions: genpeptread, getpdb, molviewer, pdbdistplot, pdbsuperpose, pdbtransform, pdbwrite

pdbsuperpose

Purpose	Superpose 3-D structures of two proteins
Syntax	<pre>pdbsuperpose(PDB1, PDB2) Dist = pdbsuperpose(PDB1, PDB2) [Dist, RMSD] = pdbsuperpose(PDB1, PDB2) [Dist, RMSD, Transf] = pdbsuperpose(PDB1, PDB2) [Dist, RMSD, Transf, PBD2TX] = pdbsuperpose(PDB1, PDB2) = pdbsuperpose(, 'ModelNum', ModelNumValue,) = pdbsuperpose(, 'Scale', ScaleValue,) = pdbsuperpose(, 'Scale', TranslateValue,) = pdbsuperpose(, 'Reflection', ReflectionValue,) = pdbsuperpose(, 'SeqAlign', SeqAlignValue,) = pdbsuperpose(, 'Apply', ApplyValue,) = pdbsuperpose(, 'Display', DisplayValue,)</pre>

Arguments	PDB1, PDB2	Protein structures represented by any of the following:
		• String specifying a unique identifier for a protein structure record in the Protein Data Bank (PDB) database.
		• Variable containing a PDB-formatted MATLAB structure, such as returned by getpdb or pdbread.
		• String specifying a file name or, a path and file name. The referenced file is a PDB-formatted file. If you specify only a file name, that file must be on the MATLAB search path or in the MATLAB Current Directory.
	<i>ModelNumValue</i>	Two-element numeric array whose elements correspond to models in <i>PDB1</i> and <i>PDB2</i> respectively when <i>PDB1</i> or <i>PDB2</i> contains multiple models. It specifies the models to consider in the superposition. By default, the first model in each structure is considered.
	ScaleValue	Specifies whether to include a scaling component in the linear transformation. Choices are true or false (default).
	TranslateValue	Specifies whether to include a translation component in the linear transformation. Choices are true (default) or false.

ReflectionValue Specifies whether to include a reflection component in the linear transformation. Choices are:

- true Include reflection component.
- false Exclude reflection component.
- 'best' Default. May or may not include the reflection component, depending on the best fit solution.

SeqAlignValue Specifies whether to perform a local sequence alignment and then use only the portions of the structures corresponding to the segments that align to compute the linear transformation. Choices are true (default) or false.

Note If you set the 'SeqAlign' property to true, you can also specify the following properties used by the swalign function:

- 'ScoringMatrix'
- 'GapOpen'
- 'ExtendGap'

For more information on these properties, see swalign.

SegmentValue	Specifies the boundaries and the chain of two subsequences to consider for computing the linear transformation. <i>SegmentValue</i> is a cell array of strings with the following format:
	{'start1-stop1:chain1', 'start2-stop2:chain2'}
	You can omit the boundaries to indicate the entire chain, such as in {'chain1', 'start2-stop2:chain2'}. You can specify only one pair of segments at any given time, and the specified segments are assumed to contain the same number of alpha carbon atoms.
ApplyValue	Specifies the extent to which the linear transformation should be applied. Choices are:
	• 'all' — Default. Apply the linear transformation to the entire PDB2 structure.
	• 'chain' — Apply the linear transformation to the specified chain only.
	• 'segment' — Apply the linear transformation to the specified segment only.
DisplayValue	Specifies whether to display the original <i>PDB1</i> structure and the resulting transformed <i>PDB2TX</i> structure in the Molecule Viewer window using the molviewer function. Each structure is represented as a separate model. Choices are true (default) or false.

pdbsuperpose

Return Values	Dist	Value representing a dissimilarity measure given by the sum of the squared errors between <i>PDB1</i> and <i>PDB2</i> . For more information, see procrustes in the Statistics Toolbox documentation.
	RMSD	Scalar representing the root mean square distance between the coordinates of the <i>PDB1</i> structure and the transformed <i>PDB2</i> structure, considering only the atoms used to compute the linear transformation.
	Transf	Linear transformation computed to superpose the chain of <i>PDB2</i> to the chain of <i>PDB1</i> . <i>Transf</i> is a MATLAB structure with the following fields:
		• T — Orthogonal rotation and reflection component.
		• b — Scale component.
		• c — Translation component.
		Note Only alpha carbon atom coordinates are used to compute the linear transformation.
		Tip You can use the <i>Transf</i> output as input to the pdbtransform function.
	PDB2TX	PDB-formatted MATLAB structure that represents the coordinates in the transformed <i>PDB2</i> protein structure.
Description		OB1, PDB2) computes and applies a linear of superpose the coordinates of the protein structure

represented in *PDB2* to the coordinates of the protein structure represented in *PDB1*. *PDB1* and *PDB2* are protein structures represented by any of the following:

- String specifying a unique identifier for a protein structure record in the PDB database.
- Variable containing a PDB-formatted MATLAB structure, such as returned by getpdb or pdbread.
- String specifying a file name or a path and file name. The referenced file is a PDB-formatted file. If you specify only a file name, that file must be on the MATLAB search path or in the MATLAB Current Directory.

Alpha carbon atom coordinates of single chains for each structure are considered to compute the linear transformation (translation, reflection, orthogonal rotation, and scaling). By default, the first chain in each structure is considered to compute the transformation, and the transformation is applied to the entire molecule. By default, the original *PDB1* structure and the resulting transformed *PDB2* structure are displayed as separate models in the Molecule Viewer window using the molviewer function.

Dist = pdbsuperpose(*PDB1*, *PDB2*) returns a dissimilarity measure given by the sum of the squared errors between *PDB1* and *PDB2*. For more information, see procrustes.

[Dist, RMSD] = pdbsuperpose(PDB1, PDB2) also returns RMSD, the root mean square distance between the coordinates of the PDB1 structure and the transformed PDB2 structure, considering only the atoms used to compute the linear transformation.

[Dist, RMSD, Transf] = pdbsuperpose(PDB1, PDB2) also returns Transf, the linear transformation computed to superpose the chain of PDB2 to the chain of PDB1. Transf is a MATLAB structure with the following fields:

• T — Orthogonal rotation and reflection component.

- b Scale component.
- c Translation component.

Note Only alpha carbon atom coordinates are used to compute the linear transformation.

[Dist, RMSD, Transf, PBD2TX] = pdbsuperpose(PDB1, PDB2) also returns PBD2TX, a PDB-formatted MATLAB structure that represents the coordinates in the transformed PDB2 protein structure.

... = pdbsuperpose(..., '*PropertyName*', *PropertyValue*, ...) calls pdbsuperpose with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = pdbsuperpose(..., 'ModelNum', ModelNumValue, ...) specifies the models to consider in the superposition when PDB1 or PDB2 contains multiple models. ModelNumValue is a two-element numeric array whose elements correspond to the models in PDB1 and PDB2 respectively. By default, the first model in each structure is considered.

... = pdbsuperpose(..., 'Scale', ScaleValue, ...) specifies whether to include a scaling component in the linear transformation. Choices are true or false (default).

... = pdbsuperpose(..., 'Translate', *TranslateValue*, ...) specifies whether to include a translation component in the linear transformation. Choices are true (default) or false.

... = pdbsuperpose(..., 'Reflection', *ReflectionValue*, ...) specifies whether to include a reflection component in the linear transformation. Choices are true (include reflection component), false (exclude reflection component), or 'best' (may or may not include the reflection component, depending on the best fit solution). Default is 'best'. ... = pdbsuperpose(..., 'SeqAlign', SeqAlignValue, ...) specifies whether to perform a local sequence alignment and then use only the portions of the structures corresponding to the segments that align to compute the linear transformation. Choices are true (default) or false.

Note If you set the 'SeqAlign' property to true, you can also specify the following properties used by the swalign function:

- 'ScoringMatrix'
- 'GapOpen'
- 'ExtendGap'

For more information on these properties, see swalign.

... = pdbsuperpose(..., 'Segment', SegmentValue, ...) specifies the boundaries and the chain of two subsequences to consider for computing the linear transformation. SegmentValue is a cell array of strings with the following format: {'start1-stop1:chain1', 'start2-stop2:chain2'}. You can omit the boundaries to indicate the entire chain, such as in {'chain1', 'start2-stop2:chain2'}. You can specify only one pair of segments at any given time, and the specified segments are assumed to contain the same number of alpha carbon atoms.

... = pdbsuperpose(..., 'Apply', ApplyValue, ...) specifies the extent to which the linear transformation should be applied. Choices are 'all' (apply the linear transformation to the entire PDB2 structure), 'chain' (apply the linear transformation to the specified chain only), or 'segment' (apply the linear transformation to the specified segment only). Default is 'all'.

... = pdbsuperpose(..., 'Display', *DisplayValue*, ...) specifies whether to display the original *PDB1* structure and the resulting transformed *PDB2TX* structure in the Molecule Viewer window using the molviewer function. Each structure is represented as a separate model. Choices are true (default) or false.

Examples Superposing Two Hemoglobin Structures

1 Use the getpdb function to retrieve protein structure data from the Protein Data Bank (PDB) database for two hemoglobin structures.

```
str1 = getpdb('1dke');
str2 = getpdb('4hhb');
```

2 Superpose the first model of the two hemoglobin structures, applying the transformation to the entire molecule.

```
d = pdbsuperpose(str1, str2, 'model', [1 1], 'apply', 'all');
```

3 Superpose the two hemoglobin structures (each containing four chains), computing and applying the linear transformation chain by chain. Do not display the structures.

```
strtx = str2;
chainList1 = {str1.Sequence.ChainID};
chainList2 = {str2.Sequence.ChainID};
for i = 1:4
    [d(i), rmsd(i), tr(i), strtx] = pdbsuperpose(str1, strtx, ...
        'segment', {chainList1{i}; chainList2{i}}, ...
        'apply', 'chain', 'display', false);
end
```

Superposing Two Chains of a Thioredoxin Structure

Superpose chain B on chain A of a thioredoxin structure (PDBID = 2trx), and then apply the transformation only to chain B.

```
[d, rmsd, tr] = pdbsuperpose('2trx', '2trx', 'segment', {'A', 'B'}, ...
'apply', 'chain')
```

d =

```
0.0028

rmsd =

0.6604

tr =

T: [3x3 double]

b: 1

c: [109x3 double]
```

Superposing Two Calmodulin Structures

Superpose two calmodulin structures according to the linear transformation obtained using two 20 residue-long segments.

```
pdbsuperpose('1a29', '1cll', 'segment', {'10-30:A', '10-30:A'})
ans =
0.1945
Bioinformatics Toolbox functions: getpdb, molviewer, pdbread,
pdbtransform, swalign
```

Statistics Toolbox function: procrustes

See Also

pdbtransform

Purpose	Apply linear transformation to 3-D structure of molecule
Syntax	pdbtransform(<i>PDB, Transf</i>) <i>PDBTX</i> = pdbtransform(<i>PDB, Transf</i>)
	<pre> = pdbtransform(, 'ModelNum', ModelNumValue,) = pdbtransform(, 'Segment', SegmentValue,)</pre>

Arguments	PDB	Protein structure represented by any of the following:
		• String specifying a unique identifier for a protein structure record in the Protein Data Bank (PDB) database.
		 Variable containing a PDB-formatted MATLAB structure, such as returned by getpdb or pdbread.
		• String specifying a file name or a path and file name. The referenced file is a PDB-formatted file. If you specify only a file name, that file must be on the MATLAB search path or in the MATLAB Current Directory.
	Transf	MATLAB structure representing a linear transformation, which is applied to the coordinates of the molecule represented by <i>PDB</i> . <i>Transf</i> contains the following fields:
		• T — Orthogonal rotation and reflection component.
		• b — Scale component.
		• c — Translation component.
		Tip You can use the <i>Transf</i> structure returned by the pdbsuperpose function as input.

<i>ModelNumValue</i>	Positive integer that specifies the model to which to apply the transformation, when <i>PDB</i> contains multiple models. By default, the first model is considered.	
SegmentValue	Specifies the extent to which the linear transformation is applied. <i>SegmentValue</i> can be either:	
	 'all' — The transformation is applied to the entire PDB input. 	
	• String specifying the boundaries and the chain to consider. It uses either of the following formats: 'start-stop:chain' or 'chain'. Omitting the boundaries indicates the entire chain.	
PDBTX	Transformed PDB-formatted MATLAB structure.	
 escription pdbtransform(PDB, Transf) applies the linear transformation specified in Transf, a MATLAB structure representing a linear transformation, to the coordinates of the molecule represented by PDB, which can be any of the following: String specifying a unique identifier for a protein structure record in the PDB database. 		
		• Variable containing a PDB-formatted MATLAB structure, such as returned by getpdb or pdbread.
file is a PDB-forn	a file name or a path and file name. The referenced natted file. If you specify only a file name, that file IATLAB search path or in the MATLAB Current	
	SegmentValue PDBTX pdbtransform(PDB specified in Transf, transformation, to t which can be any of • String specifying the PDB databas • Variable containi returned by getp • String specifying file is a PDB-form must be on the M	

	<i>PDBTX</i> = pdbtransform(<i>PDB</i> , <i>Transf</i>) returns <i>PDBTX</i> , the transformed PDB-formatted MATLAB structure.		
	= pdbtransform(' <i>PropertyName</i> ', <i>PropertyValue</i> ,) calls pdbtransform with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each <i>PropertyName</i> must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:		
	= pdbtransform(, 'ModelNum', <i>ModelNumValue</i> ,) specifies the model to which to apply the transformation, when <i>PDB</i> contains multiple models. <i>ModelNumValue</i> is a positive integer. By default, the first model is considered.		
	<pre> = pdbtransform(, 'Segment', SegmentValue,) specifies the extent to which the linear transformation is applied. SegmentValue can be either:</pre>		
	• 'all' — The transformation is applied to the entire PDB input.		
	• String specifying the boundaries and the chain to consider. It uses either of the following formats: 'start-stop:chain' or 'chain'. Omitting the boundaries indicates the entire chain.		
Examples	1 Create a MATLAB structure that defines a linear transformation.		
	transf.T = eye(3); transf.b = 1; transf.c = [11.8 -2.8 -32.3];		
	2 Apply the linear transformation to chain B in the thioredoxin structure, with a PDB identifier of 2trx.		
	<pre>pdbtx = pdbtransform('2trx', transf, 'segment', 'B');</pre>		
See Also	Bioinformatics Toolbox functions: getpdb, molviewer, pdbread, pdbsuperpose		
	Statistics Toolbox function: procrustes		

pdbwrite

Purpose	Write to file using Protein Data Bank (PDB) format	
Syntax	pdbwrite(File, PDBStruct) PDBArray = pdbwrite(File, PDBStruct)	
Arguments	File	String specifying either a file name or a path and file name for saving the PDB-formatted data. If you specify only a file name, the file is saved to the MATLAB Current Directory.
		Tip After you save the MATLAB structure to a local PDB-formatted file, you can use the molviewer function to display and manipulate a 3-D image of the structure.
	PDBStruct	MATLAB structure containing 3-D protein structure coordinate data, created initially by using the getpdb or pdbread functions.
		Note You can edit this structure to modify its 3-D protein structure data. The coordinate information is stored in the Model field of <i>PDBStruct</i> .
Return Values	PDBArray	Character array in which each row corresponds to a line in a PDB record.
Description	pdbwrite(<i>File</i> , <i>PDBStruct</i>) writes the contents of the MATLAB structure <i>PDBStruct</i> to a PDB-formatted file (ASCII text file) whose path and file name are specified by <i>File</i> . In the output file, <i>File</i> , the	

atom serial numbers are preserved. The atomic coordinate records are ordered according to their atom serial numbers.

Tip After you save the MATLAB structure to a local PDB-formatted file, you can use the molviewer function to display and manipulate a 3-D image of the structure.

PDBArray = pdbwrite(File, PDBStruct) saves the formatted
PDB record, converted from the contents of the MATLAB structure
PDBStruct, to PDBArray, a character array in which each row
corresponds to a line in a PDB record.

Note You can edit *PDBStruct* to modify its 3-D protein structure data. The coordinate information is stored in the Model field of *PDBStruct*.

Examples

1 Use the getpdb function to retrieve structure information from the Protein Data Bank (PDB) for the green fluorescent protein with identifier 1GFL, and store the data in the MATLAB structure gflstruct.

gflstruct = getpdb('1GFL');

2 Find the x-coordinate of the first atom.

gflstruct.Model.Atom(1).X

ans =

-14.0930

3 Edit the *x*-coordinate of the first atom.

gflstruct.Model.Atom(1).X = -18;

Note Do not add or remove any Atom fields, because the pdbwrite function does not allow the number of elements in the structure to change.

4 Write the modified MATLAB structure gflstruct to a new PDB-formatted file modified_gfl.pdb in the Work directory on your C drive.

```
pdbwrite('c:\work\modified_gfl.pdb', gflstruct);
```

5 Use the pdbread function to read the modified PDB file into a MATLAB structure, then confirm that the *x*-coordinate of the first atom has changed.

```
modified_gflstruct = pdbread('c:\work\modified_gfl.pdb')
modified_gflstruct.Model.Atom(1).X
ans =
    -18
```

See Also Bioinformatics Toolbox functions: getpdb, molviewer, pdbread

Purpose	Read data from PFAM HMM-formatted file	
Syntax	<pre>HMMStruct = pfamhmmread(File)</pre>	
Arguments	File	Either of the following:
		• String specifying a file name, a path and file name, or a URL pointing to a file. The referenced file is a PFAM HMM-formatted file. If you specify only a file name, that file must be on the MATLAB search path or in the current directory.
		• MATLAB character array that contains the text of a PFAM-HMM-formatted file.
		Tip You can use the gethmmprof function with the 'ToFile' property to retrieve HMM profile information from the PFAM database and create a PFAM HMM-formatted file.
Return Values	HMMStruct	MATLAB structure containing information from a PFAM HMM-formatted file.
Description	Note pfamhmmi	read reads version 2.0 HMMER file formats.
	HMMStruct = pfamhmmread(File) reads File, a PFAM HMM-formatted file, and converts it to HMMStruct, a MATLAB structure containing the following fields corresponding to parameters of an HMM profile:	

Field	Description
Name	The protein family name (unique identifier) of the HMM profile record in the PFAM database.
PfamAccessionNumber	The protein family accession number of the HMM profile record in the PFAM database.
ModelDescription	Description of the HMM profile.
ModelLength	The length of the profile (number of MATCH states).
Alphabet	The alphabet used in the model, 'AA' or 'NT'.
	Note AlphaLength is 20 for 'AA' and 4 for 'NT'.
MatchEmission	Symbol emission probabilities in the MATCH states.
	The format is a matrix of size ModelLength-by-AlphaLength, where each row corresponds to the emission distribution for a specific MATCH state.
InsertEmission	Symbol emission probabilities in the INSERT state.
	The format is a matrix of size ModelLength-by-AlphaLength, where each row corresponds to the emission distribution for a specific INSERT state.
NullEmission	Symbol emission probabilities in the MATCH and INSERT states for the NULL model.
	The format is a 1-by-AlphaLength row vector.
	Note NULL probabilities are also known as the background probabilities.

Field	Description
BeginX	BEGIN state transition probabilities.
	Format is a 1-by-(ModelLength + 1) row vector:
	[B->D1 B->M1 B->M2 B->M3 B->Mend]
MatchX	MATCH state transition probabilities.
	Format is a 4-by-(ModelLength - 1) matrix:
	[M1->M2 M2->M3 M[end-1]->Mend;
	M1->I1 M2->I2 M[end-1]->I[end-1];
	M1->D2 M2->D3 M[end-1]->Dend; M1->E M2->E M[end-1]->E]
InsertX	INSERT state transition probabilities.
	Format is a 2-by-(ModelLength - 1) matrix:
	[I1->M2 I2->M3 I[end-1]->Mend;
	I1->I1 I2->I2 I[end-1]->I[end-1]]
DeleteX	DELETE state transition probabilities.
	Format is a 2-by-(ModelLength - 1) matrix:
	[D1->M2 D2->M3 D[end-1]->Mend ;
	D1->D2 D2->D3 D[end-1]->Dend]
FlankingInsertX	Flanking insert states (N and C) used for LOCAL profile alignment.
	Format is a 2-by-2 matrix:
	[N->B C->T ;
	N->N C->C]

Field	Description	
LoopX	Loop states transition probabilities used for multiple hits alignment.	
	Format is a 2-by-2 matrix:	
	[E->C J->B ; E->J J->J]	
NullX	Null transition probabilities used to provide scores with log-odds values also for state transitions.	
	Format is a 2-by-1 column vector:	
	[G->F ; G->G]	

For more information on HMM profile models, see "HMM Profile Model" on page 2-536.

Examples Read a URL pointing to a PFAM HMM-formatted file into a MATLAB structure.

```
site='http://pfam.sanger.ac.uk/';
hmm = pfamhmmread([site 'family/gethmm?mode=ls&id=7tm_2'])
```

hmm =

```
Name: '7tm_2'

PfamAccessionNumber: 'PF00002.15'

ModelDescription: '7 transmembrane receptor (Secretin family)'

ModelLength: 293

Alphabet: 'AA'

MatchEmission: [293x20 double]

InsertEmission: [293x20 double]

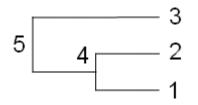
NullEmission: [1x20 double]

BeginX: [294x1 double]
```

MatchX: [292x4 double] InsertX: [292x2 double] DeleteX: [292x2 double] FlankingInsertX: [2x2 double] LoopX: [2x2 double] NullX: [2x1 double]

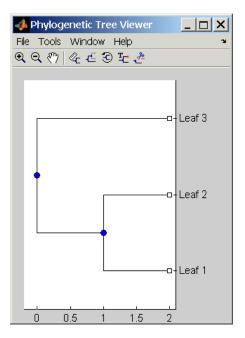
Read a locally saved PFAM HMM-formatted file into a MATLAB structure.

pfamhmmread('pf00002.ls')


See Also Bioinformatics Toolbox functions: gethmmalignment, gethmmprof, hmmprofalign, hmmprofstruct, showhmmprof

phytree

Purpose	Create phytree object		
Syntax	<pre>Tree = phytree(B) Tree = phytree(B, D) Tree = phytree(B, C) Tree = phytree(BC) Tree = phytree(, N) Tree = phytree</pre>		
Arguments	<i>B</i> Numeric array of size [NUMBRANCHES X 2] in which every represents a branch of the tree. It contains two pointer branch or leaf nodes, which are its children.		
	С	Column vector with distances for every branch.	
	D	Column vector with distances from every node to their parent branch.	
	BC	Combined matrix with pointers to branches or leaves, and distances of branches.	
	Ν	Cell array with the names of leaves and branches.	
Description	 Tree = phytree(B) creates an ultrametric phylogenetic tree object. In an ultrametric phylogenetic tree object, all leaves are the same distance from the root. B is a numeric array of size [NUMBRANCHES X 2] in which every row represents a branch of the tree and it contains two pointers to the branch or leaf nodes, which are its children. Leaf nodes are numbered from 1 to NUMLEAVES and branch nodes are numbered from NUMLEAVES + 1 to NUMLEAVES + NUMBRANCHES. Note that because only binary trees are allowed, NUMLEAVES = NUMBRANCHES + 1. 		
	NUMLE	hes are defined in chronological order (for example, B(i,:) > AVES + i). As a consequence, the first row can only have pointers yes, and the last row must represent the root branch. Parent-child	


distances are set to 1, unless the child is a leaf and to satisfy the ultrametric condition of the tree its distance is increased.

Given a tree with three leaves and two branches as an example.

In the MATLAB Command Window, type

```
B = [1 2 ; 3 4]
tree = phytree(B)
view(tree)
```


Tree = phytree(B, D) creates an additive (ultrametric or nonultrametric) phylogenetic tree object with branch distances defined by *D*. *D* is a numeric array of size [NUMNODES X 1] with the distances of every child node (leaf or branch) to its parent branch equal to NUMNODES = NUMLEAVES + NUMBRANCHES. The last distance in *D* is the distance of the root node and is meaningless.

```
b = [1 2 ; 3 4 ]: d = [1 2 1.5 1 0]
view(phytree(b,d)
```

Tree = phytree(B, C) creates an ultrametric phylogenetic tree object with distances between branches and leaves defined by C. C is a numeric array of size [NUMBRANCHES X 1], which contains the distance from each branch to the leaves. In ultrametric trees, all of the leaves are at the same location (same distance to the root).

```
b = [1 2 ; 3 4]; c = [1 4]'
view(phytree(b,c))
```

Tree = phytree(BC) creates an ultrametric phylogenetic binary tree object with branch pointers in BC(:,[1 2]) and branch coordinates in BC(:,3). Same as phytree(B,C).

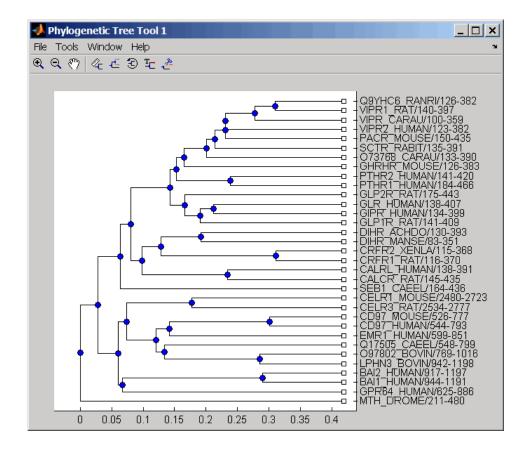
Tree = phytree(..., N) specifies the names for the leaves and/or the branches. N is a cell of strings. If NUMEL(N)==NUMLEAVES, then the names are assigned chronologically to the leaves. If NUMEL(N)==NUMBRANCHES, the names are assigned to the branch nodes. If NUMEL(N)==NUMLEAVES + NUMBRANCHES, all the nodes are named. Unassigned names default to 'Leaf #' and/or 'Branch #' as required.

Tree = phytree creates an empty phylogenetic tree object.

```
Examples Create a phylogenetic tree for a set of multiply aligned sequences.
```

```
Sequences = multialignread('aagag.aln')
distances = seqpdist(Sequences)
tree = seqlinkage(distances)
phytreetool(tree)
```

See Also Bioinformatics Toolbox functions: phytreeread, phytreetool, phytreewrite, seqlinkage, seqneighjoin, seqpdist


Bioinformatics Toolbox object: phytree object

Bioinformatics Toolbox methods of phytree object: get, getbyname, getcanonical, getmatrix, getnewickstr, pdist, plot, prune, reroot, select, subtree, view, weights

<u>phytreeread</u>

Purpose	Read phylogenetic tree file		
Syntax	Tree = phytreeread(File)		
Arguments	<i>File</i> Newick-formatted tree files (ASCII text file). Enter a file name, a path and file name, or a URL pointing to a file. <i>File</i> can also be a MATLAB character array that contains the text for a file.		
	Tree phytree object created with the function phytree.		
Description	<pre>Tree = phytreeread(File) reads a Newick formatted tree file and returns a phytree object in the MATLAB workspace with data from the file. The NEWICK tree format can be found at http://evolution.genetics.washington.edu/phylip/newicktree.html</pre> Note This implementation only allows binary trees. Non-binary trees are translated into a binary tree with extra branches of length 0.		
Examples	<pre>tr = phytreeread('pf00002.tree')</pre>		
See Also	Bioinformatics Toolbox functions: phytree (object constructor), gethmmtree, phytreetool, phytreewrite		

Purpose	View, edit, and explore phylogenetic tree data		
Syntax	phytreetool(<i>Tree</i>) phytreetool(<i>File</i>)		
Arguments	Tree	Phytree object created with the functions phytree or phytreeread.	
	File	Newick or ClustalW tree formatted file (ASCII text file) with phylogenetic tree data. Enter a file name, a path and file name, or a URL pointing to a file. <i>File</i> can also be a MATLAB character array that contains the text for a Newick file.	
Description	 phytreetool is an interactive GUI that allows you to view, edit, and explore phylogenetic tree data. This GUI allows branch pruning, reordering, renaming, and distance exploring. It can also open or save Newick formatted files. phytreetool(<i>Tree</i>) loads data from a phytree object in the MATLAB workspace into the GUI. 		
	phytree	tool(<i>File</i>) loads data from a Newick formatted file into the GUI.	
Examples	<pre>tr= phytreeread('pf00002.tree') phytreetool(tr)</pre>		

See Also Bioinformatics Toolbox functions: phytree (object constructor), phytreeread, phytreewrite

Bioinformatics Toolbox methods of phytree object: plot, view

Purpose	Write phylogenetic tree object to Newick-formatted file		
Syntax	phytreewrite(' <i>File</i> ', <i>Tree</i>) phytreewrite(<i>Tree</i>)		
Arguments	File	Newick-formatted file. Enter either a file name or a path and file name supported by your operating system (ASCII text file).	
	Tree	Phylogenetic tree object, either created with phytree (object constructor function) or imported using the phytreeread function.	
Description	<pre>phytreewrite('File', Tree) copies the contents of a phytree object from the MATLAB workspace to a file. Data in the file uses the Newick format for describing trees. The Newick tree format can be found at http://evolution.genetics.washington.edu/phylip/newicktree.html phytreewrite(Tree) opens the Save Phylogenetic Tree As dialog box for you to enter or select a file name.</pre>		
Examples	<pre>Read tree data from a Newick-formatted file. tr = phytreeread('pf00002.tree') Remove all the mouse proteins ind = getbyname(tr,'mouse'); tr = prune(tr,ind);</pre>		

phytreewrite

view(tr)
Write pruned tree data to a file.
phytreewrite('newtree.tree', tr)
See Also
Bioinformatics Toolbox functions: multialignwrite, phytree (object
constructor), phytreeread, phytreetool, seqlinkage
Bioinformatics Toolbox object: phytree object
Bioinformatics Toolbox methods of phytree object: getnewickstr

Purpose	Create table of probe set library information		
Syntax	<pre>ProbeInfo = probelibraryinfo(CELStruct, CDFStruct)</pre>		
Arguments	CELStruct	Structure created by the affyread function from an Affymetrix CEL file.	
	CDFStruct	Structure created by the affyread function from an Affymetrix CDF library file associated with the CEL file.	
Return Values	ProbeInfo	Three-column matrix with the same number of rows as the Probes field of the <i>CELStruct</i> .	
		• Column 1 — Probe set ID/name to which the probe belongs. (Probes that do not belong to a probe set in the CDF library file have probe set ID/name equal to 0.)	
		• Column 2 — Contains the probe pair number.	
		 Column 3 — Indicates if the probe is a perfect match (1) or mismatch (-1) probe. 	
Description	<pre>ProbeInfo = probelibraryinfo(CELStruct, CDFStruct) creates a table of information linking the probe data from CELStruct, a structure created from an Affymetrix CEL file, with probe set information from CDFStruct, a structure created from an Affymetrix CDF file.</pre> Note Affymetrix probe pair indexing is 0-based, while MATLAB software indexing is 1-based. The output from probelibraryinfo is 1-based.		

Examples	The following example uses a sample CEL file and the CDF library file from the <i>E. coli</i> Antisense Genome array, which you can download from:			
	http://www.affymetrix.com/support/technical/sample_data/demo_data.affx			
	After you download the demo data, you will need the Affymetrix Data Transfer Tool to extract the CEL file from a DTT file. You can download the Affymetrix Data Transfer Tool from: http://www.affymetrix.com/products/software/specific/dtt.affx			
	The following example assumes that the Ecoli-antisense-121502.CEL file is stored on the MATLAB search path or in the current directory. It also assumes that the associated CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.			
<pre>celStruct = affyread('Ecoli-antisense-121502. 2 Read the contents of a CDF file into a MATLAB structur cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_/ 3 Extract probe set library information. ProbeInfo = probelibraryinfo(celStruct, cdfSt</pre>	1 Read the contents of a CEL file into a MATLAB structure.			
	celStruct = affyread('Ecoli-antisense-121502.CEL');			
	2 Read the contents of a CDF file into a MATLAB structure.			
	cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');			
	3 Extract probe set library information.			
	<pre>ProbeInfo = probelibraryinfo(celStruct, cdfStruct);</pre>			
	4 Determine the probe set to which the 1104th probe belongs.			
	cdfStruct.ProbeSets(ProbeInfo(1104,1)).Name			
	ans =			
	thrA_b0002_at			
See Also	Bioinformatics Toolbox functions: affyread, celintensityread, probesetlink, probesetlookup, probesetplot, probesetvalues			

Purpose	Display probe set information on NetAffx Web site		
Syntax	<pre>probesetlink(AffyStruct, PS) URL = probesetlink(AffyStruct, PS) probesetlink(AffyStruct, PS,'Source', SourceValue,) probesetlink(AffyStruct, PS,'Browser', BrowserValue,) URL = probesetlink(AffyStruct, PS,'NoDisplay', NoDisplayValue,)</pre>		
Arguments	AffyStruct	Structure created by the affyread function from an Affymetrix CHP file or an Affymetrix CDF library file.	
	PS	Probe set index or the probe set ID/name.	
	SourceValue	Controls the linking to the data source (for example, GenBank or Flybase) for the probe set (instead of linking to the NetAffx Web site). Choices are true or false (default).	
		Note This property requires the GIN library file associated with the CHP or CDF file to be located in the same directory as the CDF library file.	
	BrowserValue	Controls the display of the probe set information in your system's default Web browser. Choices are true or false (default).	
	NoDisplayValue	Controls the return of <i>URL</i> without opening a Web browser. Choices are true or false (default).	
Return Values	URL	URL for the probe set information.	

Description probesetlink(*AffyStruct*, *PS*) opens a Web Browser window displaying information on the NetAffx Web site about a probe set specified by *PS*, a probe set index or the probe set ID/name, and *AffyStruct*, a structure created from an Affymetrix CHP file or Affymetrix CDF library file.

URL = probesetlink(AffyStruct, PS) also returns the URL (linking to the NetAffx Web site) for the probe set information.

probesetlink(AffyStruct, PS, ... 'PropertyName', PropertyValue, ...) calls probesetlink with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

probesetlink(*AffyStruct*, *PS*, ...'Source', *SourceValue*, ...) controls the linking to the data source (for example, GenBank or Flybase) for the probe set (instead of linking to the NetAffx Web site). Choices are true or false (default).

Note The 'Source' property requires the GIN library file associated with the CHP or CDF file to be located in the same directory as the CDF library file.

probesetlink(AffyStruct, PS, ... 'Browser', BrowserValue, ...) controls the display of the probe set information in your system's default Web browser. Choices are true or false (default).

URL = probesetlink(AffyStruct, PS, ...'NoDisplay', NoDisplayValue, ...) controls the return of the URL without opening a Web browser. Choices are true or false (default).

Note The NetAffx Web site requires you to register and provide a user name and password.

Examples	The following example uses a sample CHP file and the CDF library file from the <i>E. coli</i> Antisense Genome array, which you can download from:			
	http://www.affymetrix.com/support/technical/sample_data/demo_data.affx			
	After you download the demo data, you will need the Affymetrix Data Transfer Tool to extract the CHP file from a DTT file. You can download the Affymetrix Data Transfer Tool from:			
	http://www.affymetrix.com/products/software/specific/dtt.affx			
	The following example assumes that the Ecoli-antisense-121502.CHP file is stored on the MATLAB search path or in the current directory. It also assumes that the associated CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.			
	1 Read the contents of a CHP file into a MATLAB structure.			
	chpStruct = affyread('Ecoli-antisense-121502.CHP', 'D:\Affymetrix\LibFiles\Ecoli');			
2 Display information from the NetAffx Web site for the argG_b3 probe set.				
	probesetlink(chpStruct,'argG_b3172_at')			
See Also	Bioinformatics Toolbox functions: affyread, celintensityread, probelibraryinfo, probesetlookup, probesetplot, probesetvalues			

probesetlookup

Purpose	Look up information for Affymetrix probe set		
Syntax	<pre>PSStruct = probesetlookup(AffyStruct, ID)</pre>		
Arguments	AffyStruct Structure created by the affyread function from an Affymetrix CHP file or an Affymetrix CDF library file for expression assays.		
	ID	String or cell array of strings specifying one or more probe set IDs/names or gene IDs.	
Return Values	PSStruct	Structure or array of structures containing the following fields for a probe set:Identifier — Gene ID associated with the probe set	
		 ProbeSetName — Probe set ID/name 	
		• CDFIndex — Index into the CDF structure for the probe set	
		• GINIndex — Index into the GIN structure for the probe set	
		• Description — Description of the probe set	
	• Source — Source(s) of the probe set		
		• SourceURL — Source URL(s) for the probe set	
Description	an array of st set specified k more probe se	probesetlookup(<i>AffyStruct</i> , <i>ID</i>) returns a structure or ructures containing information for an Affymetrix probe by ID, a string or cell array of strings specifying one or et IDs/names or gene IDs, and by <i>AffyStruct</i> , a structure an Affymetrix CHP file or Affymetrix CDF library file	

for expression assays.

	Note This function works with CHP files and CDF files for expression assays only. It requires that the GIN library file associated with the CHP file or CDF file to be located in the same directory as the CDF library file.		
Examples	The following example uses the CDF library file from the <i>E. coli</i> Antisense Genome array, which you can download from:		
	http://www.affymetrix.com/support/technical/sample_data/demo_data.affx		
	<pre>The following example assumes that the Ecoli_ASv2.CDF library file is stored at D:\Affymetrix\LibFiles\Ecoli. 1 Read the contents of a CDF library file into a MATLAB structure. cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF'); 2 Look up the gene ID (Identifier) associated with the argG_b3172_at probesetlookup(cdfStruct,'argG_b3172_at')</pre>		
	ans =		
	Identifier: '3315278' ProbeSetName: 'argG_b3172_at' CDFIndex: 5213 GINIndex: 3074 Description: [1x82 char]		
	Source: 'NCBI EColi Genome'		
	SourceURL: [1x74 char]		
See Also	Bioinformatics Toolbox functions: affyread, celintensityread, probelibraryinfo, probesetlink, probesetplot, probesetvalues, rmabackadj		

probesetplot

Purpose	Plot Affymetrix pro	be set intensity values
Syntax	probesetplot(CELS GeneNameValue, probesetplot(CELS FieldValue,	Struct, CDFStruct, PS,'Field',) Struct, CDFStruct, PS,'ShowStats',
Arguments	CELStruct CDFStruct	Structure created by the affyread function from an Affymetrix CEL file. Structure created by the affyread function from an Affymetrix CDF library file associated with the CEL file.
	PS	Probe set index or the probe set ID/name.
	GeneNameValue	Controls whether the probe set name or the gene name is used for the title of the plot. Choices are true or false (default).
		Note The 'GeneName' property requires the GIN library file associated with the CEL and CDF files to be located in the same directory as the CDF library file from which <i>CDFStruct</i> was created.

	FieldValue	String specifying the type of data to plot. Choices are: 'Intensity' (default)
		• 'StdDev'
		• 'Background'
		• 'Pixels'
		• 'Outlier'
	ShowStatsValue	Controls whether the mean and standard deviation lines are included in the plot. Choices are true or false (default).
Description	match) and MM (m <i>CELStruct</i> is a stru Affymetrix CEL file function from an Af	Struct, CDFStruct, PS) plots the PM (perfect ismatch) intensity values for a specified probe set. acture created by the affyread function from an e. CDFStruct is a structure created by the affyread ffymetrix CDF library file associated with the CEL set index or the probe set ID/name.
	numbers, while the probe set numbers.	ftware uses 1-based indexing for probe set Affymetrix CDF file uses 0-based indexing for For example, CDFStruct.ProbeSets(1) has a 0 in the ProbePairs field.
	<i>PropertyValue</i> , . that use property n	Struct, CDFStruct, PS,'PropertyName',) calls probesetplot with optional properties ame/property value pairs. You can specify one or any order. Each PropertyName must be enclosed

in single quotation marks and is case insensitive. These property

name/property value pairs are as follows:

probesetplot(*CELStruct*, *CDFStruct*, *PS*, ...'GeneName', *GeneNameValue*, ...) controls whether the probe set name or the gene name is used for the title of the plot. Choices are true or false (default).

Note The 'GeneName' property requires the GIN library file associated with the CEL and CDF files to be located in the same directory as the CDF library file from which *CDFStruct* was created.

probesetplot(CELStruct, CDFStruct, PS, ...'Field', FieldValue, ...) specifies the type of data to plot. Choices are:

- 'Intensity' (default)
- 'StdDev'
- 'Background'
- 'Pixels'
- 'Outlier'

probesetplot(*CELStruct*, *CDFStruct*, *PS*, ...'ShowStats', *ShowStatsValue*, ...) controls whether the mean and standard deviation lines are included in the plot. Choices are true or false (default).

Examples The following example use a sample CEL file and the CDF library file from the *E. coli* Antisense Genome array, which you can download from:

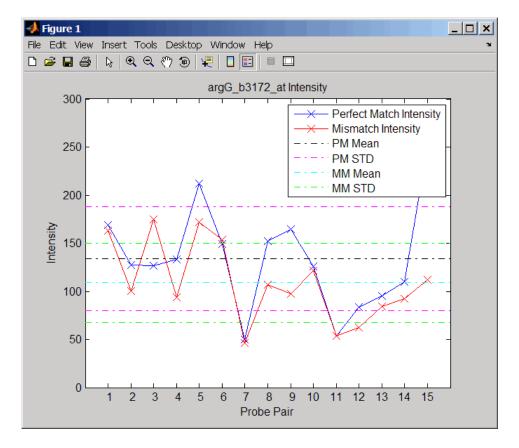
http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the demo data, you will need the Affymetrix Data Transfer Tool to extract the CEL file from a DTT file. You can download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

The following example assumes that the Ecoli-antisense-121502.CEL file is stored on the MATLAB search path or in the current directory. It also assumes that the associated CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.


celStruct = affyread('Ecoli-antisense-121502.CEL');

2 Read the contents of a CDF file into a MATLAB structure.

cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');

3 Plot the PM and MM intensity values of the argG_b3172_at probe set, including the mean and standard deviation.

probesetplot(celStruct, cdfStruct, 'argG_b3172_at','showstats', true)

See Also Bioinformatics Toolbox functions: affyread, celintensityread, probesetlink, probesetlookup, probesetvalues

Purpose	Create table of Affy	metrix probe set intensity values
Syntax	PSValues = probes	setvalues(CELStruct, CDFStruct, PS) setvalues(CELStruct, CDFStruct, PS, BackgroundValue) obesetvalues
Arguments	CELStruct	Structure created by the affyread function from an Affymetrix CEL file.
	CDFStruct	Structure created by the affyread function from an Affymetrix CDF library file associated with the CEL file.

	PS	Probe set index or the probe set ID/name.
	BackgroundValue	Controls the background correction in the calculation. Choices are:
		• true (default) — Background values from the Background field in the <i>PSValues</i> matrix are used to calculate the probe intensity values.
		• false — Background values are not calculated.
		• A vector of precalculated background values (such as returned by the zonebackadj function) whose length is equal to the number of probes in <i>CELStruct</i> . These background values are used to calculate the probe intensity values.
		Tip Including background correction in the calculation of the probe intensity values can be slow. Therefore, setting 'Background' to false can speed up the calculation. However, the values returned in the 'Background' field of the <i>PSValues</i> matrix will be zero.
Return Values	PSValues	Twenty-column matrix with one row for each probe pair in the probe set.
	ColumnNames	Cell array of strings containing the column names of the <i>PSValues</i> matrix. This is returned only when you call probesetvalues with no input arguments.
Description	a table of intensity	setvalues(<i>CELStruct</i> , <i>CDFStruct</i> , <i>PS</i>) creates values for <i>PS</i> , a probe set, from the probe-level a structure created by the affyread function from

an Affymetrix CEL file. *PS* is a probe set index or probe set ID/name from *CDFStruct*, a structure created by the affyread function from an Affymetrix CDF library file associated with the CEL file. *PSValues* is a twenty-column matrix with one row for each probe pair in the probe set. The columns correspond to the following fields.

Column	Field	Description
1	'ProbeSetNumber'	Number identifying the probe set to which the probe pair belongs.
2	'ProbePairNumber'	Index of the probe pair within the probe set.
3	'UseProbePair'	This field is for backward compatibility only and is not currently used.
4	'Background'	Estimated background of probe intensity values of the probe pair.
5	'PMPosX'	<i>x</i> -coordinate of the perfect match probe.
6	'PMPosY'	<i>y</i> -coordinate of the perfect match probe.
7	'PMIntensity'	Intensity value of the perfect match probe.
8	'PMStdDev'	Standard deviation of intensity value of the perfect match probe.
9	'PMPixels'	Number of pixels in the cell containing the perfect match probe.
10	'PMOutlier'	True/false flag indicating if the perfect match probe was marked as an outlier.
11	'PMMasked'	True/false flag indicating if the perfect match probe was masked.

Column	Field	Description
12	'MMPosX'	<i>x</i> -coordinate of the mismatch probe.
13	'MMPosY'	y-coordinate of the mismatch probe.
14	'MMIntensity'	Intensity value of the mismatch probe.
15	'MMStdDev'	Standard deviation of intensity value of the mismatch probe.
16	'MMPixels'	Number of pixels in the cell containing the mismatch probe.
17	'MMOutlier'	True/false flag indicating if the mismatch probe was marked as an outlier.
18	'MMMasked'	True/false flag indicating if the mismatch probe was masked.
19	'GroupNumber'	Number identifying the group to which the probe pair belongs. For expression arrays, this is always 1. For genotyping arrays, this is typically 1 (allele A, sense), 2 (allele B, sense), 3 (allele A, antisense), or 4 (allele B, antisense).
20	'Direction'	Number identifying the direction of the probe pair. $1 = \text{sense}$ and $2 = \text{antisense}$.

Note MATLAB software uses 1-based indexing for probe set numbers, while the Affymetrix CDF file uses 0-based indexing for probe set numbers. For example, CDFStruct.ProbeSets(1) has a ProbeSetNumber of 0 in the ProbePairs field. PSValues = probesetvalues(CELStruct, CDFStruct, PS, 'Background', BackgroundValue) controls the background correction in the calculation. BackgroundValue can be:

- true (default) Background values from the Background field in the *PSValues* matrix are used to calculate the probe intensity values.
- false Background values are not calculated.
- A vector of precalculated background values (such as returned by the zonebackadj function) whose length is equal to the number of probes in *CELStruct*. These background values are used to calculate the probe intensity values.

Tip Including background correction in the calculation of the probe intensity values can be slow. Therefore, setting 'Background' to false can speed up the calculation. However, the values returned in the 'Background' field of the *PSValues* matrix will be zero.

ColumnNames = probesetvalues returns a cell array of strings containing the column names of the PSValues matrix. ColumnNames is returned only when you call probesetvalues without input arguments. The information contained in ColumnNames is common to all Affymetrix GeneChip arrays.

Examples The following example uses a sample CEL file and the CDF library file from the *E. coli* Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the demo data, you will need the Affymetrix Data Transfer Tool to extract the CEL file from a DTT file. You can download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

The following example assumes that the Ecoli-antisense-121502.CEL file is stored on the MATLAB search path or in the current directory. It also assumes that the associated CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.

1 Read the contents of a CEL file into a MATLAB structure.

```
celStruct = affyread('Ecoli-antisense-121502.CEL');
```

2 Read the contents of a CDF file into a MATLAB structure.

```
cdfStruct = affyread('D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');
```

3 Use the zonebackadj function to return a matrix or cell array of vectors containing the estimated background values for each probe.

```
[baData,zones,background] = zonebackadj(celStruct,'cdf',cdfStruct);
```

4 Create a table of intensity values for the argG_b3172_at probe set.

See Also Bioinformatics Toolbox functions: affyread, celintensityread, probelibraryinfo, probesetlink, probesetlookup, probesetplot, rmabackadj, zonebackadj

Purpose	Align two profiles using Needleman-Wunsch global alignment
Syntax	<pre>Prof = profalign(Prof1, Prof2) [Prof, H1, H2] = profalign(Prof1, Prof2) profalign(, 'ScoringMatrix', ScoringMatrixValue,) profalign(, 'GapOpen', {G1Value, G2Value},) profalign(, 'ExtendGap', {E1Value, E2Value},) profalign(, 'ExistingGapAdjust', ExistingGapAdjustValue,</pre>
Description	<pre>Prof = profalign(Prof1, Prof2) returns a new profile (Prof) for the optimal global alignment of two profiles (Prof1, Prof2). The profiles (Prof1, Prof2) are numeric arrays of size [(4 or 5 or 20 or 21) x Profile Length] with counts or weighted profiles. Weighted profiles are used to down-weight similar sequences and up-weight divergent sequences. The output profile is a numeric matrix of size [(5 or 21) x New Profile Length] where the last row represents gaps. Original gaps in the input profiles are preserved. The output profile is the result of adding the aligned columns of the input profiles.</pre>
	[<i>Prof, H1, H2</i>] = profalign(<i>Prof1, Prof2</i>) returns pointers that indicate how to rearrange the columns of the original profiles into the new profile.
	profalign(, ' <i>PropertyName</i> ', <i>PropertyValue</i> ,) calls profalign with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each <i>PropertyName</i> must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:
	profalign(, 'ScoringMatrix', ScoringMatrixValue,) defines the scoring matrix (ScoringMatrixValue) to be used for the alignment. The default is 'BLOSUM50' for amino acids or 'NUC44' for nucleotide sequences.

profalign(..., 'GapOpen', {G1Value, G2Value}, ...) sets the penalties for opening a gap in the first and second profiles respectively. G1Value and G2Value can be either scalars or vectors. When using a vector, the number of elements is one more than the length of the input profile. Every element indicates the position specific penalty for opening a gap between two consecutive symbols in the sequence. The first and the last elements are the gap penalties used at the ends of the sequence. The default gap open penalties are {10,10}.

profalign(..., 'ExtendGap', {*E1Value*, *E2Value*}, ...) sets the penalties for extending a gap in the first and second profile respectively. *E1Value* and *E2Value* can be either scalars or vectors. When using a vector, the number of elements is one more than the length of the input profile. Every element indicates the position specific penalty for extending a gap between two consecutive symbols in the sequence. The first and the last elements are the gap penalties used at the ends of the sequence. If ExtendGap is not specified, then extensions to gaps are scored with the same value as GapOpen.

profalign(..., 'ExistingGapAdjust', ExistingGapAdjustValue, ...), if ExistingGapAdjustValue is false, turns off the automatic adjustment based on existing gaps of the position-specific penalties for opening a gap. When ExistingGapAdjustValue is true (default), for every profile position, profalign proportionally lowers the penalty for opening a gap toward the penalty of extending a gap based on the proportion of gaps found in the contiguous symbols and on the weight of the input profile.

profalign(..., 'TerminalGapAdjust', *TerminalGapAdjustValue*, ...), when *TerminalGapAdjustValue* is true, adjusts the penalty for opening a gap at the ends of the sequence to be equal to the penalty for extending a gap. Default is false.

profalign(..., 'ShowScore', ShowScoreValue, ...), when ShowScoreValue is true, displays the scoring space and the winning path.

Examples 1 Read in sequences and create profiles.

```
ma1 = ['RGTANCDMQDA';'RGTAHCDMQDA';'RRRAPCDL-DA'];
ma2 = ['RGTHCDLADAT';'RGTACDMADAA'];
p1 = seqprofile(ma1,'gaps','all','counts',true);
p2 = seqprofile(ma2,'counts',true);
```

2 Merge two profiles into a single one by aligning them.

p = profalign(p1,p2); seqlogo(p)

3 Use the output pointers to generate the multiple alignment.

[p, h1, h2] = profalign(p1,p2); ma = repmat('-',5,12); ma(1:3,h1) = ma1; ma(4:5,h2) = ma2; disp(ma)

4 Increase the gap penalty before cysteine in the second profile.

```
gapVec = 10 + [p2(aa2int('C'),:) 0] * 10
p3 = profalign(p1,p2,'gapopen',{10,gapVec});
seqlogo(p3)
```

5 Add a new sequence to a profile without inserting new gaps into the profile.

```
gapVec = [0 inf(1,11) 0];
p4 = profalign(p3,seqprofile('PLHFMSVLWDVQQWP'),...
'gapopen',{gapVec,10});
seqlogo(p4)
```

See Also Bioinformatics Toolbox functions: hmmprofalign, multialign, nwalign, seqprofile, seqconsensus

proteinplot

Purpose	Characteristics for amino acid sequences		
Syntax	proteinplot (SeqAA)		
Arguments	SeqAA Amino acid sequence or a structure with a field Sequence containing an amino acid sequence.		
Description	proteinplot (SeqAA) loads an amino acid sequence into the protein plot GUI. proteinplot is a tool for analyzing a single amino acid sequence. You can use the results from proteinplot to compare the properties of several amino acid sequences. It displays smoothed line plots of various properties such as the hydrophobicity of the amino acids in the sequence.		
	Importing Sequences into proteinplot		
	1 In the MATLAB Command Window, type		
	<pre>proteinplot(Seq_AA)</pre>		
	The proteinplot interface opens and the sequence Seq_AA is shown in the Sequence text box.		
	2 Alternatively, type or paste an amino acid sequence into the Sequence text box.		
	You can import a sequence with the Import dialog box:		
	1 Click the Import Sequence button. The Import dialog box opens.		
	2 From the Import From list, select a variable in the MATLAB workspace, ASCII text file, FASTA formatted file, GenPept formatted file, or accession number in the GenPept database.		

Information About the Properties

You can also access information about the properties from the **Help** menu.

- **1** From the **Help** menu, click **References**. The Help Browser opens with a list of properties and references.
- 2 Scroll down to locate the property you are interested in studying.

Working with Properties

When you click on a property a smoothed plot of the property values along the sequence will be displayed. Multiple properties can be selected from the list by holding down Shift or Ctrl while selecting properties. When two properties are selected, the plots are displayed using a PLOTYY-style layout, with one *y*-axis on the left and one on the right. For all other selections, a single *y*-axis is displayed. When displaying one or two properties, the *y* values displayed are the actual property values. When three or more properties are displayed, the values are normalized to the range 0-1.

You can add your own property values by clicking on the Add button next to the property list. This will open up a dialog that allows you to specify the values for each of the amino acids. The Display Text box allows you to specify the text that will be displayed in the selection box on the main proteinplot window. You can also save the property values to an m-file for future use by typing a file name into the Filename box.

The Terminal Selection boxes allow you to choose to plot only part of the sequence. By default all of the sequence is plotted. The default smoothing method is an unweighted linear moving average with a window length of five residues. You can change this using the "Configuration Values" dialog from the Edit menu. The dialog allows you to select the window length from 5 to 29 residues. You can modify the shape of the smoothing window by changing the edge weighting factor. And you can choose the smoothing function to be a linear moving average, an exponential moving average or a linear Lowess smoothing.

	The File menu allows you to Import a sequence, save the plot that you have created to a FIG file, you can export the data values in the figure to a workspace variable or to a MAT-file, you can export the figure to a normal Figure window for customizing, and you can print the figure.
	The Edit menu allows you to create a new property, to reset the property values to the default values, and to modify the smoothing parameters with the Configuration Values menu item.
	The View menu allows you to turn the toolbar on and off, and to add a legend to the plot.
	The Tools menu allows you to zoom in and zoom out of the plot, to view Data Statistics such as mean, minimum and maximum values of the plot, and to normalize the values of the plot from 0 to 1.
	The Help menu allows you to view this document and to see the references for the sequence properties built into proteinplot
See Also	Bioinformatics Toolbox functions: aacount, atomiccomp, molviewer, molweight, pdbdistplot, seqtool
	MATLAB function: plotyy

```
PurposePlot properties of amino acid sequenceSyntaxproteinpropplot (SeqAA)<br/>proteinpropplot(SeqAA, ...'PropertyTitle',<br/>PropertyTitleValue, ...)<br/>proteinpropplot(SeqAA, ...'Startat', StartatValue, ...)<br/>proteinpropplot(SeqAA, ...'Endat', EndatValue, ...)<br/>proteinpropplot(SeqAA, ...'Smoothing', SmoothingValue, ...)<br/>proteinpropplot(SeqAA, ...'EdgeWeightValue, ...)<br/>proteinpropplot(SeqAA, ...'WindowLength',<br/>WindowLengthValue, ...)
```

Arguments		
	SeqAA	Amino acid sequence. Enter any of the following:Character string of letters representing an amino acid
		 Vector of integers representing an amino acid, such as returned by aa2int
		 Structure containing a Sequence field that contains an amino acid sequence, such as returned by getembl, getgenpept, or getpdb
	PropertyTitleValue	<pre>String that specifies the property to plot. Default is Hydrophobicity (Kyte & Doolittle). To display a list of properties to plot, enter a empty string for PropertyTitleValue. For example, type: proteinpropplot(sequence, 'propertytitle', '')</pre>
		Tip To access references for the properties, view the proteinpropplot m-file.
	StartatValue	Integer that specifies the starting point for the plot from the N-terminal end of the amino acid sequence <i>SeqAA</i> . Default is 1.
	EndatValue	Integer that specifies the ending point for the plot from the N-terminal end of the amino acid sequence SeqAA. Default is length(SeqAA).
	SmoothingValue	String the specifies the smoothing method.Choices are:linear (default)
		• exponential
		• lowess

	EdgeWeightValue	Value that specifies the edge weight used for linear and exponential smoothing methods. Decreasing this value emphasizes peaks in the plot. Choices are any value ≥ 0 and ≤ 1 . Default is 1.
	WindowLengthValue	Integer that specifies the window length for the smoothing method. Increasing this value gives a smoother plot that shows less detail. Default is 11.
Description		AA) displays a plot of the hydrophobicity (Kyte the residues in sequence SeqAA.
	PropertyValue,) that use property nam more properties in any	AA,'PropertyName', calls proteinpropplot with optional properties ne/property value pairs. You can specify one or y order. Each PropertyName must be enclosed arks and is case insensitive. These property pairs are as follows:
	PropertyTitleValue, the amino acid sequen Doolittle). To displa empty string for Prope	<pre>qAA,'PropertyTitle', ,) specifies a property to plot for ace SeqAA. Default is Hydrophobicity (Kyte & ay a list of possible properties to plot, enter an ertyTitleValue. For example, type:</pre>
		sequence, 'propertytitle', '')
	Tip To access reference M-file.	ces for the properties, view the proteinpropplot

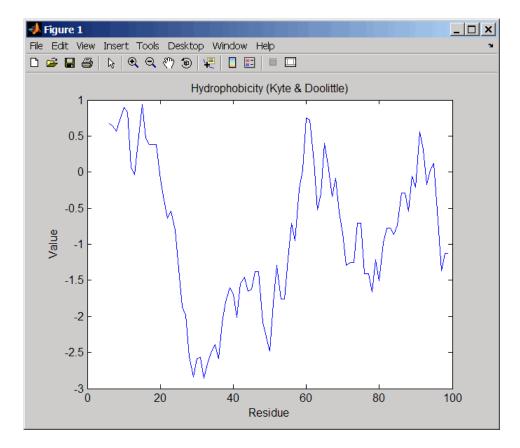
proteinpropplot(SeqAA, ...'Startat', StartatValue, ...) specifies the starting point for the plot from the N-terminal end of the amino acid sequence SeqAA. Default is 1. proteinpropplot(SeqAA, ... 'Endat', EndatValue, ...) specifies the ending point for the plot from the N-terminal end of the amino acid sequence SeqAA. Default is length(SeqAA).

proteinpropplot(SeqAA, ...'Smoothing', SmoothingValue, ...)
specifies the smoothing method. Choices are:

- linear (default)
- exponential
- lowess

proteinpropplot(SeqAA, ... 'EdgeWeight', EdgeWeightValue, ...) specifies the edge weight used for linear and exponential smoothing methods. Decreasing this value emphasizes peaks in the plot. Choices are any value ≥ 0 and ≤ 1 . Default is 1.

proteinpropplot(SeqAA, ... 'WindowLength', WindowLengthValue, ...) specifies the window length for the smoothing method. Increasing this value gives a smoother plot that shows less detail. Default is 11.

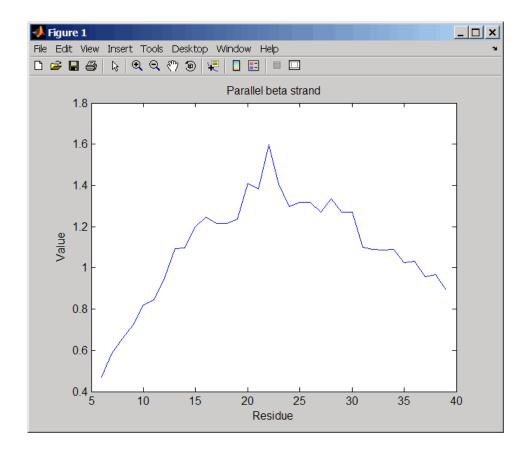

Examples Plotting Hydrophobicity

1 Use the getpdb function to retrieve a protein sequence.

prion = getpdb('1HJM', 'SEQUENCEONLY', true);

2 Plot the hydrophobicity (Kyte and Doolittle, 1982) of the residues in the sequence.

proteinpropplot(prion)


Plotting Parallel Beta Strand

1 Use the getgenpept function to retrieve a protein sequence.

```
s = getgenpept('aad50640');
```

2 Plot the conformational preference for parallel beta strand for the residues in the sequence.

proteinpropplot(s,'propertytitle','Parallel beta strand')

References [1] Kyte, J., and Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J Mol Biol *157(1)*, 105–132.

See Also Bioinformatics Toolbox functions: aacount, atomiccomp, molviewer, molweight, pdbdistplot, proteinplot, ramachandran, seqtool

MATLAB function: plotyy

Purpose	Quantile normalization over multiple arrays	
Syntax	<i>NormData</i> = quantilenorm(<i>Data</i>) <i>NormData</i> = quantilenorm(,'MEDIAN', true) <i>NormData</i> = quantilenorm(,'DISPLAY', true)	
Description	<i>NormData</i> = quantilenorm(<i>Data</i>), where the columns of <i>Data</i> correspond to separate chips, normalizes the distributions of the values in each column.	
	Note If <i>Data</i> contains NaN values, then <i>NormData</i> will also contain NaN values at the corresponding positions.	
	NormData = quantilenorm(,'MEDIAN', true) takes the median of the ranked values instead of the mean.	
	<i>NormData</i> = quantilenorm(,'DISPLAY', true) plots the distributions of the columns and of the normalized data.	
Examples	load yeastdata normYeastValues = quantilenorm(yeastvalues,'display',1);	
See Also	affygcrma, affyrma, malowess, manorm, rmabackadj, rmasummary	

ramachandran

Purpose	Draw Ramachandra	n plot for Protein Data Bank (PDB) data
Syntax	ramachandran(, ramachandran(, ramachandran(, ramachandran(,) truct)
Arguments	PDBid	String specifying a unique identifier for a protein structure record in the PDB database.
		Note Each structure in the PDB database is represented by a four-character alphanumeric identifier. For example, 4hhb is the identifier for hemoglobin.
	File	String specifying a file name or a path and file name. The referenced file is a Protein Data Bank (PDB)-formatted file. If you specify only a file name, that file must be on the MATLAB search path or in the MATLAB Current Directory.
	PDBStruct	MATLAB structure containing PDB-formatted data, such as returned by getpdb or pdbread.

ChainValue	String or cell array of strings that specifies the chain(s) to compute the torsion angles for and plot.
	Choices are:
	• 'All' (default) — Torsion angles for all chains are computed and plotted.
	• A string specifying the chain ID, which is case sensitive.
	• A cell array of strings specifying chain IDs, which are case sensitive.
PlotValue	String specifying how to plot chains. Choices are:
	• 'None' — Plots nothing.
	 'Separate' — Plots torsion angles for all specified chains in separate plots.
	• 'Combined' (default) — Plots torsion angles for all specified chains in one combined plot.
ModelValue	Integer that specifies the structure model to consider. Default is 1.
GlycineValue	Controls the highlighting of glycine residues with a circle in the plot. Choices are true or false (default).

RegionsValue	Controls the drawing of Ramachandran reference regions in the plot. Choices are true or false (default).
	The default regions are core right-handed alpha, core beta, core left-handed alpha, and allowed, with the core regions corresponding to data points of preferred values of psi/phi angle pairs, and the allowed regions corresponding to possible, but disfavored values of psi/phi angle pairs, based on simple energy considerations. The boundaries of these default regions are based on the calculations by Morris et al., 1992.
	Note If using the default colormap, red = right-handed core alpha, core beta, and core left-handed alpha, while yellow = allowed.
RegionDefValue	MATLAB structure or array of structures (if specifying multiple regions) containing information (name, color, and boundaries) for custom reference regions in a Ramachandran plot. Each structure must contain the following fields:
	• Name — String specifying a name for the region.
	• Color — String or three-element numeric vector of RGB values specifying a color for the region in the plot.
	 Patch — A 2-by-N matrix of values, the first row containing torsion angle phi (Φ) values, and the second row containing torsion angle psi (Ψ) values. When psi/phi angle pairs are plotted, the data points specify boundaries for the region. N is the number of data points needed to define the region.
	Tip If you specify custom reference regions in which a smaller region is contained or covered by a larger region, list the structure for the smaller

region first in the array so that it is plotted last

and visible in the plot.

Return Values	RamaStruct	MATLAB structure or array of structures (if protein contains multiple chains). Each structure contains the following fields:
		• Angles
		• ResidueNum
		• ResidueName
		• Chain
		• HPoints
		For descriptions of the fields, see the following table.
Description	angle between the	plot is a plot of the torsion angle phi, Φ , (torsion C-N-CA-C atoms) versus the torsion angle psi, between the N-CA-C-N atoms) for each residue of a
	-	<i>bid</i>) generates the Ramachandran plot for the y the PDB database identifier <i>PDBid</i> .
		e) generates the Ramachandran plot for the protein a PDB-formatted file.
	the protein stored	Struct) generates the Ramachandran plot for in <i>PDBStruct</i> , a MATLAB structure containing ca, such as returned by getpdb or pdbread.
		achandran() returns a MATLAB structure or (if protein contains multiple chains). Each structure ing fields.

Field	Description
Angles	Three-column matrix containing the torsion angles phi (Φ) , psi (Ψ) , and omega (ω) for each residue in the sequence, ordered by residue sequence number. The number of rows in the matrix is equal to the number of rows in the ResidueNum column vector, which can be used to determine which residue corresponds to each row in the Angles matrix.
	Note The Angles matrix contains a row for each number in the range of residue sequence numbers, including residue sequence numbers missing from the PDB file. Rows corresponding to residue sequence numbers missing from the PDB file contain the value NaN.

Field	Description
ResidueNum	Column vector containing the residue sequence numbers from the PDB file.
	Note The ResidueNum vector starts with one of the following:
	• The lowest residue sequence number (if the lowest residue sequence number is negative or zero)
	• The number 1 (if the lowest residue sequence number is positive)
	The ResidueNum vector ends with the highest residue sequence number and includes all numbers in the range, including residue sequence numbers missing from the PDB file.
	The angles listed in the Angles matrix are in the same order as the residue sequence numbers in the ResidueNum vector. Therefore, you can use the ResidueNum vector to determine which residue corresponds to each row in the Angles matrix.
ResidueName	Column vector containing the residue names for the protein.
Chain	A string specifying the chains in the protein.
HPoints	Handle to the data points in the plot.

ramachandran(..., '*PropertyName*', *PropertyValue*, ...) calls ramachandran with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows: ramachandran(..., 'Chain', *ChainValue*, ...) specifies the chain(s) to compute the torsion angles for and plot. Choices are:

- 'All' (default) Torsion angles for all chains are computed and plotted.
- A string specifying the chain ID, which is case sensitive.
- A cell array of strings specifying chain IDs, which are case sensitive.

ramachandran(..., 'Plot', PlotValue, ...) specifies how to plot chains. Choices are:

- 'None' Plots nothing.
- 'Separate' Plots torsion angles for all specified chains in separate plots.
- 'Combined' (default) Plots torsion angles for all specified chains in one combined plot.

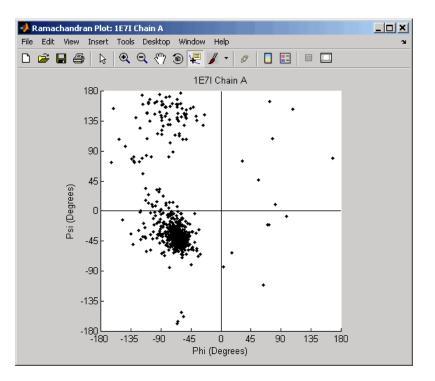
ramachandran(..., 'Model', ModelValue, ...) specifies the structure model to consider. Default is 1.

ramachandran(..., 'Glycine', *GlycineValue*, ...) controls the highlighting of glycine residues with a circle in the plot. Choices are true or false (default).

ramachandran(..., 'Regions', *RegionsValue*, ...) controls the drawing of Ramachandran reference regions in the plot. Choices are true or false (default).

The default regions are core right-handed alpha, core beta, core left-handed alpha, and allowed, with the core regions corresponding to data points of preferred values of psi/phi angle pairs, and the allowed regions corresponding to possible, but disfavored values of psi/phi angle pairs, based on simple energy considerations. The boundaries of these default regions are based on the calculations by Morris et al., 1992. **Note** If using the default colormap, then red = core right-handed alpha, core beta, and core left-handed alpha, while yellow = allowed.

ramachandran(..., 'RegionDef', *RegionDefValue*, ...) specifies information (name, color, and boundary) for custom reference regions in a Ramachandran plot. *RegionDefValue* is a MATLAB structure or array of structures containing the following fields:


- Name String specifying a name for the region.
- Color String or three-element numeric vector of RGB values specifying a color for the region in the plot.
- Patch A 2-by-N matrix of values, the first row containing torsion angle phi (Φ) values, and the second row containing torsion angle psi (Ψ) values. When psi/phi angle pairs are plotted, the data points specify a boundary for the region. N is the number of data points needed to define the region.

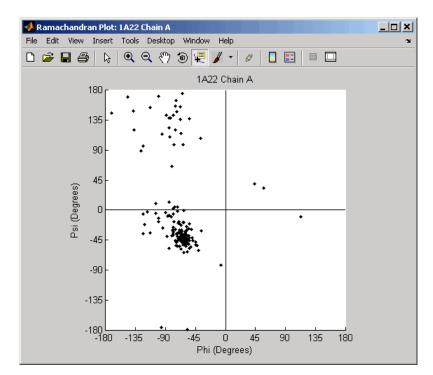
Tip If you specify custom reference regions in which a smaller region is contained or covered by a larger region, list the structure for the smaller region first in the array so that it is plotted last and visible in the plot.

Examples Drawing a Ramachandran Plot

Draw the Ramachandran plot for the human serum albumin complexed with octadecanoic acid, which has a PDB database identifier of 1E7I.

```
ramachandran('1E7I')
```


Drawing a Ramachandran Plot for a Specific Chain


1 Use the getpdb function to retrieve protein structure data for the human growth hormone from the PDB database, and save the information to a file.

getpdb('1a22','ToFile','1a22.pdb');

2 Compute the torsion angles and draw the Ramachandran plot for chain A of the human growth hormone, represented in the pdb file, 1a22.pdb.

```
ChainA1a22Struct = ramachandran('1a22.pdb','chain','A')
ChainA1a22Struct =
```

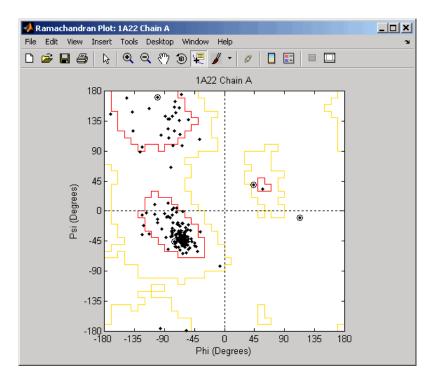
```
Angles: [191x3 double]
ResidueNum: [191x1 double]
ResidueName: {191x1 cell}
Chain: 'A'
HPoints: 370.0012
```

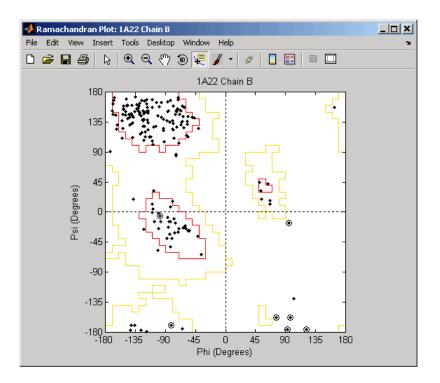

Drawing Ramachandran Plots with Highlighted Glycine Residues and Ramachandran Regions

1 Use the getpdb function to retrieve protein structure data for the human growth hormone from the PDB database, and store the information in a structure.

Struct1a22 = getpdb('1a22');

2 Draw a combined Ramachandran plot for all chains of the human growth hormone, represented in the pdb structure, 1a22Struct. Highlight the glycine residues (with a circle), and draw the reference Ramachandran regions in the plot.


📣 Ramachandran Plot: 1A22 _ D × File Edit View Insert Tools Desktop Window Help 🗅 🧀 🔲 🎒 R 🔍 🔍 🖑 🐌 🐙 🖌 • Ø 1A22 180 Core Bet: 135 90 ARG 243 Phi: 67.24 Psi: 17.14 45 Psi (Degrees) Chain: B 0 ۲ ۲ Core R-Alpha -45 -90 GLY 262 Phi: 97.02 Psi: -158.5 Allowed 2 -135 Chain: B -180 -135 -45 0 45 90 135 180 -90 Phi (Degrees)


ramachandran(Struct1a22, 'glycine', true, 'regions', true);

Tip Click a data point to display a data tip with information about the residue. Click a region to display a data tip defining the region. Press and hold the **Alt** key to display multiple data tips.

3 Draw a separate Ramachandran plot for each chain of the human growth hormone, represented in the pdb structure, 1a22Struct. Highlight the glycine residues (with a circle) and draw the reference Ramachandran regions in the plot.

ramachandran(Struct1a22,'plot','separate','chain','all',...
'glycine',true,'regions',true)

Writing a Tab-Delimited Report File from a Ramachandran Structure

1 Create an array of two structures containing torsion angles for chains A and D in the Calcium/Calmodulin-dependent protein kinase, which has a PDB database identifier of 1hkx.

```
a = ramachandran('1hkx', 'chain', {'A', 'D'})
a =
1x2 struct array with fields:
    Angles
    ResidueNum
```

ResidueName Chain HPoints

2 Write a tab-delimited report file containing torsion angles phi (Φ) and psi (Ψ) for chains A and D in the Calcium/Calmodulin-dependent protein kinase.

3 View the file you created in the MATLAB Editor.

```
edit rama_1hkx_report.txt
```

📝 C:	\Work	\rama_1hkx_report.txt			
File	Edit	Text Go Cell Tools Debug Project Desktop	o Window Help 🛛 🛥		
1	3	🍐 🖻 🛍 🤊 ୯ 🌭 🗛 🔶 🔿	📓 🕶 🖪 💌 🔗		
1	A	336 THR -107.589510 23.018406			
2	A	337 THR -55.719152 -67.612222	: 🗖		
3	A	338 ILE -65.153695 163.796933			
4	A	339 GLU 53.092557 74.553413			
5	A	340 ASP 156.881039 -38.848811			
6	A	341 GLU -76.392611 -19.197177	,		
7	A	342 ASP -93.845157 -25.807018	3		
	plain text file In 53 Col 35 OVR				

- **References** [1] Morris, A.L., MacArthur, M.W., Hutchinson, E.G., and Thornton, J.M. (1992). Stereochemical Quality of Protein Structure Coordinates. PROTEINS: Structure, Function, and Genetics *12*, 345–364.
- See Also Bioinformatics Toolbox functions: getpdb, molviewer, pdbdistplot, pdbread, proteinpropplot

Purpose	Generate randomized subset of features		
Syntax	<pre>[IDX, Z] = randfeatures(X, Group, 'PropertyName', PropertyValue) randfeatures(, 'Classifier', C) randfeatures(, 'ClassOptions', CO) randfeatures(, 'PerformanceThreshold', PT) randfeatures(, 'ConfidenceThreshold', CT) randfeatures(, 'SubsetSize', SS) randfeatures(, 'PoolSize', PS) randfeatures(, 'NumberOfIndices', N) randfeatures(, 'CrossNorm', CN) randfeatures(, 'Verbose', VerboseValue)</pre>		
Description	[IDX, Z] = randfeatures(X, Group, ' <i>PropertyName</i> ', <i>PropertyValue</i>) performs a randomized subset feature search reinforced by classification. randfeatures randomly generates subsets of features used to classify the samples. Every subset is evaluated with the apparent error. Only the best subsets are kept, and they are joined into a single final pool. The cardinality for every feature in the pool gives the measurement of the significance.		
	X contains the training samples. Every column of X is an observed vector. Group contains the class labels. Group can be a numeric vector or a cell array of strings; numel(Group) must be the same as the number of columns in X, and numel(unique(Group)) must be greater than or equal to 2. Z is the classification significance for every feature. IDX contains the indices after sorting Z; i.e., the first one points to the most significant feature.		
	randfeatures(, 'Classifier', C) sets the classifier. Options are		
	'da' (default) Discriminant analysis 'knn' K nearest neighbors		
	<pre>randfeatures(, 'ClassOptions', CO)is a cell with extra options for the selected classifier. Defaults are</pre>		

{5, 'correlation', 'consensus'} for KNN and {'linear'} for DA. See
knnclassify and classify for more information.

randfeatures(..., 'PerformanceThreshold', PT) sets the correct classification threshold used to pick the subsets included in the final pool. Default is 0.8 (80%).

randfeatures(..., 'ConfidenceThreshold', CT) uses the posterior probability of the discriminant analysis to invalidate classified subvectors with low confidence. This option is only valid when Classifier is 'da'. Using it has the same effect as using 'consensus' in KNN; i.e., it makes the selection of approved subsets very stringent. Default is 0.95.^(number of classes).

randfeatures(..., 'SubsetSize', SS) sets the number of features considered in every subset. Default is 20.

randfeatures(..., 'PoolSize', PS) sets the targeted number of accepted subsets for the final pool. Default is 1000.

randfeatures(..., 'NumberOfIndices', N) sets the number of output indices in IDX. Default is the same as the number of features.

randfeatures(..., 'CrossNorm', CN) applies independent normalization across the observations for every feature. Cross-normalization ensures comparability among different features, although it is not always necessary because the selected classifier properties might already account for this. Options are

'none' (default)	Intensities are not cross-normalized.
'meanvar'	$x_new = (x - mean(x))/std(x)$
'softmax'	$x_new = (1+exp((mean(x)-x)/std(x)))^{-1}$
'minmax'	$x_new = (x - min(x))/(max(x) - min(x))$

randfeatures(..., 'Verbose', VerboseValue), when Verbose is true, turns off verbosity. Default is true.

Examples Find a reduced set of genes that is sufficient for classification of all the cancer types in the t-matrix NCI60 data set. Load sample data.

randfeatures

```
load NCI60tmatrix
Select features.
I = randfeatures(X,GROUP, 'SubsetSize',15, 'Classifier', 'da');
Test features with a linear discriminant classifier.
C = classify(X(I(1:25),:)',X(I(1:25),:)',GROUP);
cp = classperf(GROUP,C);
cp.CorrectRate
See Also
Bioinformatics Toolbox functions: classperf, crossvalind,
knnclassify, rankfeatures, svmclassify
Statistics Toolbox functions: classify, sequentialfs
```

randseq

Purpose	Generate random sequence from finite alphabet		
Syntax	<pre>Seq = randseq(SeqLength) Seq = randseq(SeqLength,'Alphabet', AlphabetValue,) Seq = randseq(SeqLength,'Weights', WeightsValue,) Seq = randseq(SeqLength,'FromStructure', FromStructureValue,) Seq = randseq(SeqLength,'Case', CaseValue,) Seq = randseq(SeqLength,'DataType', DataTypeValue,)</pre>		
Arguments	SeqLength	Number of amino acids or nucleotides in random sequence .	
	AlphabetValue	Property to select the alphabet for the sequence. Enter 'dna'(default), 'rna', or 'amino'.	
	WeightsValue	Property to specify a weighted random sequence.	
	FromStructureValue	Property to specify a weighted random sequence using output structures from the functions from basecount, dimercount, codoncount, or aacount.	
	CaseValue	Property to select the case of letters in a sequence when Alphabet is 'char'. Values are'upper' (default) or 'lower'.	
	DataTypeValue	Property to select the data type for a sequence. Values are 'char'(default) for letter sequences, and 'uint8' or 'double' for numeric sequences.	
	Creates a sequence as an array of <i>DataType</i> .		
Description	Sea - randsea(Seal enat	th) grantes a random sequence with a length	

Description Seq = randseq(SeqLength) creates a random sequence with a length specified by SeqLength.

```
Seq = randseq(SeqLength, ...'PropertyName',
                   PropertyValue, ...) calls randseq with optional properties
                   that use property name/property value pairs. You can specify one or
                   more properties in any order. Each PropertyName must be enclosed in
                   single quotes and is case insensitive. These property name/property
                   value pairs are as follows:
                   Seq = randseq(SeqLength, ... 'Alphabet', AlphabetValue, ...)
                   generates a sequence from a specific alphabet.
                   Seq = randseq(SeqLength, ...'Weights', WeightsValue, ...)
                   creates a weighted random sequence where the ith letter of the
                   sequence alphabet is selected with weight W(i). The weight vector is
                   usually a probability vector or a frequency count vector. Note that the
                   ith element of the nucleotide alphabet is given by int2nt(i), and the
                   ith element of the amino acid alphabet is given by int2aa(i).
                   Seq = randseq(SeqLength,
                    ... 'FromStructure', FromStructureValue, ...) creates a
                   weighted random sequence with weights given by the output structure
                   from basecount, dimercount, codoncount, or aacount.
                   Seg = randseg(SegLength, ... 'Case', CaseValue, ...) specifies
                   the case for a letter sequence.
                   Seq = randseq(SeqLength, ... 'DataType', DataTypeValue, ...)
                   specifies the data type for the sequence array.
Examples
                   Generate a random DNA sequence.
                      randseq(20)
                      ans =
                      TAGCTGGCCAAGCGAGCTTG
                   Generate a random RNA sequence.
                      randseq(20, 'alphabet', 'rna')
                      ans =
```

GCUGCGGCGGUUGUAUCCUG

Generate a random protein sequence.

randseq(20,'alphabet','amino')

ans = DYKMCLYEFGMFGHFTGHKK

See Also Statistics Toolbox functions: hmmgenerate, randsample MATLAB functions: rand, randperm

Purpose	Rank key features by class separability criteria		
Syntax	<pre>[IDX, Z] = rankfeatures(X, Group) [IDX, Z] = rankfeatures(X, Group,'Criterion', CriterionValue,) [IDX, Z] = rankfeatures(X, Group,'CCWeighting', ALPHA,) [IDX, Z] = rankfeatures(X, Group,'NWeighting', BETA,) [IDX, Z] = rankfeatures(X, Group,'NumberOfIndices', N,</pre>		
	<pre>) [IDX, Z] = rankfeatures(X, Group,'CrossNorm', CN,)</pre>		
Description [<i>IDX</i> , <i>Z</i>] = rankfeatures(<i>X</i> , <i>Group</i>) ranks the features in <i>X</i> u an independent evaluation criterion for binary classification. <i>X</i> is matrix where every column is an observed vector and the number rows corresponds to the original number of features. <i>Group</i> contatthe class labels.			
	<pre>IDX is the list of indices to the rows in X with the most significant features. Z is the absolute value of the criterion used (see below). Group can be a numeric vector or a cell array of strings; numel(Group) is the same as the number of columns in X, and numel(unique(Group)) is equal to 2.</pre>		
	<pre>[IDX, Z] = rankfeatures(X, Group,'PropertyName', PropertyValue,) calls rankfeatures with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows: [IDX, Z] = rankfeatures(X, Group,'Criterion', CriterionValue,) sets the criterion used to assess the significance of every feature for separating two labeled groups. Choices are:</pre>		
	• 'ttest' (default) — Absolute value two-sample t-test with pooled variance estimate.		

- 'entropy' Relative entropy, also known as Kullback-Lieber distance or divergence.
- 'brattacharyya' Minimum attainable classification error or Chernoff bound.
- 'roc' Area between the empirical receiver operating characteristic (ROC) curve and the random classifier slope.
- 'wilcoxon' Absolute value of the u-statistic of a two-sample unpaired Wilcoxon test, also known as Mann-Whitney.

Note 'ttest', 'entropy', and 'brattacharyya' assume normal distributed classes while 'roc' and 'wilcoxon' are nonparametric tests. All tests are feature independent.

[IDX, Z] = rankfeatures(X, Group, ..., 'CCWeighting', ALPHA, ...) uses correlation information to outweigh the Z value of potential features using Z * (1-ALPHA*(RHO)), where RHO is the average of the absolute values of the cross-correlation coefficient between the candidate feature and all previously selected features. ALPHA sets the weighting factor. It is a scalar value between 0 and 1. When ALPHA is 0 (default) potential features are not weighted. A large value of RHO (close to 1) outweighs the significance statistic; this means that features that are highly correlated with the features already picked are less likely to be included in the output list.

 $[IDX, Z] = rankfeatures(X, Group, ..., 'NWeighting', BETA, ...) uses regional information to outweigh the Z value of potential features using Z * (1-exp(-(DIST/BETA).^2)), where DIST is the distance (in rows) between the candidate feature and previously selected features. BETA sets the weighting factor. It is greater than or equal to 0. When BETA is 0 (default) potential features are not weighted. A small DIST (close to 0) outweighs the significance statistics of only close features. This means that features that are close to already picked features are less likely to be included in the output list. This option is useful for extracting features from time series with temporal correlation.$

BETA can also be a function of the feature location, specified using @ or an anonymous function. In both cases rankfeatures passes the row position of the feature to BETA() and expects back a value greater than or equal to 0.

Note You can use 'CCWeighting' and 'NWeighting' together.

[IDX, Z] = rankfeatures(X, Group, ... 'NumberOfIndices', N, ...) sets the number of output indices in IDX. Default is the same as the number of features when ALPHA and BETA are 0, or 20 otherwise.

[IDX, Z] = rankfeatures(X, Group, ..., 'CrossNorm', CN, ...) applies independent normalization across the observations for every feature. Cross-normalization ensures comparability among different features, although it is not always necessary because the selected criterion might already account for this. Choices are:

- 'none' (default) Intensities are not cross-normalized.
- 'meanvar' $x_new = (x mean(x))/std(x)$
- 'softmax' x_new = $(1+exp((mean(x)-x)/std(x)))^{-1}$
- 'minmax' x_new = (x min(x))/(max(x) min(x))

Examples 1 Find a reduced set of genes that is sufficient for differentiating breast cancer cells from all other types of cancer in the t-matrix NCI60 data set. Load sample data.

load NCI60tmatrix

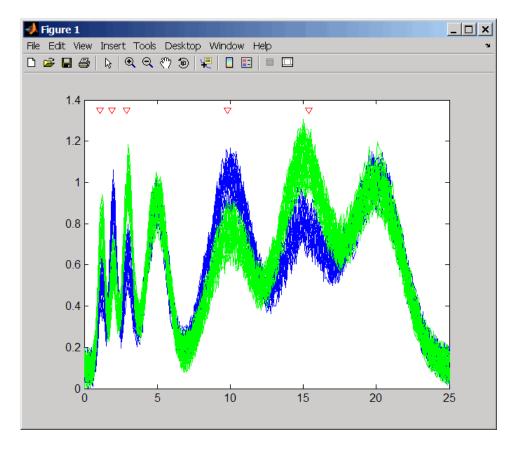
2 Get a logical index vector to the breast cancer cells.

BC = GROUP == 8;

- **3** Select features.
 - I = rankfeatures(X,BC, 'NumberOfIndices',12);

4 Test features with a linear discriminant classifier.

```
C = classify(X(I,:)',X(I,:)',double(BC));
cp = classperf(BC,C);
cp.CorrectRate
ans =
1
```


5 Use cross-correlation weighting to further reduce the required number of genes.

```
I = rankfeatures(X,BC, 'CCWeighting',0.7, 'NumberOfIndices',8);
C = classify(X(I,:)',X(I,:)',double(BC));
cp = classperf(BC,C);
cp.CorrectRate
ans =
1
```

6 Find the discriminant peaks of two groups of signals with Gaussian pulses modulated by two different sources.

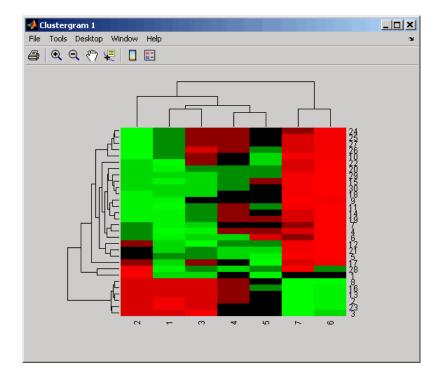
```
load GaussianPulses
f = rankfeatures(y',grp,'NWeighting',@(x) x/10+5,'NumberOfIndices',5);
plot(t,y(grp==1,:),'b',t,y(grp==2,:),'g',t(f),1.35,'vr')
```

rankfeatures

See Also Bioinformatics Toolbox functions: classperf, crossvalind, randfeatures, svmclassify

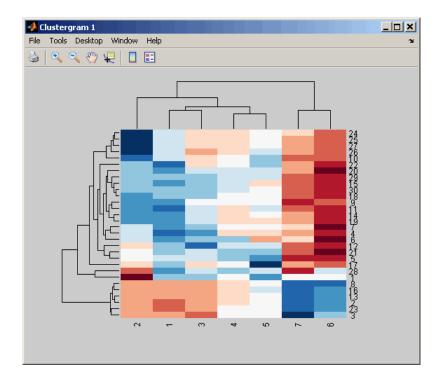
Statistics Toolbox functions: classify, sequentialfs

rebasecuts


Purpose	Find restriction enzymes that cut nucleotide sequence		
Syntax	[<i>Enzymes</i> , <i>Sites</i>] = rebasecuts(<i>SeqNT</i>) rebasecuts(<i>SeqNT</i> , <i>Group</i>) rebasecuts(<i>SeqNT</i> , [Q, R]) rebasecuts(<i>SeqNT</i> , S)		
Arguments	SeqNT Nucleotide sequence.		
	Group Q, R, S	Cell array with the names of valid restriction enzymes. Base positions that limit the search.	
Return Values	Enzymes	Cell array with the names of restriction enzymes from REBASE, the Restriction Enzyme Database.	
	Sites	Vector of cut sites identified with the base position number before every cut.	
Description	[<i>Enzymes</i> , <i>Sites</i>] = rebasecuts(<i>SeqNT</i>) finds all the restriction enzymes that cut <i>SeqNT</i> , a nucleotide sequence.		
	rebasecuts(SeqNT, Group) limits the search to Group, a list of enzymes.		
	rebasecuts(SeqNT, $[Q, R]$) limits the search to those enzymes that cut after the base position specified by Q and before the base position specified by R .		
	rebasecuts(SeqNT, S) limits the search to those enzymes that cut just after the base position specified by S .		

	REBASE, the Restriction Enzyme Database, is a collection of information about restriction enzymes and related proteins. For more information about REBASE, see:		
	http://rebase.neb.com/rebase/rebase.html		
Examples	1 Enter a nucleotide sequence.		
	<pre>seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA'</pre>		
	2 Look for all possible cleavage sites in the sequence seq .		
	[enzymes sites] = rebasecuts(seq)		
	3 Find where restriction enzymes CfoI and Tru9I cut the sequence.		
	<pre>[enzymes sites] = rebasecuts(seq, {'CfoI','Tru9I'})</pre>		
	4 Search for any possible enzymes that cut after base 7.		
	enzymes = rebasecuts(seq, 7)		
	5 Get the subset of enzymes that cut between base 11 and 37.		
	enzymes = rebasecuts(seq, [11 37])		
See Also	Bioinformatics Toolbox functions: cleave, cleavelookup, restrict, seq2regexp, seqshowwords		
	MATLAB function: regexp		

redbluecmap


Purpose	Create red and blue colormap		
Syntax	redbluecmap(<i>Length</i>)		
Arguments	Length	Positive integer that specifies the length of (or the number of colors in) the colormap. Choices are positive integers \geq 3 or \leq 11. Default is 11.	
Description	redbluecmap(<i>Length</i>) returns a <i>Length</i> -by-3 matrix containing a red and blue diverging color palette. Low values are dark blue, values in the center of the map are white, and high values are dark red. <i>Length</i> is a positive integer \geq 3 and \leq 11, which determines the number of colors in the colormap. Default is 11.		
Examples	1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains yeastvalues, a matrix of gene expression data. Create a clustergram object and display the dendrograms and heat map from the gene expression data in the first 30 rows of the yeastvalues matrix. load filteredyeastdata cgo = clustergram(yeastvalues(1:30,:)) Clustergram object with 30 rows of nodes and 7 columns of nodes.		

redbluecmap

2 Reset the colormap of the heat map to redbluecmap.

set(cgo,'Colormap',redbluecmap);

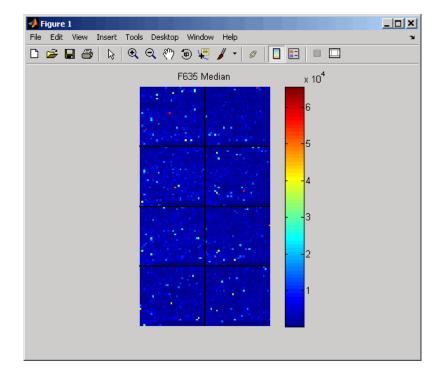
References [1] http://colorbrewer.org

See Also Bioinformatics Toolbox functions: clustergram, redgreencmap MATLAB functions: colormap, colormapeditor

Purpose	Create red and green colormap	
Syntax	redgreencmap(<i>Length</i>) redgreencmap(<i>Length</i> ,	'Interpolation', InterpolationValue)
Arguments	Length	Length of the colormap. Enter either 256 or 64. Default is the length of the colormap of the current figure.
	InterpolationValue	<pre>Property that lets you set the algorithm for color interpolation. Choices are: • 'linear'</pre>
		• 'quadratic'
		• 'cubic'
		• 'sigmoid' (default)

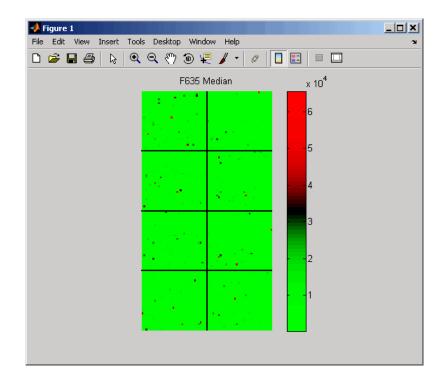
Note The sigmoid interpolation is tanh.

Description redgreencmap(*Length*) returns a *Length*-by-3 matrix containing a red and green colormap. Low values are bright green, values in the center of the map are black, and high values are red. Enter either 256 or 64 for *Length*. If *Length* is empty, the length of the map will be the same as the length of the colormap of the current figure.


redgreencmap(Length, 'Interpolation', InterpolationValue) lets you
set the algorithm for color interpolation. Choices are:

- 'linear'
- 'quadratic'
- 'cubic'
- 'sigmoid' (default)

Note The sigmoid interpolation is tanh.


Examples 1 Create a MATLAB structure from the microarray data in a GenePix Results (GPR) file, then display an image of the 'F635 Median' field.

```
pd = gprread('mouse_a1pd.gpr');
maimage(pd,'F635 Median')
```


2 Reset the colormap of the current figure.

colormap(redgreencmap)

See Also Bioinformatics Toolbox function: clustergram, redbluecmap MATLAB functions: colormap, colormapeditor

restrict

Purpose	Split nucleotide sequence at restriction site		
Syntax	<pre>Fragments = restrict(SeqNT, Enzyme) Fragments = restrict(SeqNT, Pattern, Position) [Fragments, CuttingSites] = restrict() [Fragments, CuttingSites, Lengths] = restrict() = restrict(, 'PartialDigest', PartialDigestValue)</pre>		
Arguments	SeqNT Nucleotide sequence. Enter either a character string with the characters A, C, G T, and ambiguous characters R, Y, K, M, S, W, D, H, V, N, or a vector of integers. You can als enter a structure with the field Sequence.		
	Enzyme	Enter the name of a restriction enzyme from REBASE, the Restriction Enzyme Database.	
	Pattern	Enter a short nucleotide pattern. <i>Pattern</i> can be a regular expression.	
	Position	Defines the position on <i>Pattern</i> where the sequence is cut. Position=0 corresponds to the 5' end of <i>Pattern</i> .	
	PartialDigestValue	Property to specify a probability for partial digestion. Enter a value from 0 to 1.	
Description	<pre>Fragments = restrict(SeqNT, Enzyme) cuts SeqNT, a nucleotide sequence, into fragments at the restriction sites of Enzyme, a restriction enzyme. The return values are stored in Fragments, a cell array of sequences.</pre>		
	<i>Fragments</i> = restrict(<i>SeqNT</i> , <i>Pattern</i> , <i>Position</i>) cuts <i>SeqNT</i> , a nucleotide sequence into fragments at restriction sites specified by <i>Pattern</i> , a nucleotide pattern.		
	[<i>Fragments, CuttingSites</i>] = restrict() returns a numeric vector with the indices representing the cutting sites. A 0 (zero) is		

	added to the list so numel(<i>Fragments</i>)==numel(<i>CuttingSites</i>). You can use CuttingSites+1 to point to the first base of every fragment respective to the original sequence.		
	[Fragments, CuttingSites, Lengths] = restrict() returns a numeric vector with the lengths of every fragment.		
	<pre> = restrict(, 'PartialDigest', PartialDigestValue) simulates a partial digest where each restriction site in the sequence has a PartialDigestValue or probability of being cut.</pre>		
	REBASE, the restriction enzyme database, is a collection of information about restriction enzymes and related proteins. For more information about REBASE or to search REBASE for the name of a restriction enzyme, see:		
	http://rebase.neb.com/rebase/rebase.html		
Examples	1 Enter a nucleotide sequence.		
	<pre>Seq = 'AGAGGGGTACGCGCTCTGAAAAGCGGGAACCTCGTGGCGCTTTATTAA';</pre>		
	2 Use the recognition pattern (sequence) GCGC with the point of cleavage at position 3 to cleave a nucleotide sequence.		
	<pre>fragmentsPattern = restrict(Seq,'GCGC',3)</pre>		
	fragmentsPattern = 'AGAGGGGTACGCG' 'CTCTGAAAAGCGGGAACCTCGTGGCG' 'CTTTATTAA'		
	3 Use the restriction enzyme HspAI (recognition sequence GCGC with the point of cleavage at position 1) to cleave a nucleotide sequence.		
	<pre>fragmentsEnzyme = restrict(Seq,'HspAI')</pre>		
	fragmentsEnzyme = 'AGAGGGGTACG'		

restrict

'CGCTCTGAAAAGCGGGAACCTCGTGG' 'CGCTTTATTAA'

4 Use a regular expression for the enzyme pattern.

```
fragmentsRegExp = restrict(Seq, 'GCG[^C]',3)
```

```
fragmentsRegExp =
```

'AGAGGGGTACGCGCTCTGAAAAGCG' 'GGAACCTCGTGGCGCTTTATTAA'

5 Capture the cutting sites and fragment lengths with the fragments.

```
[fragments, cut_sites, lengths] = restrict(Seq,'HspAI')
fragments =
    'AGAGGGGTACG'
    'CGCTCTGAAAAGCGGGAACCTCGTGG'
    'CGCTTTATTAA'
cut_sites =
    0
    11
    37
lengths =
    11
    26
    11
Bioinformatics Toolbox functions: cleave, cleavelookup, rebasecuts,
seg2regexp, segshowwords
```

MATLAB function: regexp

See Also

Purpose	Return reverse mapping (amino acid to nucleotide codon) for genetic code		
Syntax	<pre>Map = revgeneticcode Map = revgeneticcode(GeneticCode) Map = revgeneticcode(, 'Alphabet', AlphabetValue,) Map = revgeneticcode(, 'ThreeLetterCodes', ThreeLetterCodesValue,)</pre>		
Arguments	GeneticCode	Integer or string specifying a genetic code number or code name from the table Genetic Code on page 2-935. Default is 1 or 'Standard'.	
		Tip If you use a code name, you can truncate the name to the first two letters of the name.	
	AlphabetValue	String specifying the nucleotide alphabet to use in the map. Choices are:	
		 'DNA' (default) — Uses the symbols A, C, G, and T. 	
		• 'RNA' — Uses the symbols A, C, G, and U.	
	<i>ThreeLetterCodesValue</i>	Controls the use of three-letter amino acid codes as field names in the return structure <i>Map</i> . Choices are true for three-letter codes or false for one-letter codes. Default is false.	

Return Values	Мар	Structure containing the reverse mapping of amino acids to nucleotide codons for the standard genetic code. The <i>Map</i> structure contains a field for each amino acid.
Description	 mapping of amino acids to code. The Map structure code. The Map structure code for the reverse mapping of amingenetic code. GeneticCode An integer or string spetable Genetic Code on p The transl_table (code describing genetic codes) 	ecifying a code number or code name from the page 2-935 le) number from the NCBI Web page
	<pre>letters of the name. Map = revgeneticcode(.</pre>	e, you can truncate the name to the first two , ' <i>PropertyName</i> ', <i>PropertyValue</i> , le with optional properties that use property

name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

Map = revgeneticcode(..., 'Alphabet', AlphabetValue, ...)
specifies the nucleotide alphabet to use in the map. AlphabetValue can

be 'DNA', which uses the symbols A, C, G, and T, or 'RNA', which uses the symbols A, C, G, and U. Default is 'DNA'.

Map = revgeneticcode(..., 'ThreeLetterCodes',
ThreeLetterCodesValue, ...) controls the use of three-letter
amino acid codes as field names in the return structure Map.
ThreeLetterCodesValue can be true for three-letter codes or false for
one-letter codes. Default is false.

Genetic Code

Code Number	Code Name
1	Standard
2	Vertebrate Mitochondrial
3	Yeast Mitochondrial
4	Mold, Protozoan, Coelenterate Mitochondrial, and Mycoplasma/Spiroplasma
5	Invertebrate Mitochondrial
6	Ciliate, Dasycladacean, and Hexamita Nuclear
9	Echinoderm Mitochondrial
10	Euplotid Nuclear
11	Bacterial and Plant Plastid
12	Alternative Yeast Nuclear
13	Ascidian Mitochondrial
14	Flatworm Mitochondrial
15	Blepharisma Nuclear
16	Chlorophycean Mitochondrial
21	Trematode Mitochondrial

Genetic Code (Continued)

Code Number	Code Name
22	Scenedesmus Obliquus Mitochondrial
23	Thraustochytrium Mitochondrial

• Return the reverse mapping of amino acids to nucleotide codons for the Standard genetic code.

```
map = revgeneticcode
```

```
map =
```

```
Name: 'Standard'
                               'GCG'}
   A: {'GCT'
                'GCC'
                       'GCA'
   R: {'CGT'
                ' CGC '
                       'CGA '
                               'CGG' 'AGA'
                                               'AGG'}
   N: {'AAT'
                'AAC'}
   D: {'GAT'
               'GAC'}
   C: {'TGT'
               'TGC'}
   Q: {'CAA'
               'CAG'}
   E: {'GAA'
                'GAG'}
   G: {'GGT'
                ' GGC '
                               'GGG'}
                       'GGA '
   H: {'CAT'
               'CAC'}
   I: {'ATT'
                'ATC'
                       'ATA'}
   L: { 'TTA '
                'TTG'
                       'CTT'
                               'CTC' 'CTA'
                                               'CTG'}
   K: {'AAA'
                'AAG'}
   M: {'ATG'}
   F: {'TTT'
                'TTC'}
   P: {'CCT'
                ' CCC '
                       'CCA'
                               'CCG'}
   S: {'TCT'
                       'TCA'
                               'TCG'
                                       'AGT'
                ' TCC '
                                               'AGC'}
   T: { 'ACT'
                ' ACC '
                       'ACA'
                               'ACG'}
   W: {'TGG'}
   Y: {'TAT'
                'TAC'}
   V: {'GTT'
                'GTC' 'GTA'
                               'GTG'}
```

Stops:	{ ' TAA '	'TAG'	'TGA'}
Starts:	{ 'TTG '	'CTG'	'ATG'}

• Return the reverse mapping of amino acids to nucleotide codons for the Mold, Protozoan, Coelenterate Mitochondrial, and Mycoplasma/Spiroplasma genetic code, using the rna alphabet.

```
moldmap = revgeneticcode(4, 'Alphabet', 'rna');
```

• Return the reverse mapping of amino acids to nucleotide codons for the Flatworm Mitochondrial genetic code, using three-letter codes for the field names in the return structure.

wormmap = revgeneticcode('Flatworm Mitochondrial',...
'ThreeLetterCodes',true);

References [1] NCBI Web page describing genetic codes:

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=c

See Also Bioinformatics Toolbox functions: aa2nt, aminolookup, baselookup, geneticcode, nt2aa

Purpose	Perform background adjustment on Affymetrix microarray probe-level data using Robust Multi-array Average (RMA) procedure	
Syntax	<pre>BackAdjustedMatrix = rmabackadj(PMData) BackAdjustedMatrix = rmabackadj(, 'Method', MethodValue,) BackAdjustedMatrix = rmabackadj(, 'Truncate', TruncateValue,) BackAdjustedMatrix = rmabackadj(, 'Showplot', ShowplotValue,)</pre>	

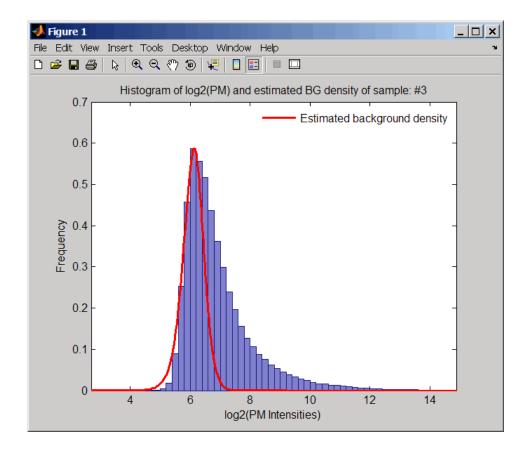
Arguments

PMData	Matrix of intensity values where each row corresponds to a perfect match (PM) probe and each column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.)
<i>MethodValue</i>	Specifies the estimation method for the background adjustment model parameters. Enter either 'RMA' (to use estimation method described by Bolstad, 2005) or 'MLE' (to estimate the parameters using maximum likelihood). Default is 'RMA'.

	TruncateValue	Specifies the background noise model. Enter either true (use a truncated Gaussian distribution) or false (use a nontruncated Gaussian distribution). Default is true.
	ShowplotValue	Controls the plotting of a histogram showing the distribution of PM probe intensity values (blue) and the convoluted probability distribution function (red), with estimated parameters mu, sigma and alpha. Enter either 'all' (plot a histogram for each column or chip) or specify a subset of columns (chips) by entering the column number, list of numbers, or range of numbers.
		For example:
		•, 'Showplot', 3,) plots the intensity values in column 3.
		•, 'Showplot', [3,5,7],) plots the intensity values in columns 3, 5, and 7.
		•, 'Showplot', 3:9,) plots the intensity values in columns 3 to 9.
Return Values	BackAdjustedMa	<i>trix</i> Matrix of background-adjusted probe intensity values.
Description	BackAdjustedMatrix = rmabackadj(PMData) returns the background adjusted values of probe intensity values in the matrix, PMData. Note that each row in PMData corresponds to a perfect match (PM) probe and each column in PMData corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.) Details on the background adjustment are described by Bolstad, 2005.	

BackAdjustedMatrix = rmabackadj(..., 'PropertyName', PropertyValue, ...) calls rmabackadj with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

BackAdjustedMatrix = rmabackadj(..., 'Method', MethodValue, ...) specifies the estimation method for the background adjustment model parameters. When MethodValue is 'RMA', rmabackadj implements the estimation method described by Bolstad, 2005. When MethodValue is 'MLE', rmabackadj estimates the parameters using maximum likelihood. Default is 'RMA'.


BackAdjustedMatrix = rmabackadj(..., 'Truncate', TruncateValue, ...) specifies the background noise model used. When TruncateValue is false, rmabackadj uses nontruncated Gaussian as the background noise model. Default is true.

BackAdjustedMatrix = rmabackadj(..., 'Showplot', ShowplotValue, ...) lets you plot a histogram showing the distribution of PM probe intensity values (blue) and the convoluted probability distribution function (red), with estimated parameters mu, sigma and alpha. When ShowplotValue is 'all', rmabackadj plots a histogram for each column or chip. When ShowplotValue is a number, list of numbers, or range of numbers, rmabackadj plots a histogram for the indicated column number (chip).

For example:

- (..., 'Showplot', 3,...) plots the intensity values in column 3 of *PMData*.
- (..., 'Showplot', [3,5,7],...) plots the intensity values in columns 3, 5, and 7 of *PMData*.
- (..., 'Showplot', 3:9,...) plots the intensity values in columns 3 to 9 of *PMData*.

rmabackadj

Examples 1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains Affymetrix probe-level data, including pmMatrix, a matrix of PM probe intensity values from multiple CEL files.

load prostatecancerrawdata

2 Perform background adjustment on the PM probe intensity values in the matrix, pmMatrix, creating a new matrix, BackgroundAdjustedMatrix.

3 Perform background adjustment on the PM probe intensity values in only column 3 of the matrix, pmMatrix, creating a new matrix, BackgroundAdjustedChip3. BackgroundAdjustedChip3 = rmabackadj(pmMatrix(:,3)); The prostatecancerrawdata.mat file used in the previous example contains data from Best et al., 2005. References [1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics 4, 249–264. [2] Bolstad, B. (2005). "affy: Built-in Processing Methods" http://www.bioconductor.org/packages/2.1/bioc/vignettes/affy/ inst/doc/builtinMethods.pdf [3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research 11, 6823-6834. See Also Bioinformatics Toolbox functions: affyinvarsetnorm, affyread, affyrma, celintensityread, probelibraryinfo, probesetlink, probesetlookup, probesetvalues, quantilenorm, rmasummary

BackgroundAdjustedMatrix = rmabackadj(pmMatrix);

Purpose	Calculate gene expression values from Affymetrix microarray probe-level data using Robust Multi-array Average (RMA) procedure
Syntax	ExpressionMatrix = rmasummary(ProbeIndices, Data) ExpressionMatrix = rmasummary(ProbeIndices, Data, 'Output', OutputValue)

rmasummary

Arguments	ProbeIndices	Column vector of probe indices. The convention for probe indices is, for each probe set, to label each probe 0 to $N - 1$, where N is the number of probes in the probe set.
		Tip Use the ProbeIndices field in the structure returned by celintensityread as the <i>ProbeIndices</i> input.
	Data	Matrix of natural-scale intensity values where each row corresponds to a perfect match (PM) probe and each column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.)
		Tip Using a single-precision matrix for <i>Data</i> decreases memory usage.
		Tip You can use the matrix from the PMIntensities field in the structure returned by celintensityread as the <i>Data</i> input. However, first ensure the matrix has been background adjusted, using the rmabackadj or gcrmabackadjfunction, and normalized, using the quantilenorm function.

OutputValue Specifies the scale of the returned gene expression values. OutputValue can be:

- 'log'
- 'log2'
- 'log10'
- 'natural'
- @functionname

In the last instance, the data is transformed as defined by the function *functionname*. Default is 'log2'.

Description ExpressionMatrix = rmasummary(ProbeIndices, Data) returns gene (probe set) expression values after calculating them from natural-scale probe intensities in the matrix Data, using the column vector of probe indices, ProbeIndices. Note that each row in Data corresponds to a perfect match (PM) probe, and each column corresponds to an Affymetrix CEL file. (Each CEL file is generated from a separate chip. All chips should be of the same type.) Note that the column vector ProbeIndices designates probes within each probe set by labeling each probe 0 to N - 1, where N is the number of probes in the probe set. Note that each row in ExpressionMatrix corresponds to a gene (probe set) and each column in ExpressionMatrix corresponds to an Affymetrix CEL file, which represents a single chip.

For a given probe set n, with J probe pairs, let Yijn denote the background-adjusted, base 2 log transformed and quantile-normalized PM probe intensity value of chip i and probe j. Yijn follows a linear additive model:

$$Yijn = Uin + Ajn + Eijn; i = 1, ..., I; j = 1, ..., J; n = 1, ..., N$$

where:

Uin = Gene expression of the probe set n on chip i

Ajn = Probe affinity effect for the *j*th probe in the probe set

Eijn =Residual for the *j*th probe on the *i*th chip

The RMA method assumes A1 + A2 + ... + AJ = 0 for all probe sets. A robust procedure, median polish, estimates *Ui* as the log scale measure of expression.

Note There is no column in *ExpressionMatrix* that contains probe set or gene information.

ExpressionMatrix = rmasummary(..., '*PropertyName*', *PropertyValue*, ...) calls rmasummary with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

ExpressionMatrix = rmasummary(ProbeIndices, Data, 'Output', OutputValue) specifies the scale of the returned gene expression values. OutputValue can be:

- 'log'
- 'log2'
- 'log10'
- 'natural'
- @functionname

In the last instance, the data is transformed as defined by the function *functionname*. Default is 'log2'.

Examples 1 Load a MAT-file, included with the Bioinformatics Toolbox software, which contains Affymetrix data variables, including pmMatrix, a matrix of PM probe intensity values from multiple CEL files.

load prostatecancerrawdata

2 Perform background adjustment on the PM probe intensity values in the matrix, pmMatrix, using the rmabackadj function, thereby creating a new matrix, BackgroundAdjustedMatrix.

BackgroundAdjustedMatrix = rmabackadj(pmMatrix);

3 Normalize the data in BackgroundAdjustedMatrix, using the quantilenorm function.

NormMatrix = quantilenorm(BackgroundAdjustedMatrix);

4 Calculate gene expression values from the probe intensities in NormMatrix, creating a new matrix, ExpressionMatrix. (Use the probeIndices column vector provided to supply information on the probe indices.)

ExpressionMatrix = rmasummary(probeIndices, NormMatrix);

The prostatecancerrawdata.mat file used in the previous example contains data from Best et al., 2005.

References [1] Irizarry, R.A., Hobbs, B., Collin, F., Beazer-Barclay, Y.D., Antonellis, K.J., Scherf, U., Speed, T.P. (2003). Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data. Biostatistics. *4*, 249–264.

[2] Mosteller, F., and Tukey, J. (1977). Data Analysis and Regression (Reading, Massachusetts: Addison-Wesley Publishing Company), pp. 165–202.

[3] Best, C.J.M., Gillespie, J.W., Yi, Y., Chandramouli, G.V.R., Perlmutter, M.A., Gathright, Y., Erickson, H.S., Georgevich, L., Tangrea, M.A., Duray, P.H., Gonzalez, S., Velasco, A., Linehan, W.M., Matusik, R.J., Price, D.K., Figg, W.D., Emmert-Buck, M.R., and Chuaqui, R.F. (2005). Molecular alterations in primary prostate cancer after androgen ablation therapy. Clinical Cancer Research *11*, 6823–6834.

See Also affygcrma, affyinvarsetnorm, affyrma, celintensityread, gcrmabackadj, mainvarsetnorm, malowess, manorm, quantilenorm, rmabackadj

Purpose	Convert RNA sequence of nucleotides to DNA sequence	
Syntax	SeqDNA = rna	2dna(SeqRNA)
Arguments	SeqRNA	Nucleotide sequence for RNA. Enter a character string with the characters A, C, U, G, and the ambiguous nucleotide bases N, R, Y, K, M, S, W, B, D, H, and V.
Description	RNA sequence	A2dna(<i>SeqRNA</i>) converts any uracil nucleotides in an e into thymine (U–>T), and returns in the same format as mple, if the RNA sequence is an integer sequence then
Example	rna2dna('/ ans = ACGATGAGT(ACGAUGAGUCAUGCUU') CATGCTT
See Also		s Toolbox function: dna2rna ctions: strrep, regexp

rnaconvert

Purpose	Convert secondary structure of RNA sequence between bracket and matrix notations	
Syntax	RNAStruct2	= rnaconvert(<i>RNAStruct</i>)
Arguments	RNAStruct	Secondary structure of an RNA sequence represented by either:Bracket notationConnectivity matrix
		Tip Use the rnafold function to create <i>RNAStruct</i> .
Return Values	RNAStruct2	 Secondary structure of an RNA sequence represented by either: Bracket notation — String of dots and brackets, where each dot represents an unpaired base, while a pair of equally nested, opening and closing brackets represents a base pair.
		• Connectivity matrix — Binary, upper-triangular matrix, where <i>RNAmatrix</i> (i, j) = 1 if and only if the <i>i</i> th residue in the RNA sequence <i>Seq</i> is paired with the <i>j</i> th residue of <i>Seq</i> .
Description		= rnaconvert(<i>RNAStruct</i>) returns <i>RNAStruct2</i> , the ucture of an RNA sequence, in matrix notation (if

is in matrix notation).

RNAStruct is in bracket notation), or in bracket notation (if RNAStruct

Examples Converting from Bracket to Matrix Notation

1 Create a string representing a secondary structure of an RNA sequence in bracket notation.

Bracket = '(((...((((....))))).((....)))).';

2 Convert the secondary structure to a connectivity matrix representation.

Matrix = rnaconvert(Bracket);

Converting from Matrix to Bracket Notation

1 Create a connectivity matrix representing a secondary structure of an RNA sequence.

```
Matrix2 = zeros(12);
Matrix2(1,12) = 1;
Matrix2(2,11) = 1;
Matrix2(3,10) = 1;
Matrix2(4,9) = 1;
```

2 Convert the secondary structure to bracket notation.

```
Bracket2 = rnaconvert(Matrix2)
Bracket2 =
(((((....))))
```

See Also Bioinformatics Toolbox functions: rnafold, rnaplot

rnafold

Purpose	Predict minimum free	ee-energy secondary structure of RNA sequence
Syntax	[RNAbracket, Ener = rnafold(Seq = rnafold(Seq	fold(Seq) gy] = rnafold(Seq) gy, RNAmatrix] = rnafold(Seq) ,'MinLoopSize', MinLoopSizeValue,) ,'NoGU', NoGUValue,) ,'Progress', ProgressValue,)
Arguments	Seq	Either of the following:String specifying an RNA sequence.MATLAB structure containing a Sequence
		field that specifies an RNA sequence.
	MinLoopSizeValue	Integer specifying the minimum size of the loops (in bases) to be considered when computing the free energy. Default is 3 .
	NoGUValue	Controls whether GU or UG pairs are forbidden to form. Choices are true or false (default).
	ProgressValue	Controls the display of a progress bar during the computation of the minimum free-energy secondary structure. Choices are true or false (default).

Return Values	RNAbracket	String of dots and brackets indicating the bracket notation for the minimum-free energy secondary structure of an RNA sequence. In the bracket notation, each dot represents an unpaired base, while a pair of equally nested, opening and closing brackets represents a base pair.
	Energy	Value specifying the energy (in kcal/mol) of the minimum free-energy secondary structure of an RNA sequence.
	RNAmatrix	Connectivity matrix representing the minimum free-energy secondary structure of an RNA sequence. A binary, upper-triangular matrix where $RNAmatrix(i, j) = 1$ if and only if the <i>i</i> th residue in the RNA sequence Seq is paired with the <i>j</i> th residue of Seq.
Description	notation) associated	cts and displays the secondary structure (in bracket with the minimum free energy for the RNA g the thermodynamic nearest-neighbor approach.
	For example, a 600-	nences, this prediction can be time consuming. nucleotide sequence can take several minutes, ter than 1000 nucleotides can take over 1 hour, system.
	structure associated sequence, <i>Seq</i> , using The returned struct	fold(Seq) predicts and returns the secondary with the minimum free energy for the RNA g the thermodynamic nearest-neighbor approach. ure, <i>RNAbracket</i> , is in bracket notation, that is a rackets, where each dot represents an unpaired

base, while a pair of equally nested, opening and closing brackets represents a base pair.

[*RNAbracket*, *Energy*] = rnafold(*Seq*) also returns *Energy*, the energy value (in kcal/mol) of the minimum free-energy secondary structure of the RNA sequence.

[RNAbracket, Energy, RNAmatrix] = rnafold(Seq) also returns RNAmatrix, a connectivity matrix representing the secondary structure associated with the minimum free energy. RNAmatrix is an upper triangular matrix where RNAmatrix(i, j) = 1 if and only if the *i*th residue in the RNA sequence Seq is paired with the *j*th residue of Seq.

... = rnafold(Seq, ... 'PropertyName', PropertyValue, ...) calls rnafold with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = rnafold(Seq, ... 'MinLoopSize', MinLoopSizeValue, ...) specifies the minimum size of the loops (in bases) to be considered when computing the free energy. Default is 3.

 \dots = rnafold(Seq, \dots 'NoGU', NoGUValue, \dots) controls whether GU or UG pairs are forbidden to form. Choices are true or false (default).

... = rnafold(Seq, ... 'Progress', ProgressValue, ...) controls the display of a progress bar during the computation of the minimum free-energy secondary structure. Choices are true or false (default).

Examples Determine the minimum free-energy secondary structure (in both bracket and matrix notation) and the energy value of the following RNA sequence:

seq = 'ACCCCCUCCUUCCUUGGAUCAAGGGGCUCAA';
[bracket, energy, matrix] = rnafold(seq);
bracket

	bracket =
	(((((((())))))))
References	[1] Wuchty, S., Fontana, W., Hofacker, I., and Schuster, P. (1999). Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers <i>49</i> , 145–165.
	[2] Matthews, D., Sabina, J., Zuker, M., and Turner, D. (1999). Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. <i>288</i> , 911–940.
See Also	Bioinformatics Toolbox functions: rnaconvert, rnaplot

Purpose	Draw secondary s	tructure of RNA sequence
Syntax	rnaplot(<i>RNA2ndS</i> rnaplot(<i>RNA2ndS</i> rnaplot(<i>RNA2ndS</i>	
Arguments	RNA2ndStruct	Secondary structure of an RNA sequence represented by either:String specifying bracket notationConnectivity matrix
		Tip Use the rnafold function to create <i>RNA2ndStruct</i> .
	SequenceValue	 Sequence of the RNA secondary structure being plotted, specified by either of the following: String of characters Structure containing a Sequence field that
		contains an RNA sequence This information is used in the data tip displayed
		by clicking a base in the plot of the RNA secondary structure <i>RNA2ndStruct</i> . This information is required if you specify the 'Diagram' format or if you specify to highlight any of the following paired selections: 'AU', 'UA', 'GC', 'GU' or 'UG'.

FormatValue String specifying the format of the plot. Choices are:

- 'Circle' (default)
- 'Diagram'
- 'Dotdiagram'
- 'Graph'
- 'Mountain'
- 'Tree'

Note If you specify 'Diagram', you must also use the 'Sequence' property to provide the RNA sequence. SelectionValue Either of the following:

- Numeric array specifying the indices of residues to highlight in the plot.
- String specifying the subset of residues to highlight in the plot. Choices are:
 - 'Paired'
 - 'Unpaired'
 - 'AU' or 'UA'
 - 'GC' or 'CG'
 - 'GU' or 'UG'

Note If you specify 'AU', 'UA', 'GC', 'CG', 'GU', or 'UG', you must also use the 'Sequence' property to provide the RNA sequence.

ColorByValue String specifying a color scheme for the plot. Choices are:

- 'State' (default) Color by pair state: paired bases and unpaired bases.
- 'Residue' Color by residue type (A, C, G, and U).
- 'Pair' Color by pair type (AU/UA, GC/CG, and GU/UG).

Note If you specify 'residue' or 'pair', you must also use the 'Sequence' property to provide the RNA sequence.

Note Because internal nodes of a tree correspond to paired residues, you cannot specify 'residue' if you specify 'Tree' for the 'Format' property.

Return	ha	Handle to the figure axis.
Values	H	A structure of handles containing a subset of the
		following fields, based on what you specify for the 'Selection' and 'ColorBy' properties:
		• Paired
		• Unpaired
		• A
		• C
		• G
		• U
		• AU
		• GC
		• GU
		• Selected
Description	by RNA2ndStruct	Struct) draws the RNA secondary structure specified t, the secondary structure of an RNA sequence string specifying bracket notation or a connectivity
	ha = rnaplot(R	NA2ndStruct) returns ha, a handle to the figure axis.
		lot(<i>RNA2ndStruct</i>) also returns <i>H</i> , a structure of ou can use to graph elements in a MATLAB Figure
	Tip Use the han	dles returned in <i>H</i> to change properties of the graph

elements, such as color, marker size, and marker type.

Field	Description
Paired	Handles to all paired residues
Unpaired	Handles to all unpaired residues
А	Handles to all A residues
С	Handles to all C residues
G	Handles to all G residues
U	Handles to all U residues
AU	Handles to all AU or UA pairs
GC	Handles to all GC or CG pairs
GU	Handles to all GU or UG pairs
Selected	Handles to all selected residues

H contains a subset of the following fields, based on what you specify for the 'Selection' and 'ColorBy' properties.

rnaplot(RNA2ndStruct, ...'PropertyName', PropertyValue, ...) calls rnaplot with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

rnaplot(*RNA2ndStruct*, ...'Sequence', *SequenceValue*, ...) draws the RNA secondary structure specified by *RNA2ndStruct*, and annotates it with the sequence positions supplied by *SequenceValue*, the RNA sequence specified by a string of characters or a structure containing a Sequence field.

rnaplot(*RNA2ndStruct*, ... 'Format', *FormatValue*, ...) draws the RNA secondary structure specified by *RNA2ndStruct*, using the format specified by *FormatValue*.

FormatValue is a string specifying the format of the plot. Choices are as follows.

Format	Description
'Circle' (default)	Each base is represented by a dot on the circumference of a circle of arbitrary size. Lines connect bases that pair with each other.
	$20 \\ 15 \\ 25 \\ 25 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$

<u>rnaplot</u>

Format	Description
'Diagram'	Two-dimensional representation of the RNA secondary structure. Each base is represented and identified by a letter. The backbone and hydrogen bonds between base pairs are represented by lines.
	C-U U-U-C-A C-U U-U-C-C-A C-U U-U-C-A C-U U-D-C-A C-U
	Note If you specify 'Diagram', you must also use the 'Sequence' property to provide the RNA sequence.

Format	Description
'Dotdiagram'	Two-dimensional representation of the RNA secondary structure. Each base is represented and identified by a dot. The backbone and hydrogen bonds between base pairs are represented by lines.
'Graph'	Bases are displayed in their sequence position along the abscissa (x-axis) of a graph. Semi-elliptical lines connect bases that pair with each other. The height of the lines is proportional to the distance between paired bases.
	sequence position

Format	Description
'Mountain'	Each base is represented by a dot in a two-dimensional plot, where the base position is in the abscissa (x-axis) and the number of base pairs enclosing a given base is in the ordinate (y-axis).
	$\left \begin{array}{c} 18\\ 16\\ 16\\ 12\\ 0\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$
'Tree'	Each base is represented by a node in a tree graph. Leaf nodes indicate unpaired bases, while each internal node indicates a base pair. The tre root is a fictitious node, not associated with any base in the secondary structure.
	Note To create a tree plot, you must have

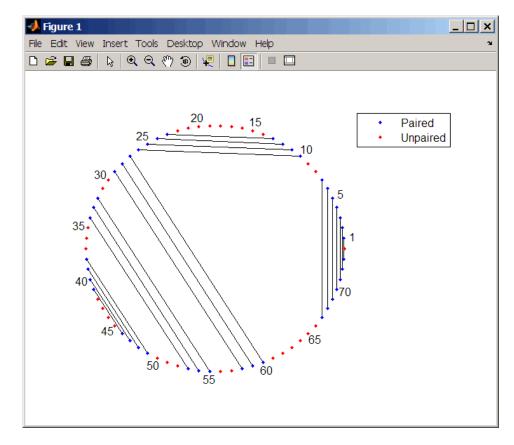
2-964

Note To create a tree plot, you must have accepted a Graphviz software license (free). If you have not, you will be prompted to do so. rnaplot(RNA2ndStruct, ...'Selection', SelectionValue, ...)
draws the RNA secondary structure specified by RNA2ndStruct,
highlighting a subset of residues specified by SelectionValue.
SelectionValue can be either:

- Numeric array specifying the indices of residues to highlight in the plot.
- String specifying the subset of residues to highlight in the plot. Choices are:
 - 'Paired'
 - 'Unpaired'
 - 'AU' or 'UA'
 - 'GC' or 'CG'
 - 'GU' or 'UG'

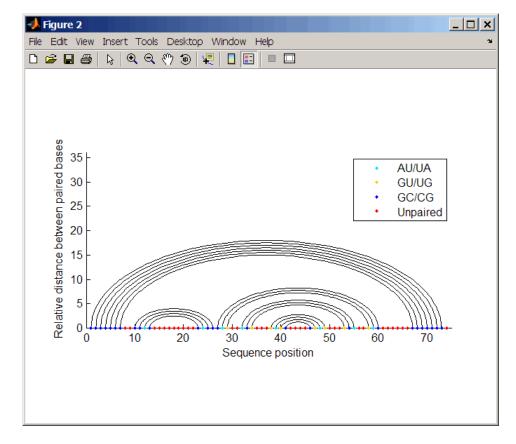
Note If you specify 'AU', 'UA', 'GC', 'CG', 'GU', or 'UG', you must also use the 'Sequence' property to provide the RNA sequence.

rnaplot(RNA2ndStruct, ...'ColorBy', ColorByValue, ...) draws the RNA secondary structure specified by RNA2ndStruct, using a color scheme specified by ColorByValue, a string indicating a color scheme. Choices are:

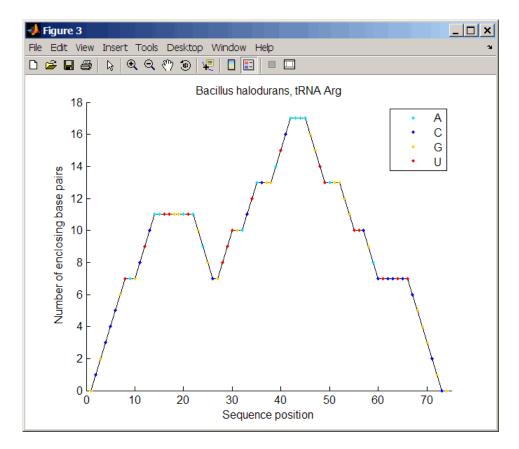

- 'State' (default) Color by pair state: paired bases and unpaired bases.
- 'Residue' Color by residue type (A, C, G, and U).
- 'Pair' Color by pair type (AU/UA, GC/CG, and GU/UG).

Note If you specify 'Residue' or 'Pair', you must also use the 'Sequence' property to provide the RNA sequence.

Note Because internal nodes of a tree correspond to paired residues, you cannot specify 'Residue' if you specify 'Tree' for the 'Format' property.

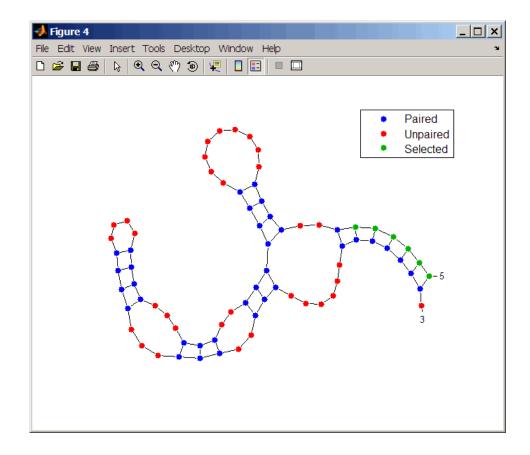

Examples 1 Determine the minimum free-energy secondary structure of an RNA sequence and plot it in circle format:

seq = 'GCGCCCGUAGCUCAAUUGGAUAGAGCGUUUGACUACGGAUCAAAAGGUUAGGGGUUCGACUCCUCUCGGGCGCG'; ss = rnafold(seq); rnaplot(ss)



2 Plot the RNA sequence secondary structure in graph format and color it by pair type.

rnaplot(ss, 'sequence', seq, 'format', 'graph', 'colorby', 'pair')




3 Plot the RNA sequence secondary structure in mountain format and color it by residue type. Use the handle to add a title to the plot.

4 Mutate the first six positions in the sequence and observe the effect the change has on the secondary structure by highlighting the first six residues.

```
seqMut = seq;
seqMut(1:6) = 'AAAAAA';
ssMut = rnafold(seqMut);
rnaplot(ss, 'sequence', seq, 'format', 'dotdiagram', 'selection', 1:6);
rnaplot(ssMut, 'sequence', seqMut, 'format', 'dotdiagram', 'selection', 1:6);
```


Tip If necessary, click-drag the legend to prevent it from covering the plot. Click a base in the plot to display a data tip with information on that base.

See Also Bioinformatics Toolbox functions: rnaconvert, rnafold

samplealign

Purpose	Align two data sets containing sequential observations by introducing gaps
Syntax	<pre>[I, J] = samplealign(X, Y) [I, J] = samplealign(X, Y,'Band', BandValue,) [I, J] = samplealign(X, Y,'Width', WidthValue,) [I, J] = samplealign(X, Y,'Gap', GapValue,) [I, J] = samplealign(X, Y,'Quantile', QuantileValue,) [I, J] = samplealign(X, Y,'Distance', DistanceValue,) [I, J] = samplealign(X, Y,'Weights', WeightsValue,)</pre>
	<pre>[I, J] = samplealign(X, Y,'ShowConstraints', ShowConstraintsValue,) [I, J] = samplealign(X, Y,'ShowNetwork', ShowNetworkValue,) [I, J] = samplealign(X, Y,'ShowAlignment', ShowAlignmentValue,)</pre>

Arg	ume	ents

Х, Ү

BandValue

Matrices of data where rows correspond to observations or samples, and columns correspond to features or dimensions. X and Y can have a different number of rows, but they must have the same number of columns. The first column is the reference dimension and must contain unique values in ascending order. The reference dimension could contain sample indices of the observations or a measurable value, such as time.

Either of the following:

- Scalar.
- Function specified using @(z), where z is the mid-point between a given observation in one data set and a given observation in the other data set.

BandValue specifies a maximum allowable distance between observations (along the reference dimension only) in the two data sets, thus limiting the number of potential matches between observations in two data sets. If S is the value in the reference dimension for a given observation (row) in one data set, then that observation is matched only with observations in the other data set whose values in the reference dimension fall within $S \pm BandValue$. Then, only these potential matches are passed to the algorithm for further scoring. Default BandValue is Inf.

WidthValue

Either of the following:

- Two-element vector, [U, V]
- Scalar that is used for both U and V

WidthValue limits the number of potential matches between observations in two data sets; that is, each observation in X is scored to the closest U observations in Y, and each observation in Y is scored to the closest V observations in X. Then, only these potential matches are passed to the algorithm for further scoring. Closeness is measured using only the first column (reference dimension) in each data set. Default is Inf if 'Band' is specified; otherwise default is 10.

GapValue

Any of the following:

- Cell array, {G, H}, where G is either a scalar or a function handle specified using @(X), and H is either a scalar or a function handle specified using @(Y). The functions @(X) and @(Y) must calculate the penalty for each observation (row) when it is matched to a gap in the other data set. The functions @(X) and @(Y) must return a column vector with the same number of rows as X or Y, containing the gap penalty for each observation (row).
- Single function handle specified using $\mathcal{Q}(Z)$, which is used for both *G* and *H*. The function $\mathcal{Q}(Z)$ must calculate the penalty for each observation (row) in both *X* and *Y* when it is matched to a gap in the other data set. The function $\mathcal{Q}(Z)$ must take as arguments *X* and *Y*. The function $\mathcal{Q}(Z)$ must return a column vector with the same number of rows as *X* or *Y*, containing the gap penalty for each observation (row).
- Scalar that is used for both *G* and *H*.

GapValue specifies the position-dependent terms for assigning gap penalties. The calculated value, GPX, is the gap penalty for matching observations from the first data set X to gaps inserted in the second data set Y, and is the product of two terms: $GPX = G^*$ QMS. The term G takes its value as a function of the observations in X. Similarly, GPY is the gap penalty for matching observations from Y to gaps inserted in X, and is the product of two terms: GPY = H * QMS. The term *H* takes its value as a function of the observations in Y. By default, the term QMS is the 0.75 quantile of the score for the pairs of observations that are potential matches 2 - 975(that is, pairs that comply with the 'Band' and 'Width' constraints). Default GapValue is 1

DistanceValue

Function handle specified using @(R,S). The function @(R,S) must:

- Calculate the distance between pairs of observations that are potential matches.
- Take as arguments, *R* and *S*, matrices that have the same number of rows and columns, and whose paired rows represent all potential matches of observations in *X* and *Y* respectively.
- Return a column vector of positive values with the same number of elements as rows in *R* and *S*.

Default is the Euclidean distance between the pairs.

Caution All columns in *X* and *Y*, including the reference dimension, are considered when calculating distances. If you do not want to include the reference dimension in the distance calculations, use the 'Weight' property to exclude it.

WeightsValue

Either of the following:

- Logical row vector with the same number of elements as columns in X and Y, that specifies columns in X and Y.
- Numeric row vector with the same number of elements as columns in X and Y, that specifies the relative weights of the columns (features).

This property controls the inclusion/exclusion of columns (features) or the emphasis of columns (features) when calculating the distance score between observations that are potential matches, that is, when using the 'Distance' property. Default is a logical row vector with all elements set to true.

Tip Using a numeric row vector for *WeightsValue* and setting some values to 0 can simplify the distance calculation when the data sets have many columns (features).

Note The weight values are not considered when using the 'Band', 'Width', or 'Gap' property.

	ShowConstraintsValue	Controls the display of the search space constrained by the specified 'Band' and 'Width' input parameters, thereby giving an indication of the memory required to run the algorithm with the specific 'Band' and 'Width' parameters on your data sets. Choices are true or false (default).
	ShowNetworkValue	Controls the display of the dynamic programming network, the match scores, the gap penalties, and the winning path. Choices are true or false (default).
	ShowAlignmentValue	Controls the display of the first and second columns of the X and Y data sets in the abscissa and the ordinate respectively, of a two-dimensional plot. Choices are true, false (default), or an integer specifying a column of the X and Y data sets to plot as the ordinate.
Return Values	Ι	Column vector containing indices of rows (observations) in X that match to a row (observation) in Y. Missing indices indicate that row (observation) is matched to a gap.
	J	Column vector containing indices of rows (observations) in Y that match to a row (observation) in X. Missing indices indicate that row (observation) is matched to a gap.
Description	[I, J] = samplealign(X, Y) aligns the observations in two matrices

Description [I, J] = samplealign(X, Y) aligns the observations in two matrices of data, X and Y, by introducing gaps. X and Y are matrices of data where rows correspond to observations or samples, and columns correspond to features or dimensions. X and Y can have different number of rows, but must have the same number of columns. The first column is the

reference dimension and must contain unique values in ascending order. The reference dimension could contain sample indices of the observations or a measurable value, such as time. The samplealign function uses a dynamic programming algorithm to minimize the sum of positive scores resulting from pairs of observations that are potential matches and the penalties resulting from the insertion of gaps. Return values *I* and *J* are column vectors containing indices that indicate the matches for each row (observation) in *X* and *Y* respectively.

Tip If you do not specify return values, samplealign does not run the dynamic programming algorithm. Running samplealign without return values, but setting the 'ShowConstraints', 'ShowNetwork', or 'ShowAlignment' property to true, lets you explore the constrained search space, the dynamic programming network, or the aligned observations, without running into potential memory problems.

[I, J] = samplealign(X, Y, ...'PropertyName',

PropertyValue, ...) calls samplealign with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

 $[I, J] = \text{samplealign}(X, Y, \ldots 'Band', BandValue, \ldots)$ specifies a maximum allowable distance between observations (along the reference dimension only) in the two data sets, thus limiting the number of potential matches between observations in the two data sets. If S is the value in the reference dimension for a given observation (row) in one data set, then that observation is matched only with observations in the other data set whose values in the reference dimension fall within $S \pm BandValue$. Then, only these potential matches are passed to the algorithm for further scoring. BandValue can be a scalar or a function specified using @(z), where z is the mid-point between a given observation in one data set and a given observation in the other data set. Default BandValue is Inf. This constraint reduces the time and memory complexity of the algorithm from O(MN) to $O(sqrt(MN)^*K)$, where *M* and *N* are the number of observations in *X* and *Y* respectively, and *K* is a small constant such that *K*<<*M* and *K*<<*N*. Adjust *BandValue* to the maximum expected shift between the reference dimensions in the two data sets, that is, between *X*(:,1) and *Y*(:,1).

 $[I, J] = \text{samplealign}(X, Y, \ldots'Width', WidthValue, \ldots)$ limits the number of potential matches between observations in two data sets; that is, each observation in X is scored to the closest U observations in Y, and each observation in Y is scored to the closest V observations in X. Then, only these potential matches are passed to the algorithm for further scoring. WidthValue is either a two-element vector, [U, V] or a scalar that is used for both U and V. Closeness is measured using only the first column (reference dimension) in each data set. Default is Inf if 'Band' is specified; otherwise default is 10.

This constraint reduces the time and memory complexity of the algorithm from O(MN) to O(sqrt(MN)*sqrt(UV)), where *M* and *N* are the number of observations in *X* and *Y* respectively, and *U* and *V* are small such that U << M and V << N.

Note If you specify both 'Band' and 'Width', only pairs of observations that meet both constraints are considered potential matches and passed to the algorithm for scoring.

Tip Specify 'Width' when you do not have a good estimate for the 'Band' property. To get an indication of the memory required to run the algorithm with specific 'Band' and 'Width' parameters on your data sets, run samplealign, but do not specify return values and set 'ShowConstraints' to true.

 $[I, J] = \text{samplealign}(X, Y, \dots '\text{Gap'}, GapValue, \dots)$ specifies the position-dependent terms for assigning gap penalties.

GapValue is any of the following:

- Cell array, {G, H}, where G is either a scalar or a function handle specified using @(X), and H is either a scalar or a function handle specified using @(Y). The functions @(X) and @(Y) must calculate the penalty for each observation (row) when it is matched to a gap in the other data set. The functions @(X) and @(Y) must return a column vector with the same number of rows as X or Y, containing the gap penalty for each observation (row).
- Single function handle specified using @(Z), that is used for both G and H. The function @(Z) must calculate the penalty for each observation (row) in both X and Y when it is matched to a gap in the other data set. The function @(Z) must take as arguments X and Y. The function @(Z) must return a column vector with the same number of rows as X or Y, containing the gap penalty for each observation (row).
- Scalar that is used for both G and H.

The calculated value, *GPX*, is the gap penalty for matching observations from the first data set X to gaps inserted in the second data set Y, and is the product of two terms: GPX = G * QMS. The term G takes its value as a function of the observations in X. Similarly, *GPY* is the gap penalty for matching observations from Y to gaps inserted in X, and is the product of two terms: GPY = H * QMS. The term H takes its value as a function of the observations in Y. By default, the term QMS is the 0.75 quantile of the score for the pairs of observations that are potential matches (that is, pairs that comply with the 'Band' and 'Width' constraints).

If G and H are positive scalars, then GPX and GPY are independent of the observation where the gap is being inserted.

Default *GapValue* is 1, that is, both *G* and *H* are 1, which indicates that the default penalty for gap insertions in both sequences is equivalent to the quantile (set by the 'Quantile' property, default = 0.75) of the score for the pairs of observations that are potential matches.

Note *GapValue* defaults to a relatively safe value. However, the success of the algorithm depends on the fine tuning of the gap penalties, which is application dependent. When the gap penalties are large relative to the score of the correct matches, samplealign returns alignments with fewer gaps, but with more incorrectly aligned regions. When the gap penalties are smaller, the output alignment contains longer regions with gaps and fewer matched observations. Set 'ShowNetwork' to true to compare the gap penalties to the score of matched observations in different regions of the alignment.

[I, J] = samplealign(X, Y, ...'Quantile', *QuantileValue*, ...) specifies the quantile value used to calculate the term *QMS*, which is used by the 'Gap' property to calculate gap penalties. *QuantileValue* is a scalar between 0 and 1. Default is 0.75.

Tip Set *QuantileValue* to an empty array ([]) to make the gap penalities independent of *QMS*, that is, *GPX* and *GPY* are functions of only the *G* and *H* input parameters respectively.

 $[I, J] = \text{samplealign}(X, Y, \dots '\text{Distance'}, DistanceValue, \dots)$ specifies a function to calculate the distance between pairs of observations that are potential matches. DistanceValue is a function handle specified using @(R,S). The function @(R,S) must take as arguments, R and S, matrices that have the same number of rows and columns, and whose paired rows represent all potential matches of observations in X and Y respectively. The function @(R,S) must return a column vector of positive values with the same number of elements as rows in R and S. Default is the Euclidean distance between the pairs.

Caution

All columns in X and Y, including the reference dimension, are considered when calculating distances. If you do not want to include the reference dimension in the distance calculations, use the 'Weight' property to exclude it.

[I, J] = samplealign(X, Y, ... 'Weights', WeightsValue, ...)
controls the inclusion/exclusion of columns (features) or the emphasis
of columns (features) when calculating the distance score between
observations that are potential matches, that is when using the
'Distance' property. WeightsValue can be a logical row vector that
specifies columns in X and Y. WeightsValue can also be a numeric row
vector with the same number of elements as columns in X and Y, that
specifies the relative weights of the columns (features). Default is a
logical row vector with all elements set to true.

Tip Using a numeric row vector for *WeightsValue* and setting some values to 0 can simplify the distance calculation when the data sets have many columns (features).

Note The weight values are not considered when computing the constrained alignment space, that is when using the 'Band' or 'Width' properties, or when calculating the gap penalties, that is when using the 'Gap' property.

```
[I, J] = samplealign(X, Y, ...'ShowConstraints',
ShowConstraintsValue, ...) controls the display of the search space
constrained by the input parameters 'Band' and 'Width', giving an
indication of the memory required to run the algorithm with specific
```

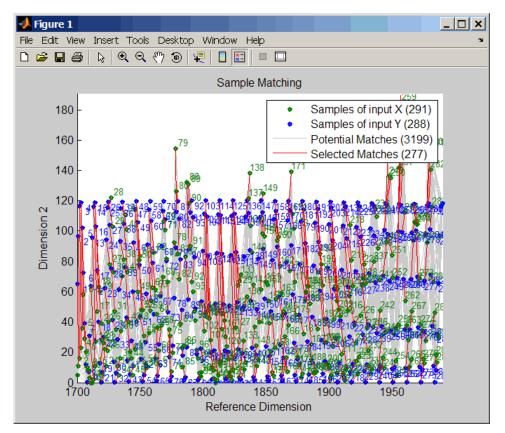
'Band' and 'Width' on your data sets. Choices are true or false (default).

[I, J] = samplealign(X, Y, ...'ShowNetwork', ShowNetworkValue, ...) controls the display of the dynamic programming network, the match scores, the gap penalties, and the winning path. Choices are true or false (default).

[I, J] = samplealign(X, Y, ...'ShowAlignment', ShowAlignmentValue, ...) controls the display of the first and second columns of the X and Y data sets in the abscissa and the ordinate respectively, of a two-dimensional plot. Links between all the potential matches that meet the constraints are displayed, and the matches belonging to the output alignment are highlighted. Choices are true, false (default), or an integer specifying a column of the X and Y data sets to plot as the ordinate.

Examples Warping a sine wave with a smooth function to more closely follow cyclical sunspot activity

1 Load sunspot.dat, a data file included with the MATLAB software, that contains the variable sunspot, which is a two-column matrix containing variations in sunspot activity over the last 300 years. The first column is the reference dimension (years), and the second column contains sunspot activity values. Sunspot activity is cyclical, reaching a maximum about every 11 years.

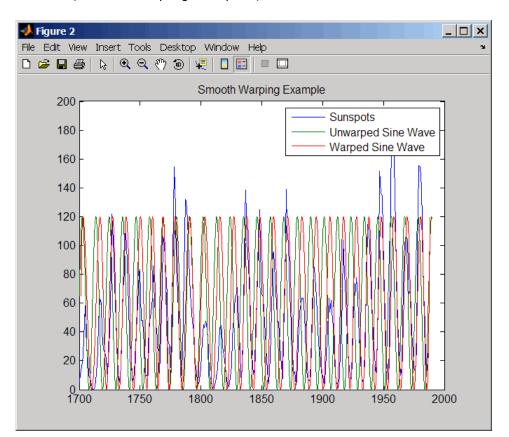

load sunspot.dat

2 Create a sine wave with a known period of sunspot activity.

```
years = (1700:1990)';
T = 11.038;
f = @(y) 60 + 60 * sin(y*(2*pi/T));
```

3 Align the observations between the sine wave and the sunspot activity by introducing gaps.

[i,j] = samplealign([years f(years)],sunspot,'weights',... [0 1],'showalignment',true);


4 Estimate a smooth function to warp the sine wave.

[p,s,mu] = polyfit(years(i),years(j),15); wy = @(y) polyval(p,(y-mu(1))./mu(2));

5 Plot the sunspot cycles, unwarped sine wave, and warped sine wave.

years = (1700:1/12:1990)';

```
figure
plot(sunspot(:,1),sunspot(:,2),years,f(years),wy(years),...
f(years))
legend('Sunspots','Unwarped Sine Wave','Warped Sine Wave')
title('Smooth Warping Example')
```


Recovering a nonlinear warping between two signals containing noisy Gaussian peaks

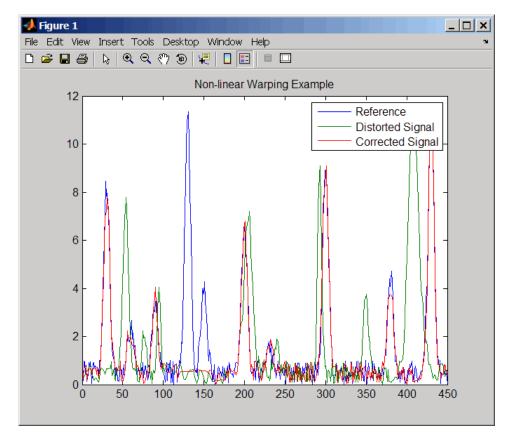
1 Create two signals with noisy Gaussian peaks.

```
rand('twister',5489)
peakLoc = [30 60 90 130 150 200 230 300 380 430];
peakInt = [7 1 3 10 3 6 1 8 3 10];
time = 1:450;
comp = exp(-(bsxfun(@minus,time,peakLoc')./5).^2);
sig_1 = (peakInt + rand(1,10)) * comp + rand(1,450);
sig_2 = (peakInt + rand(1,10)) * comp + rand(1,450);
```

2 Define a nonlinear warping function.

wf = $@(t) 1 + (t \le 100) \cdot 0.01 \cdot (t \cdot 2) + (t \ge 100) \cdot ...$ (310+150*tanh(t./100-3));

3 Warp the second signal to distort it.

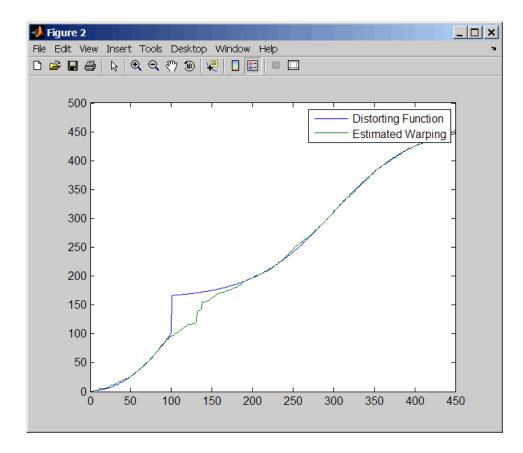

sig_2 = interp1(time,sig_2,wf(time),'pchip');

4 Align the observations between the two signals by introducing gaps.

[i,j] = samplealign([time;sig_1]',[time;sig_2]',... 'weights',[0,1],'band',35,'quantile',.5);

5 Plot the reference signal, distorted signal, and warped (corrected) signal.

```
figure
sig_3 = interp1(time,sig_2,interp1(i,j,time,'pchip'),'pchip');
plot(time,sig_1,time,sig_2,time,sig_3)
legend('Reference','Distorted Signal','Corrected Signal')
title('Non-linear Warping Example')
```



6 Plot the real and the estimated warping functions.

```
figure
```

plot(time,wf(time),time,interp1(j,i,time,'pchip'))
legend('Distorting Function','Estimated Warping')

samplealign

Note For examples of using function handles for the Band, Gap, and Distance properties, see the demo Visualizing and Preprocessing Hyphenated Mass-Spectrometry Data Sets for Metabolite and Protein/Peptide Profiling.

References

[1] Myers, C.S. and Rabiner, L.R. (1981). A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell System Technical Journal *60*:7, 1389–1409.

[2] Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoustics, Speech and Signal Processing *ASSP-26(1)*, 43–49.

See Also Bioinformatics Toolbox functions: msalign, msheatmap, mspalign, msppresample, msresample

Purpose	Read trace data from SCF file		
Syntax	<pre>Sample = scfread('File') [Sample, Probability] = scfread('File') [Sample, Probability, Comments] = scfread('File') [A, C, T, G] = scfread ('File') [A, C, T, G, ProbA, ProbC, ProbG, ProbT] = scfread ('File') [A, C, T, G, ProbA, ProbC, ProbG, ProbT, Comments, PkIndex, Base] = scfread ('File')</pre>		
Arguments	<i>File</i> SCF formatted file. Enter a file name or a path and file name.		
Description	scfread reads data from an SCF formatted file into MATLAB structures.		
	<pre>Sample = scfread('File') reads an SCF formatted file and returns the sample data in the structure Sample, which contains the following</pre>		

 Field
 Description

 A
 Column vector containing intensity of A fluorescence tag

 C
 Column vector containing intensity of C fluorescence tag

 G
 Column vector containing intensity of G fluorescence tag

	tag
Т	Column vector containing intensity of T fluorescence tag

[Sample, Probability] = scfread('File') also returns the probability data in the structure Probability, which contains the following fields:

Field	Description
peak_index	Column vector containing the position in the SCF file for the start of the data for each peak
prob_A	Column vector containing the probability of each base in the sequence being an A
prob_C	Column vector containing the probability of each base in the sequence being a C
prob_G	Column vector containing the probability of each base in the sequence being a G
prob_T	Column vector containing the probability of each base in the sequence being a T
base	Column vector containing the called bases for the sequence

[Sample, Probability, Comments] = scfread('File') also returns the comment information from the SCF file in a character array Comments.

[A, C, T, G] = scfread ('File') returns the sample data for the four bases in separate variables.

[A, C, T, G, ProbA, ProbC, ProbG, ProbT] = scfread ('File') also returns the probabilities data for the four bases in separate variables.

[A, C, T, G, ProbA, ProbC, ProbG, ProbT, Comments, PkIndex, Base] = scfread ('File') also returns the peak indices and called bases in separate variables.

SCF files store data from DNA sequencing instruments. Each file includes sample data, sequence information, and the relative probabilities of each of the four bases. For more information on SCF files, see

http://www.mrc-lmb.cam.ac.uk/pubseq/manual/formats_unix_2.html

```
Examples
                    [sampleStruct, probStruct, Comments] = scfread('sample.scf')
                    sampleStruct =
                        A: [10827x1 double]
                        C: [10827x1 double]
                        G: [10827x1 double]
                        T: [10827x1 double]
                    probStruct =
                        peak index: [742x1 double]
                            prob A: [742x1 double]
                            prob_C: [742x1 double]
                            prob G: [742x1 double]
                            prob T: [742x1 double]
                               base: [742x1 char]
                    Comments =
                    SIGN=A=121, C=103, G=119, T=82
                    SPAC= 16.25
                    PRIM=0
                    MACH=Arkansas SN312
                    DYEP=DT3700P0P5{BD}v2.mob
                    NAME=HCIUP1D61207
                    LANE=6
                    GELN=
                    PROC=
                    RTRK=
                    CONV=phred version=0.990722.h
                    COMM=
                    SRCE=ABI 373A or 377
See Also
                  Bioinformatics Toolbox functions: genbankread, traceplot
```

seq2regexp

Purpose	Convert sequence with ambiguous characters to regular expression		
Syntax	<pre>RegExp = seq2regexp(Seq) RegExp = seq2regexp(Seq,'Alphabet', AlphabetValue,) RegExp = seq2regexp(Seq,'Ambiguous', AmbiguousValue,)</pre>		
Arguments	Seq	Either of the following:	
		• Character string of codes specifying an amino acid or nucleotide sequence.	
		• Structure containing a Sequence field that contains an amino acid or nucleotide sequence, such as returned by fastaread, getembl, getgenbank, getgenpept, or getpdb.	
	AlphabetValue	String specifying the sequence alphabet. Choices are:	
		• 'NT' (default) — Nucleotide	
		'AA' — Amino acid	
	AmbiguousValue	Controls whether ambiguous characters are included in <i>RegExp</i> , the regular expression return value. Choices are:	
		 true (default) — Include ambiguous characters in the return value 	
		• false — Return only unambiguous characters	
Return Values	RegExp	Character string of codes specifying an amino acid or nucleotide sequence in regular expression format using IUB/IUPAC codes.	

Description RegExp = seq2regexp(Seq) converts ambiguous amino acid or nucleotide symbols in a sequence to a regular expression format using IUB/IUPAC codes.

RegExp = seq2regexp(Seq, ... 'PropertyName', PropertyValue, ...) calls seq2regexp with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

RegExp = seq2regexp(Seq, ...'Alphabet', AlphabetValue, ...)
specifies the sequence alphabet. AlphabetValue can be either 'NT' for
nucleotide sequences or 'AA' for amino acid sequences. Default is 'NT'.

RegExp = seq2regexp(Seq, ...'Ambiguous', AmbiguousValue, ...) controls whether ambiguous characters are included in RegExp, the regular expression return value. Choices are true (default) or false. For example:

- If Seq = 'ACGTK', and AmbiguousValue is true, the MATLAB software returns ACGT[GTK] with the unambiguous characters G and T and the ambiguous character K.
- If Seq = 'ACGTK', and AmbiguousValue is false, the MATLAB software returns ACGT[GT] with only the unambiguous characters.

Nucleotide Conversions

Nucleotide Code	Nucleotide	Conversion
A	Adenosine	A
С	Cytosine	С
G	Guanine	G
Т	Thymidine	Т
U	Uridine	U

Nucleotide Conversions (Continued)

Nucleotide Code	Nucleotide	Conversion
R	Purine	[AG]
Y	Pyrimidine	[TC]
К	Keto	[GT]
М	Amino	[AC]
S	Strong interaction (3 H bonds)	[GC]
W	Weak interaction (2 H bonds)	[AT]
В	Not A	[CGT]
D	Not C	[AGT]
Н	Not G	[ACT]
V	Not T or U	[ACG]
Ν	Any nucleotide	[ACGT]
-	Gap of indeterminate length	-
?	Unknown	?

Amino Acid Conversion

Amino Acid Code	Amino Acid	Conversion
В	Asparagine or Aspartic acid (Aspartate)	[DN]

Amino Acid Conversion (Continued)

Amino Acid Code	Amino Acid	Conversion
Z	Glutamine or Glutamic acid (Glutamate)	[EQ]
Х	Any amino acid	[A R N D C Q E G H I L K M F P S T W Y V]

Example 1 Convert a nucleotide sequence into a regular expression.
 seq2regexp('ACWTMAN')
 ans =
 AC[ATW]T[ACM]A[ACGTRYKMSWBDHVN]
2 Convert the same nucleotide sequence, but remove ambiguous
 characters from the regular expression.
 seq2regexp('ACWTMAN', 'ambiguous', false)
 ans =
 AC[AT]T[AC]A[ACGT]

See Also Bioinformatics Toolbox functions: restrict, seqwordcount MATLAB functions: regexp, regexpi

seqcomplement

Purpose	Calculate complementary strand of nucleotide sequence		
Syntax	<pre>SeqC = seqcomplement(SeqNT)</pre>		
Arguments	SeqNT	Enter either a character string with the characters A, T (U), G, C, and ambiguous characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of integers. You can also enter a structure with the field Sequence.	
Description	SeqC = seqcomplement(SeqNT) calculates the complementary strand (A->T, C->G, G->C, T->A) of a DNA sequence and returns a sequence in the same format as SeqNT. For example, if SeqNT is an integer sequence then so is SeqC.		
Example	Return the com s = 'ATCG' seqcomplem ans = TAGC	•	
See Also	Bioinformatics seqtool	Toolbox functions: seqrcomplement, seqreverse,	

Purpose	Calculate consensus sequence		
Syntax		consensus(Seqs)	
Arguments	Seqs	Set of multiply aligned amino acid or nucleotide sequences. Enter an array of strings, a cell array of strings, or an array of structures with the field Sequence.	
	Profile	Sequence profile. Enter a profile from the function seqprofile. Profile is a matrix of size [20 (or 4) x Sequence Length] with the frequency or count of amino acids (or nucleotides) for every position. Profile can also have 21 (or 5) rows if gaps are included in the consensus.	
	ScoringMatrixValue	Scoring matrix. The default value is BLOSUM50 for amino acid sequences or NUC44 for nucleotide sequences. ScoringMatrix can also be a 21x21, 5x5, 20x20, or 4x4 numeric array. For the gap-included cases, gap scores (last row/column) are set to mean(diag(ScoringMatrix)) for a gap matching with another gap, and set to mean(nodiag(ScoringMatrix)) for a gap matching with another symbol	
Description	(Seqs), returns a string frequency of symbols (2	(<i>Seqs</i>), for a multiply aligned set of sequences g with the consensus sequence (<i>CSeq</i>). The 20 amino acids, 4 nucleotides) in the set of d with the function seqprofile. For ambiguous	

nucleotide or amino acid symbols, the frequency or count is added to	
the standard set of symbols.	

[CSeq, Score] = seqconsensus(Seqs) returns the conservation score of the consensus sequence. Scores are computed with the scoring matrix BLOSUM50 for amino acids or NUC44 for nucleotides. Scores are the average euclidean distance between the scored symbol and the M-dimensional consensus value. M is the size of the alphabet. The consensus value is the profile weighted by the scoring matrix.

CSeq = seqconsensus(Profile) returns a string with the consensus sequence (CSeq) from a sequence profile (Profile).

seqconsensus(..., 'PropertyName', PropertyValue,...) defines
optional properties using property name/value pairs.

seqconsensus(..., 'ScoringMatrix', ScoringMatrixValue)
specifies the scoring matrix.

The following input parameters are analogous to the function seqprofile when the alphabet is restricted to 'AA' or 'NT'.

seqconsensus(..., 'Alphabet', AlphabetValue)
seqconsensus(..., 'Gaps', GapsValue)
seqconsensus(..., 'Ambiguous', AmbiguousValue)
seqconsensus(..., 'Limits', LimitsValue)

Examples seqs = fastaread('pf00002.fa'); [C,S] = seqconsensus(seqs,'limits',[50 60],'gaps','all')

See Also Bioinformatics Toolbox functions: fastaread, multialignread, multialignwrite, profalign, seqdisp, seqprofile

Purpose	Format long sequence output for easy viewing	
Syntax	<pre>seqdisp(Seq) seqdisp(Seq,'Row', RowValue,) seqdisp(Seq,'Column', ColumnValue,) seqdisp(Seq,'ShowNumbers', ShowNumbersValue,)</pre>	
Arguments	Seq	Nucleotide or amino acid sequence represented by any of the following:
		Character arrayFASTA file nameMATLAB structure with the field Sequence
		Multiply aligned sequences are allowed. FASTA files can have the file extension fa, fasta, fas, fsa, or fst.
	RowValue	Integer that specifies the length of each row. Default is 60.
	ColumnValue	Integer that specifies the column width or number of symbols before displaying a space. Default is 10.
	ShowNumbersValue	Controls the display of numbers at the start of each row. Choices are true (default) to show numbers, or false to hide numbers.
Description	seqdisp(Seq) displa 60 and a default colu	ays a sequence in rows, with a default row length of umn width of 10.
	<pre>seqdisp(Seq, 'PropertyName', PropertyValue,) calls seqdisp with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each</pre>	

PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

seqdisp(Seq, ... 'Row', RowValue, ...) specifies the length of each
row for the displayed sequence.

seqdisp(Seq, ...'Column', ColumnValue, ...) specifies the
number of letters to display before adding a space. RowValue must be
larger than and evenly divisible by ColumnValue.

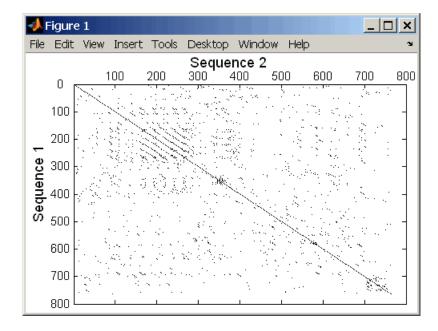
seqdisp(Seq, ...'ShowNumbers', ShowNumbersValue, ...)
controls the display of numbers at the start of each row. Choices are
true (default) to show numbers, or false to hide numbers.

Examples Read sequence information from the GenBank database. Display the sequence in rows with 50 letters, and within a row, separate every 10 letters with a space.

```
mouseHEXA = getgenbank('AK080777');
seqdisp(mouseHEXA, 'Row', 50, 'Column', 10)
```

Create and save a FASTA file with two sequences, and then display it.

```
hdr = ['Sequence A'; 'Sequence B'];
seq = ['TAGCTGRCCAAGGCCAAGCGAGCTTN';'ATCGACYGGTTCCGGTTCGCTCGAAN']
fastawrite('local.fa', hdr, seq);
seqdisp('local.fa', 'ShowNumbers', false')
ans =
>Sequence A
```


```
1 TAGCTGRCCA AGGCCAAGCG AGCTTN
```

```
>Sequence B
```

```
1 ATCGACYGGT TCCGGTTCGC TCGAAN
```

```
See Also Bioinformatics Toolbox functions: multialignread, multialignwrite, seqconsensus, seqlogo, seqprofile, seqshoworfs, seqshowwords, seqtool, getgenbank
```

Purpose	Create dot plot of two sequences		
Syntax	<pre>seqdotplot (Seq1, Seq2) seqdotplot(Seq1,Seq2, Window, Number) Matches = seqdotplot() [Matches, Matrix] = seqdotplot()</pre>		
Arguments	Seq1, Seq2 Nucleotide or amino acid sequences. Enter two character strings. Do not enter a vector integers. You can also enter a structure with field Sequence.		
	Window	Enter an integer for the size of a window.	
	Number	Enter an integer for the number of characters within the window that match.	
Description	seqdotplot (Seq1 , Seq2) plots a figure that visualizes the match between two sequences.		
	<pre>seqdotplot(Seq1,Seq2, Window, Number) plots sequence matches when there are at least Number matches in a window of size Window.</pre>		
	When plotting nucleotide sequences, start with a Window of 11 and Number of 7.		
	<i>Matches</i> = seqdotplot() returns the number of dots in the dot plot matrix.		
	[<i>Matches, Matrix</i>] = seqdotplot() returns the dot plot as a sparse matrix.		
Examples	This example shows the similarities between the prion protein (PrP) nucleotide sequences of two ruminants, the moufflon and the golden takin.		
	<pre>moufflon = getgenbank('AB060288','Sequence',true); takin = getgenbank('AB060290','Sequence',true);</pre>		

seqdotplot(moufflon,takin,11,7)

Note For the correct interpretation of a dot plot, your monitor's display resolution must be able to contain the sequence lengths. If the resolution is not adequate, seqdotplot resizes the image and returns a warning.

```
Matches = seqdotplot(moufflon,takin,11,7)
Matches =
5552
```

[Matches, Matrix] = seqdotplot(moufflon,takin,11,7)

See Also Bioinformatics Toolbox functions: nwalign, swalign

Purpose	Insert gaps into nucleotide or amino acid sequence		
Syntax	NewSeq = seqinsertgaps(Seq, Positions) NewSeq = seqinsertgaps(Seq, GappedSeq) NewSeq = seqinsertgaps(Seq, GappedSeq, Relationship)		
Arguments	Seq	Either of the following:String specifying a nucleotide or amino acid sequence	
		• MATLAB structure containing a Sequence field	
	Positions	Vector of integers to specify the positions in <i>Seq</i> before which to insert a gap.	
	GappedSeq	Either of the following:String specifying a nucleotide or amino acid sequence	
		• MATLAB structure containing a Sequence field	
	Relationship	Integer specifying the relationship between <i>Seq</i> and <i>GappedSeq</i> . Choices are:	
		• 1 — Both sequences use the same alphabet, that is both are nucleotide sequences or both are amino acid sequences.	
		• 3 — Seq contains nucleotides representing codons and <i>GappedSeq</i> contains amino acids (default).	
Return Values	NewSeq	Sequence with gaps inserted, represented by a string specifying a nucleotide or amino acid sequence.	

Description	NewSeq = seqinsertgaps(Seq, Positions) inserts gaps in the sequence Seq before the positions specified by the integers in the vector Positions.			
	<i>NewSeq</i> = seqinsertgaps(<i>Seq</i> , <i>GappedSeq</i>) finds the gap positions in the sequence <i>GappedSeq</i> , then inserts gaps in the corresponding positions in the sequence <i>Seq</i> .			
	NewSeq = seqinsertgaps(Seq, GappedSeq, Relationship) specifies the relationship between Seq and GappedSeq. Enter 1 for Relationship when both sequences use the same alphabet, that is both are nucleotide sequences or both are amino acid sequences. Enter 3 for Relationship when Seq contains nucleotides representing codons and GappedSeq contains amino acids. Default is 3.			
Examples	Retrieve two nucleotide sequences from the GenBank database for the neuraminidase (NA) protein of two strains of the Influenza A virus (H5N1).			
	hk01 = getgenbank('AF509094'); vt04 = getgenbank('DQ094287');			
	2 Extract the coding region from the two nucleotide sequences.			
	hk01_cds = featuresparse(hk01,'feature','CDS','Sequence',true); vt04_cds = featuresparse(vt04,'feature','CDS','Sequence',true);			
	3 Align the amino acids sequences converted from the nucleotide sequences.			
	[sc,al]=nwalign(nt2aa(hkO1_cds),nt2aa(vtO4_cds),'extendgap',1);			
	4 Use the seqinsertgaps function to copy the gaps from the aligned amino acid sequences to their corresponding nucleotide sequences, thus codon-aligning them.			
	hk01_aligned = seqinsertgaps(hk01_cds,al(1,:)) vt04_aligned = seqinsertgaps(vt04_cds,al(3,:))			

5 Once you have code aligned the two sequences, you can use them as input to other functions such as dnds, which calculates the synonymous and nonsynonymous substitutions rates of the codon-aligned nucleotide sequences. By setting Verbose to true, you can also display the codons considered in the computations and their amino acid translations.

```
[dn,ds] = dnds(hk01_aligned,vt04_aligned,'verbose',true)
```

See Also Bioinformatics Toolbox functions: dnds, dndsml, int2aa, int2nt

seqlinkage

Purpose	Construct phylogenetic tree from pairwise distances	
Syntax	Tree = seqlinkage(Dist) Tree = seqlinkage(Dist, Method) Tree = seqlinkage(Dist, Method, Names)	
Arguments	Dist Matrix or vector of pairwise distances, such as returned by the seqpdist function.	
	Method	String that specifies a distance method. Choices are:
		• 'single'
		• 'complete'
		• 'average' (default)
		• 'weighted'
		• 'centroid'
		• 'median'
	Names	Property to use alternative labels for leaf nodes. Enter a vector of structures, with the fields 'Header' or 'Name', or a cell array of strings. In both cases the number of elements you provide must comply with the number of samples used to generate the pairwise distances in <i>Dist</i> .
Description	Tree = seglinkage(Dist) returns a phylogenetic tree object from	

Description Tree = seqlinkage(Dist) returns a phylogenetic tree object from the pairwise distances, Dist, between the species or products. Dist is a matrix or vector of pairwise distances, such as returned by the seqpdist function.

Tree = seqlinkage(Dist, Method) creates a phylogenetic tree object
using a specified patristic distance method. The available methods are:

'single'	Nearest distance (single linkage method)
'complete'	Furthest distance (complete linkage method)
'average' (default)	Unweighted Pair Group Method Average (UPGMA, group average).
'weighted'	Weighted Pair Group Method Average (WPGMA)
'centroid'	Unweighted Pair Group Method Centroid (UPGMC)
'median'	Weighted Pair Group Method Centroid (WPGMC)

Tree = seqlinkage(Dist, Method, Names) passes a list of names to
label the leaf nodes (for example, species or products) in a phylogenetic
tree object.

Examples	<pre>% Load a multiple alignment of amino acids: seqs = fastaread('pf00002.fa'); % Measure the 'Jukes-Cantor' pairwise distances: dist = seqpdist(seqs,'method','jukes-cantor', 'indels','pair'); % Build the phylogenetic tree with the single linkage % method and pass the names of the sequences: tree = seqlinkage(dist,'single',seqs) view(tree)</pre>		
See Also	Bioinformatics Toolbox functions: phytree (object constructor), phytreewrite, seqpdist, seqneighjoin		

Bioinformatics Toolbox methods of phytree object: plot, view

seqlogo

Purpose	Display sequence logo for nucleotide or amino acid sequences	
Syntax	<pre>seqlogo(Seqs) seqlogo(Profile) WgtMatrix = seqlogo() [WgtMatrix, Handle] = seqlogo() seqlogo(, 'Displaylogo', DisplaylogoValue,) seqlogo(, 'Alphabet', AlphabetValue,) seqlogo(, 'Startat', StartatValue,) seqlogo(, 'Endat', EndatValue,) seqlogo(, 'SSCorrection', SSCorrectionValue,)</pre>	

Arguments	Seqs	 Set of pairwise or multiply aligned nucleotide or amino acid sequences, represented by any of the following: Character array Cell array of strings Array of structures containing a Sequence field
	Profile	Sequence profile distribution matrix with the frequency of nucleotides or amino acids for every column in the multiple alignment, such as returned by the seqprofile function.
		The size of the frequency distribution matrix is:
		• For nucleotides — [4 x sequence length]
		• For amino acids — [20 x sequence length]
		If gaps were included, <i>Profile</i> may have 5 rows (for nucleotides) or 21 rows (for amino acids), but seqlogo ignores gaps.
	DisplaylogoValue	Controls the display of a sequence logo. Choices are true (default) or false.
	AlphabetValue	String specifying the type of sequence (nucleotide or amino acid). Choices are 'NT' (default) or'AA'.
	StartatValue	Positive integer that specifies the starting position for the sequences in <i>Seqs</i> . Default starting position is 1.

	EndatValue	Positive integer that specifies the ending position for the sequences in <i>Seqs</i> . Default ending position is the maximum length of the sequences in <i>Seqs</i> .
	SSCorrectionValue	Controls the use of small sample correction in the estimation of the number of bits. Choices are true (default) or false.
Return Values	WgtMatrix	Cell array containing the symbol list in <i>Seqs</i> or <i>Profile</i> and the weight matrix used to graphically display the sequence logo.
	Handle	Handle to the sequence logo figure.
Description	<pre>seqlogo(Seqs) displays a sequence logo for Seqs, a set of aligned sequences. The logo graphically displays the sequence conservation at a particular position in the alignment of sequences, measured in bits. The maximum sequence conservation per site is log2(4) bits for nucleotide sequences and log2(20) bits for amino acid sequences. If the sequence conservation value is zero or negative, no logo is displayed in that position. seqlogo(Profile) displays a sequence logo for Profile, a sequence profile distribution matrix with the frequency of nucleotides or amino acids for every column in the multiple alignment, such as returned by the seqprofile function.</pre>	
	Color Code for Nucleotides	

Nucleotide	Color
A	Green
C	Blue

Color Code for Nucleotides (Continued)

Nucleotide	Color
G	Yellow
T, U	Red
Other	Purple

Color Code for Amino Acids

Amino Acid	Chemical Property	Color
GSTYCQN	Polar	Green
AVLIPWFM	Hydrophobic	Orange
DE	Acidic	Red
KRH	Basic	Blue
Other	—	Tan

WgtMatrix = seqlogo(...) returns a cell array of unique symbols in the sequence Seqs or Profile, and the information weight matrix used to graphically display the logo.

[*WgtMatrix*, *Handle*] = seqlogo(...) returns a handle to the sequence logo figure.

seqlogo(Seqs, ...'PropertyName', PropertyValue, ...) calls seqpdist with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

seqlogo(..., 'Displaylogo', DisplaylogoValue, ...) controls
the display of a sequence logo. Choices are true (default) or false.

seqlogo(..., 'Alphabet', AlphabetValue, ...) specifies the type
of sequence (nucleotide or amino acid). Choices are 'NT' (default)
or'AA'.

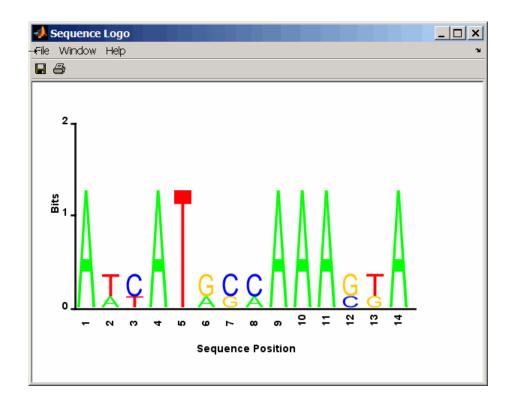
Note If you provide amino acid sequences to seqlogo, you must set Alphabet to 'AA'.

seqlogo(..., 'Startat', StartatValue, ...) specifies the starting
position for the sequences in Seqs. Default starting position is 1.

seqlogo(..., 'Endat', EndatValue, ...) specifies the ending
position for the sequences in Seqs. Default ending position is the
maximum length of the sequences in Seqs.

seqlogo(..., 'SSCorrection', SSCorrectionValue, ...) controls
the use of small sample correction in the estimation of the number of
bits. Choices are true (default) or false.

Note A simple calculation of bits tends to overestimate the conservation at a particular location. To compensate for this overestimation, when SSCorrection is set to true, a rough estimate is applied as an approximate correction. This correction works better when the number of sequences is greater than 50.


Examples Displaying a Sequence Logo for a Nucleotide Sequence

1 Create a series of aligned nucleotide sequences.

S = {'ATTATAGCAAACTA',... 'AACATGCCAAAGTA',... 'ATCATGCAAAAGGA'}

2 Display the sequence logo.

seqlogo(S)

3 Notice that correction for small samples prevents you from seeing columns with information equal to log2(4) = 2 bits, but you can turn this adjustment off.

seqlogo(S,'sscorrection',false)

Displaying a Sequence Logo for an Amino Acid Sequence

1 Create a series of aligned amino acid sequences.

S2 = { 'LSGGQRQRVAIARALAL',... 'LSGGEKQRVAIARALMN',... 'LSGGQIQRVLLARALAA',... 'LSGGERRRLEIACVLAL',...

```
'FSGGEKKKNELWQMLAL',...
'LSGGERRRLEIACVLAL'};
```

2 Display the sequence logo, specifying an amino acid sequence and limiting the logo to sequence positions 2 through 10.

seqlogo(S2, 'alphabet', 'aa', 'startAt', 2, 'endAt', 10)

```
🥠 Sequence Logo
                                                                   _ 🗆 ×
File Window Help
8
     4
    3
  Bits
     2
                                                           2
               ო
                     4
                            ß
                                  ഴ
                                        r
                                              œ
                                                     ი
                           Sequence Position
```

References [1] Schneider, T.D., and Stephens, R.M. (1990). Sequence Logos: A new way to display consensus sequences. Nucleic Acids Research *18*, 6097–6100.

See Also Bioinformatics Toolbox functions: seqconsensus, seqdisp, seqprofile

Purpose	Find matches for every string in library		
Syntax	<pre>Index = seqmatch(Strings, Library)</pre>		
Description	<pre>Index = seqmatch(Strings, Library) looks through the elements of Library to find strings that begin with every string in Strings. Index contains the index to the first occurrence for every string in the query. Strings and Library must be cell arrays of strings.</pre>		
Examples	<pre>lib = {'VIPS_HUMAN', 'SCCR_RABIT', 'CALR_PIG' ,'VIPR_RAT', 'PACR_MOUSE'}; query = {'CALR','VIP'}; h = seqmatch(query,lib); lib(h)</pre>		
See Also	MATLAB functions: regexp, strmatch		

seqneighjoin

Purpose	Neighbor-joining method for phylogenetic tree reconstruction		
Syntax	Tree = seqneighjoin(Dist) Tree = seqneighjoin(Dist, Method) Tree = seqneighjoin(Dist, Method, Names) seqneighjoin(, 'Reroot', RerootValue)		
Arguments	Dist M	atrix or vector returned by the seqpdist function.	
		ethod to compute the distances between nodes. Enter quivar' (default), 'firstorder', or 'average'.	
	or ele	ector of structures with the fields 'Header', 'Name', a cell array of strings. In all cases the number of ements must equal the number of samples used to nerate the pairwise distances in Dist.	
Description	<i>Tree</i> = seqneighjoin(<i>Dist</i>) computes a phylogenetic tree object from <i>Dist</i> , pairwise distances between the species or products using the neighbor-joining method.		
	<i>Tree</i> = seqneighjoin(<i>Dist</i> , <i>Method</i>) specifies <i>Method</i> , a method to compute the distances of the new nodes to all other nodes at every iteration. The general expression to calculate the distances between the new node, n, after joining i and j and all other nodes (k), is given by		
	D(n,k) = a*D(i,k) + (1-a)*D(j,k) - a*D(n,i) - (1-a)*D(n,j)		
	This expression is guaranteed to find the correct tree with additive data (minimum variance reduction).		
	Choices for <i>Method</i> are:		
	Method Description		
	'equivar'Assumes equal variance and independence of evolutionary distance estimates (a = 1/2). Such as in Studier and Keppler, JMBE (1988).		

Method	Description
'firstorder'	Assumes a first-order model of the variances and covariances of evolutionary distance estimates, 'a' is adjusted at every iteration to a value between 0 and 1. Such as in Gascuel, JMBE (1997).
'average'	New distances are the weighted average of previous distances while the branch distances are ignored.
	D(n,k) = [D(i,k) + D(j,k)] /2
	As in the original neighbor-joining algorithm by Saitou and Nei, JMBE (1987).

Tree = seqneighjoin(*Dist*, *Method*, *Names*) passes a list of names (*Names*) to label the leaf nodes (e.g., species or products) in the phylogenetic tree object.

seqneighjoin(..., 'Reroot', RerootValue), when RerootValue is
false, excludes rerooting the resulting tree. This is useful for observing
the original linkage order followed by the algorithm. By default
seqneighjoin reroots the resulting tree using the midpoint method.

Examples 1 Load a multiple alignment of amino acids.

seqs = fastaread('pf00002.fa');

2 Measure the Jukes-Cantor pairwise distances.

```
dist = seqpdist(seqs,'method','jukes-cantor','indels','pair');
```

3 Build the phylogenetic using the neighbor-joining algorithm.

```
tree = seqneighjoin(dist,'equivar',seqs)
view(tree)
```

References	[1] Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution $4(4)$, 406–425.
	[2] Gascuel, O. (1997). BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution <i>14</i> 685–695.
	[3] Studier, J.A., Keppler, K.J. (1988). A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution <i>5(6)</i> 729–731.
See Also	Bioinformatics Toolbox functions: multialign, phytree (object constructor), seqlinkage (alternative method to create a phylogenetic tree), seqpdist
	Methods of phytree object: reroot, view

Purpose	Calculate pairwise distanc	e between sequences
Syntax	<pre>D = seqpdist(Seqs,</pre>	
	<pre>D = seqpdist(Seqs, D = seqpdist(Seqs, D = seqpdist(Seqs, D = seqpdist(Seqs,) D = seqpdist(Seqs, D = seqpdist(Seqs,</pre>	'JobManager', <i>JobManagerValue</i> ,) 'WaitInQueue', <i>WaitInQueueValue</i> ,) 'SquareForm', <i>SquareFormValue</i> ,) 'Alphabet', <i>AlphabetValue</i> ,) 'ScoringMatrix', <i>ScoringMatrixValue</i> , 'Scale', <i>ScaleValue</i> ,) 'GapOpen', <i>GapOpenValue</i> ,) 'ExtendGap', <i>ExtendGapValue</i> ,)
Arguments	Seqs	 Any of the following: Cell array containing nucleotide or amino acid sequences Vector of structures containing a Sequence field Matrix of characters, in which each row corresponds to a nucleotide or amino acid sequence
	MethodValue	String that specifies the method for calculating pairwise distances. Default is Jukes-Cantor.
	IndelsValue	String that specifies how to treat sites with gaps. Default is score .

seqpdist

OptargsValue	String or cell array specifying one or more input arguments required or accepted by the distance method specified by the Method property.
PairwiseAlignmentValue	Controls the global pairwise alignment of input sequences (using the nwalign function), while ignoring the multiple alignment of the input sequences (if any). Choices are true or false. Default is:
	• true — When all input sequences do not have the same length.
	• false — When all input sequences have the same length.

Tip If your input sequences have the same length, seqpdist will assume they aligned. If they are not aligned, do one of the following:

- Align the sequences before passing them to seqpdist, for example, using the multialign function.
- Set PairwiseAlignment to true when using seqpdist.

<i>JobManagerValue</i>	A jobmanager object, such as returned by the Parallel Computing Toolbox function findResource, that represents an available distributed MATLAB resource. Specifying this property distributes pairwise alignments into a cluster of computers using the Parallel Computing Toolbox software. You must have the Parallel Computing Toolbox software to use this property.
WaitInQueueValue	Controls whether seqpdist waits for a distributed MATLAB resource to be available when you have set the JobManager property. Choices are true or false (default). You must have the Parallel Computing Toolbox software to use this property.
SquareFormValue	Controls the conversion of the output into a square matrix. Choices are true or false (default).
AlphabetValue	String specifying the type of sequence (nucleotide or amino acid). Choices are 'NT' or 'AA' (default).

ScoringMatrixValue

ScaleValue

GapOpenValue

String specifying the scoring matrix to use for the global pairwise alignment. Choices for amino acid sequences are:

- 'PAM40'
- 'PAM250'
- 'DAYHOFF'
- 'GONNET'
- 'BLOSUM30' increasing by 5 up to 'BLOSUM90'
- 'BLOSUM62'
- 'BLOSUM100'

Default is:

- 'NUC44' (when AlphabetValue equals 'NT')
- 'BLOSUM50' (when AlphabetValue equals 'AA')

Positive value that specifies the scale factor used to return the score in arbitrary units. If the scoring matrix information also provides a scale factor, then both are used.

Positive integer specifying the penalty for opening a gap in the alignment. Default is 8.

ExtendedGapValue Positive integer specifying the penalty for extending a gap. Default is equal to GapOpenValue.

Return Values	D	Vector containing biological distances between each pair of sequences stored in the M elements of <i>Seqs</i> .
Description	between each pair of seque	rns <i>D</i> , a vector containing biological distances nces stored in the M sequences of <i>Seqs</i> , a cell r of structures, or a matrix or sequences.
	pairs of sequences in Seqs ((2,1),(3,1),, (M,1) the lower-left triangle of th	w vector corresponding to the $M^{(M-1)/2}$. The output <i>D</i> is arranged in the order $(3,2), \dots (M,2), \dots (M,M-1)$. This is the full M-by-M distance matrix. To get the and the <i>J</i> th sequences for $I > J$, use the +I-J.
	calls seqpdist with optiona value pairs. You can specif <i>PropertyName</i> must be end	PropertyName', PropertyValue,) al properties that use property name/property y one or more properties in any order. Each losed in single quotation marks and is case y name/property value pairs are as follows:
		'Method', <i>MethodValue</i> ,) specifies a ses between every pair of sequences. Choices tables.

Methods for Nucleotides and Amino Acids

Method	Description
p-distance	Proportion of sites at which the two sequences are different. p is close to 1 for poorly related sequences, and p is close to 0 for similar sequences. d = p

seqpdist

Methods for Nucleotides and Amino Acids (Continued)

Method	Description
Jukes-Cantor (default)	Maximum likelihood estimate of the number of substitutions between two sequences. p is described with the method p-distance.
	For nucleotides:
	$d = -3/4 \log(1-p * 4/3)$
	For amino acids:
	d = -19/20 log(1-p * 20/19)
alignment-score	Distance (d) between two sequences (1, 2) is computed from the pairwise alignment score between the two sequences (score12), and the pairwise alignment score between each sequence and itself (score11, score22) as follows:
	d = (1-score12/score11)* (1-score12/score22)
	This option does not imply that prealigned input sequences will be realigned, it only scores them. Use with care; this distance method does not comply with the ultrametric condition. In the rare case where the score between sequences is greater than the score when aligning a sequence with itself, then $d = 0$.

Methods with No Scoring of Gaps (Nucleotides Only)

Method	Description
Tajima-Nei	Maximum likelihood estimate considering the background nucleotide frequencies. It can be computed from the input sequences or given by setting Optargs to [gA gC gG gT].gA,gC, gG, gT are scalar values for the nucleotide frequencies.

Method	Description
Kimura	Considers separately the transitional nucleotide substitution and the transversional nucleotide substitution.
Tamura	Considers separately the transitional nucleotide substitution, the transversional nucleotide substitution, and the GC content. GC content can be computed from the input sequences or given by setting Optargs to the proportion of GC content (scalar value form 0 to 1).
Hasegawa	Considers separately the transitional nucleotide substitution, the transversional nucleotide substitution, and the background nucleotide frequencies. Background frequencies can be computed from the input sequences or given by setting the Optargs property to [gA gC gG gT].
Nei-Tamura	Considers separately the transitional nucleotide substitution between purines, the transitional nucleotide substitution between pyrimidines, the transversional nucleotide substitution, and the background nucleotide frequencies. Background frequencies can be computed from the input sequences or given by setting the Optargs property to [gA gC gG gT].

Methods with No Scoring of Gaps (Nucleotides Only) (Continued)

Methods with No Scoring of Gaps (Amino Acids Only)

Method	Description
Poisson	Assumes that the number of amino acid substitutions at each site has a Poisson distribution.
Gamma	Assumes that the number of amino acid substitutions at each site has a Gamma distribution with parameter a. You can set a by using the Optargs property. Default is 2.

You can also specify a user-defined distance function using @, for example, @distfun. The distance function must be of the form:

function D = distfun(S1, S2, OptArgsValue)

The distfun function takes the following arguments:

- S1, S2 Two sequences of the same length (nucleotide or amino acid).
- OptArgsValue Optional problem-dependent arguments.

The distfun function returns a scalar that represents the distance between S1 and S2.

D = seqpdist(Seqs, ...'Indels', IndelsValue, ...) specifies
how to treat sites with gaps. Choices are:

- score (default) Scores these sites either as a point mutation or with the alignment parameters, depending on the method selected.
- pairwise-del For every pairwise comparison, it ignores the sites with gaps.
- complete-del Ignores all the columns in the multiple alignment that contain a gap. This option is available only if a multiple alignment was provided as the input *Seqs*.

D = seqpdist(Seqs, ...'Optargs', OptargsValue, ...) passes one or more arguments required or accepted by the distance method specified by the Method property. Use a string or cell array to pass one or multiple input arguments. For example, you can provide the nucleotide frequencies for the Tajima-Nei distance method, instead of computing them from the input sequences.

D = seqpdist(Seqs, ...'PairwiseAlignment', PairwiseAlignmentValue, ...) controls the global pairwise alignment of input sequences (using the nwalign function), while ignoring the multiple alignment of the input sequences (if any). Default is:

- true When all input sequences do not have the same length.
- false When all input sequences have the same length.

Tip If your input sequences have the same length, **seqpdist** will assume they aligned. If they are not aligned, do one of the following:

- Align the sequences before passing them to seqpdist, for example, using the multialign function.
- Set PairwiseAlignment to true when using seqpdist.

D = seqpdist(Seqs, ...'JobManager', JobManagerValue, ...) distributes pairwise alignments into a cluster of computers using the Parallel Computing Toolbox software. JobManagerValue is a jobmanager object such as returned by the Parallel Computing Toolbox function findResource, that represents an available distributed MATLAB resource. You must have the Parallel Computing Toolbox software to use this property.

D = seqpdist(Seqs, ... 'WaitInQueue', WaitInQueueValue, ...) controls whether seqpdist waits for a distributed MATLAB resource to be available when you have set the JobManager property. When WaitInQueueValue is true, seqpdist waits in the job manager queue for an available worker. When WaitInQueueValue is false (default) and there are no workers immediately available, seqpdist stops and displays an error message. You must have the Parallel Computing Toolbox software and have also set the JobManager property to use this property.

 $D = \text{seqpdist}(\text{Seqs}, \dots '\text{SquareForm'}, SquareFormValue, \dots)$, controls the conversion of the output into a square matrix such that D(I,J) denotes the distance between the Ith and Jth sequences. The square matrix is symmetric and has a zero diagonal. Choices are true or false (default). Setting Squareform to true is the same as using the squareform function in the Statistics Toolbox software.

```
D = seqpdist(Seqs, ...'Alphabet', AlphabetValue, ...)
                   specifies the type of sequence (nucleotide or amino acid). Choices are
                    'NT' or 'AA' (default).
                   The remaining input properties are available when the Method property
                   equals 'alignment-score' or the PairwiseAlignment property equals
                   true.
                   D = seqpdist(Seqs, ...'ScoringMatrix',
                   ScoringMatrixValue, ...) specifies the scoring matrix to use for the
                   global pairwise alignment. Default is:
                   • 'NUC44' (when AlphabetValue equals 'NT')
                   • 'BLOSUM50' (when AlphabetValue equals 'AA')
                   D = seqpdist(Seqs, ... 'Scale', ScaleValue, ...) specifies the
                   scale factor used to return the score in arbitrary units. Choices are any
                   positive value. If the scoring matrix information also provides a scale
                   factor, then both are used.
                   D = seqpdist(Seqs, ... 'GapOpen', GapOpenValue, ...) specifies
                   the penalty for opening a gap in the alignment. Choices are any positive
                   integer. Default is 8.
                   D = seqpdist(Seqs, ... 'ExtendGap', ExtendGapValue, ...)
                   specifies the penalty for extending a gap in the alignment. Choices are
                   any positive integer. Default is equal to GapOpenValue.
Examples
                    1 Read amino acids alignment data into a MATLAB structure.
                         seqs = fastaread('pf00002.fa');
                    2 For every possible pair of sequences in the multiple alignment, ignore
                      sites with gaps and score with the scoring matrix PAM250.
                        dist = seqpdist(seqs,'Method','alignment-score',...
                                           'Indels', 'pairwise-delete',...
                                           'ScoringMatrix', 'pam250');
```

3 Force the realignment of every pair of sequences ignoring the provided multiple alignment.

```
dist = seqpdist(seqs,'Method','alignment-score',...
    'Indels','pairwise-delete',...
    'ScoringMatrix','pam250',...
    'PairwiseAlignment',true);
```

4 Measure the 'Jukes-Cantor' pairwise distances after realigning every pair of sequences, counting the gaps as point mutations.

```
dist = seqpdist(seqs,'Method','jukes-cantor',...
'Indels','score',...
'Scoringmatrix','pam250',...
'PairwiseAlignment',true);
```

See AlsoBioinformatics Toolbox functions: fastaread, dnds, dndsml,
multialign, nwalign, phytree (object constructor), seqlinkage
Bioinformatics Toolbox object: phytree object
Bioinformatics Toolbox method of a phytree object: pdist

seqprofile

Purpose	Calculate sequenc	e profile from set of multiply aligned sequences
Syntax (1997)	<pre>Profile = seqprofile(Seqs) [Profile, Symbols] = seqprofile(Seqs) seqprofile(Seqs,'Alphabet', AlphabetValue,) seqprofile(Seqs,'Counts', CountsValue,) seqprofile(Seqs,'Gaps', GapsValue,) seqprofile(Seqs,'Ambiguous', AmbiguousValue,) seqprofile(Seqs,'Limits', LimitsValue,)</pre>	
Arguments	Seqs	Set of multiply aligned sequences represented by any of the following:.
		• Array of strings
		• Cell array of strings
		 Array of structures containing the field Sequence
	AlphabetValue	String specifying the sequence alphabet. Choices are:
		• 'NT' — Nucleotides
		 'AA' — Amino acids (default)
		• 'none' — No alphabet
		When Alphabet is 'none', the symbol list is based on the observed symbols. Each character can be any symbol, except for a hyphen (-) and a period (.), which are reserved for gaps.
	CountsValue	Controls returning frequency (ratio of counts/total counts) or counts. Choices are true (counts) or false (frequency). Default is false.

	GapsValue	String that controls the counting of gaps in a sequence. Choices are:
		• 'all' — Counts all gaps
		 'noflanks' — Counts all gaps except those at the flanks of every sequence
		• 'none' — Default. Counts no gaps.
	AmbiguousValue	Controls counting ambiguous symbols. Enter 'Count' to add partial counts to the standard symbols.
	LimitsValue	Specifies whether to use part of the sequence. Enter a [1x2] vector with the first position and the last position to include in the profile. Default is [1,SeqLength].
Description	<pre>Profile = seqprofile(Seqs) returns Profile, a matrix of size [20 (or 4) x SequenceLength] with the frequency of amino acids (or nucleotides) for every column in the multiple alignment. The order of the rows is given by</pre>	
	• 4 nucleotides —	ACGT/U
	• 20 amino acids -	— A R N D C Q E G H I L K M F P S T W Y V
	[<i>Profile</i> , <i>Symbols</i>] = seqprofile(Seqs) returns <i>Symbols</i> , a unique symbol list where every symbol in the list corresponds to a row in <i>Profile</i> , the profile.	
	seqprofile with a value pairs. You a PropertyName mus	, ' <i>PropertyName</i> ', <i>PropertyValue</i> ,) calls optional properties that use property name/property an specify one or more properties in any order. Each st be enclosed in single quotation marks and is case property name/property value pairs are as follows:
		'Alphabet', <i>AlphabetValue</i> ,) selects a et, amino acid alphabet, or no alphabet.

	seqprofile(Seqs,'Counts', <i>CountsValue</i> ,) when Counts is true, returns the counts instead of the frequency.
	<pre>seqprofile(Seqs,'Gaps', GapsValue,) appends a row to the bottom of a profile (Profile) with the count for gaps.</pre>
	seqprofile(Seqs, 'Ambiguous', AmbiguousValue,) when Ambiguous is 'count', counts the ambiguous amino acid symbols (B Z X) and nucleotide symbols (R Y K M S W B D H V N) with the standard symbols. For example, the amino acid X adds a $1/20$ count to every row while the amino acid B counts as $1/2$ at the D and N rows.
	seqprofile(Seqs,'Limits', <i>LimitsValue</i> ,) specifies the start and end positions for the profile relative to the indices of the multiple alignment.
Examples	<pre>seqs = fastaread('pf00002.fa'); [P,S] = seqprofile(seqs,'limits',[50 60],'gaps','all')</pre>
See Also	Bioinformatics Toolbox functions: fastaread, multialignread, multialignwrite, seqconsensus, seqdisp, seqlogo

seqrcomplement

Purpose	Calculate rev	erse complement of nucleotide sequence
Syntax	SeqRC = seqre	complement(SeqNT)
Arguments	SeqNT	Nucleotide sequence. Enter either a character string with the characters A, T (U), G, C, and ambiguous characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of integers. You can also enter a structure with the field Sequence.
Description	seqrcompleme DNA sequenc	ent calculates the reverse complementary strand of a e.
	strand 3' -> returns a sequ	complement(SeqNT) calculates the reverse complementary 5' (A->T, C->G, G->C, T->A) for a DNA sequence and uence in the same format as SeqNT. For example, if SeqNT sequence then so is SeqRC.
Examples	Reverse a DN	A nucleotide sequence and then return its complement.
	s = 'ATCG seqrcompl	
	ans = CGAT	
See Also		s Toolbox functions: codoncount, palindromes, nt, seqreverse, seqtool

seqreverse

Purpose	Reverse lette	ers or numbers in nucleotide sequence
Syntax	SeqR = seqreverse(SeqNT)	
Arguments	SeqNT	Enter a nucleotide sequence. Enter either a character string with the characters A, T (U), G, C, and ambiguous characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of integers. You can also enter a structure with the field Sequence.
	SeqR	Returns a sequence in the same format as the nucleotide sequence. For example, if <i>SeqNT</i> is an integer sequence, then so is <i>SeqR</i> .
Description		calculates the reverse strand of a DNA or RNA sequence. everse(SeqNT) calculates the reverse strand $3' \rightarrow 5'$ of the equence.
Examples	Reverse a nu s = 'ATCO seqrevers ans = GCTA	-
See Also	seqtool	cs Toolbox functions: seqcomplement, seqrcomplement, nction: fliplr

Purpose	Display open reading frames in	sequence
Syntax		eticCode', GeneticCodeValue,) EmumLength', MinimumLengthValue, ernativeStartCodons', Value,) or', ColorValue,)
Arguments	SeqNT	Nucleotide sequence. Enter either a character string with the characters A, T (U), G, C, and ambiguous characters R, Y, K, M, S, W, B, D, H, V, N, or a vector of integers. You can also enter a structure with the field Sequence.
	FramesValue	Property to select the frame. Enter 1, 2, 3, -1, -2, -3, enter a vector with integers, or 'all'. The default value is the vector [1 2 3]. Frames -1, -2, and -3 correspond to the first, second, and third reading frames for the reverse complement.
	GeneticCodeValue	Genetic code name. Enter a code number or a code name from the table Genetic Code on page 2-1038.
	MinimumLengthValue	Property to set the minimum number of codons in an ORF.

AlternativeStartCodonsValu	e Property to control using alternative start codons. Enter either true or false. The default value is false.
ColorValue	Property to select the color for highlighting the reading frame. Enter either a 1-by-3 RGB vector specifying the intensity (0 to 255) of the red, green, and blue components of the color, or a character from the following list: 'b'—blue, 'g'—green, 'r'—red, 'c'—cyan, 'm'—magenta, or 'y'—yellow.
	To specify different colors for the three reading frames, use a 1-by-3 cell array of color values. If you are displaying reverse complement reading frames, then COLOR should be a 1-by-6 cell array of color values.
ColumnsValue	Property to specify the number of columns in the output.

Genetic Code

Code Number	Code Name
1	Standard
2	Vertebrate Mitochondrial
3	Yeast Mitochondrial
4	Mold, Protozoan, Coelenterate Mitochondrial, and Mycoplasma/Spiroplasma
5	Invertebrate Mitochondrial
6	Ciliate, Dasycladacean, and Hexamita Nuclear

Genetic Code (Continued)

Code Number	Code Name
9	Echinoderm Mitochondrial
10	Euplotid Nuclear
11	Bacterial and Plant Plastid
12	Alternative Yeast Nuclear
13	Ascidian Mitochondrial
14	Flatworm Mitochondrial
15	Blepharisma Nuclear
16	Chlorophycean Mitochondrial
21	Trematode Mitochondrial
22	Scenedesmus Obliquus Mitochondrial
23	Thraustochytrium Mitochondrial

Description

seqshoworfs identifies and highlights all open reading frames using the standard or an alternative genetic code.

seqshoworfs(SeqNT) displays the sequence with all open reading frames highlighted, and it returns a structure of start and stop positions for each ORF in each reading frame. The standard genetic code is used with start codon 'AUG' and stop codons 'UAA', 'UAG', and 'UGA'.

seqshoworfs(SeqNT, ...'PropertyName', PropertyValue, ...)
calls seqshoworfs with optional properties that use property
name/property value pairs. You can specify one or more properties in
any order. Each PropertyName must be enclosed in single quotes and
is case insensitive. These property name/property value pairs are as
follows:

seqshoworfs(SeqNT, ... 'Frames', FramesValue, ...) specifies the reading frames to display. The default is to display the first, second, and third reading frames with ORFs highlighted in each frame.

seqshoworfs(SeqNT, ...'GeneticCode', GeneticCodeValue, ...)
specifies the genetic code to use for finding open reading frames.

```
seqshoworfs(SeqNT, ...'MinimumLength',
MinimumLengthValue, ...) sets the minimum number of codons for
an ORF to be considered valid. The default value is 10.
```

seqshoworfs(SeqNT,

...'AlternativeStartCodons', AlternativeStartCodonsValue, ...) uses alternative start codons if AlternativeStartCodons is set to true. For example, in the human mitochondrial genetic code, AUA and AUU are known to be alternative start codons. For more details on alternative start codons, see

http://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?mode=t#SG1

seqshoworfs(SeqNT, ...'Color', ColorValue, ...) specifies the color used to highlight the open reading frames in the output display. The default color scheme is blue for the first reading frame, red for the second, and green for the third frame.

seqshoworfs(SeqNT, ...'Columns', ColumnsValue, ...) specifies
how many columns per line to use in the output. The default value
is 64.

Examples Look for the open reading frames in a random nucleotide sequence.

```
s = randseq(200, 'alphabet', 'dna');
seqshoworfs(s);
```

seqshoworfs

👃 Open Reading Frames 📃 🗌 🔤
Frame 1
000001
TAGCTTCATCGTTGACTTCTACTAAAAGCAAGCTCCTGAGTAGCTGGCCAAGCGAGCTTGCTT
TGCCCGGCTGCGGCGGTTGTATCCTGAATACGCCATGCGCCAGTGGACTGCGTAGACCTATTTT 000129
CCAGCTGCGCCTG ATGAAGGCGCAACACGAAGGAAAGACGGGACCCAGGGCGACGTCCTAT TAA 000193 AAGATAAT
Frame 2
000001
TAGCTTCATCGTTGACTTCTACTAAAAGCAAGCTCCTGAGTAGCTGGCCAAGCGAGCTTGCTT
TGCCCGGCTGCGGCGGTTGTATCCTGAATACGCCATGCGCCAGTGGACTGCGTAGACCTATTTT
CCAGCTGCGCCTGATGAAGGCGCAACACGAAGGAAAGACGGGACCCAGGGCGACGTCCTATTAA DDD193 AAGATAAT
Frame 3
000001
TAGCTTCATCGTTGACTTCTACTAAAAGCAAGCTCCTGAGTAGCTGGCCAAGCGAGCTTGCTT
TGCCCGGCTGCGGCGGTTGTATCCTGAATACGCCATGCGCCAGTGGACTGCGTAGACCTATTTT 000129
CCAGCTGCGCCTGATGAAGGCGCAACACGAAGGAAAGACGGGACCCAGGGCGACGTCCTATTAA 000193 aagataat

Identify the open reading frames in a GenBank sequence.

HLA_DQB1 = getgenbank('NM_002123'); seqshoworfs(HLA_DQB1.Sequence);

See Also Bioinformatics Toolbox functions: codoncount, cpgisland, geneticcode, seqdisp, seqshowwords, seqtool, seqwordcount MATLAB function: regexp

Purpose	Graphically display words in sequence					
Syntax	seqshowwords(Seq, Word) seqshowwords(Seq, Word,'Color', ColorValue,) seqshowwords(Seq, Word,'Columns', ColumnsValue,) seqshowwords(Seq, Word,'Alphabet', AlphabetValue,)					
Arguments	Seq	Enter either a nucleotide or amino acid sequence. You can also enter a structure with the field Sequence.				
	Word	Enter a short character sequence.				
	ColorValue	Property to select the color for highlighted characters. Enter a 1-by-3 RGB vector specifying the intensity (0 255) of the red, green, and blue components, or enter a character from the following list: 'b'-blue, 'g'-green, 'r'-red, 'c'-cyan, 'm'-magenta, or 'y'-yellow.				
		The default color is red 'r'.				
	ColumnsValue	Property to specify the number of characters in a line. Default value is 64.				
	AlphabetValue	Property to select the alphabet. Enter 'AA' for amino acid sequences or 'NT' for nucleotide sequences. The default is 'NT'.				
Description	<pre>seqshowwords(Seq, Word) displays the sequence with all occurrence of a word highlighted, and returns a structure with the start and stop positions for all occurrences of the word in the sequence.</pre>					
	<pre>seqshowwords(Seq, Word,'PropertyName', PropertyValue,) calls seqshowwords with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must</pre>					

name/property value pairs are as follows: seqshowwords(Seq, Word, ... 'Color', ColorValue, ...) selects the color used to highlight the words in the output display. seqshowwords(Seq, Word, ... 'Columns', ColumnsValue, ...) specifies how many columns per line to use in the output. seqshowwords(Seq, Word, ... 'Alphabet', AlphabetValue, ...) selects the alphabet for the sequence (Seg) and the word (Word). If the search work (Word) contains nucleotide or amino acid symbols that represent multiple possible symbols, then seqshowwords shows all matches. For example, the symbol R represents either G or A (purines). If Word is 'ART', then seqshowwords shows occurrences of both 'AAT' and 'AGT'. **Examples** This example shows two matches, 'TAGT' and 'TAAT', for the word 'BART'. seqshowwords('GCTAGTAACGTATATATAAT', 'BART') ans = Start: [3 17] Stop: [6 20] 000001 GCTAGTAACGTATATATAAT

be enclosed in single quotes and is case insensitive. These property

seqshowwords does not highlight overlapping patterns multiple times. This example highlights two places, the first occurrence of 'TATA' and the 'TATATATA' immediately after 'CG'. The final 'TA' is not highlighted because the preceding 'TA' is part of an already matched pattern.

```
seqshowwords('GCTATAACGTATATATATA','TATA')
ans =
   Start: [3 10 14]
```

 Stop: [6 13 17]

 000001 GCTATAACGTATATATA

 To highlight all multiple repeats of TA, use the regular expression 'TA(TA)*TA'.

 seqshowwords('GCTATAACGTATATATATA', 'TA(TA)*TA')

 ans =

 Start: [3 10]

 Stop: [6 19]

 000001 GCTATAACGTATATATATA

 See Also

 Bioinformatics Toolbox functions: palindromes, cleave, restrict, seqdisp, seqtool, seqwordcount

 MATLAB functions: strfind, regexp

seqtool

Purpose	Open tool to interactively explore biological sequences				
Syntax	seqtool(Seq) seqtool(, 'PropertyName', PropertyValue,) seqtool(, 'Alphabet', AlphabetValue)				
Arguments	<i>Seq</i> Struct with a field Sequence, a character array, or a file name with an extension of .gbk, .gpt, .fasta, .fa, or .ebi				
Description	<pre>seqtool(Seq) loads a sequence (Seq) into the seqtool GUI.</pre>				
	<pre>seqtool(, 'PropertyName', PropertyValue,) defines optional properties using property name/value pairs.</pre>				
	<pre>seqtool(, 'Alphabet', AlphabetValue) specifies an alphabet (AlphabetValue) for the sequence (Seq). Default is 'AA', except when all of the symbols in the sequence are A, C, G, T, and -, then AlphabetValue is set to 'NT'. Use 'AA' when you want to force an amino acid sequence alphabet.</pre>				
Example	I Get a sequence from Genbank.				
	S = getgenbank('M10051')				
	2 Open the sequence tool window with the sequence.				
	<pre>seqtool(S)</pre>				

📣 Sequence V	'iewer - HUMI	INSR			_	
File Edit Sequ	ence Display	Window	Help			× 5
🏚 🗛 👫 🛃	0 ?	Li	ne length: 60	•	ļ	
Sequenc	M10051: Hui	man insulir	n receptor mRN	A, com	plete cds.	
M10 Position	i:					
	1(20 	30 1111		40
Base Col 1	aaaaaac <u>r</u> ac	acaacc	ggg <mark>t c</mark> gg <mark>t</mark> gc	gcac	acgagaagg	ja 📥
A: 61	rdddddccdc	ctcgga	gcat gaccco	caca	gg <mark>cc</mark> agcgd	;c
C: 121	ccccgcgctc	ccgcag	ccat gggcad	cada	aaccaacaa	tà č
G: 🔽 181	<mark>ct</mark> ggtggcgg	. raacca	cgct gctact	aaac	accacaaaa	ο e
						▶▼
8.0 BP/Pixel		•	X2 Zoom in		🔍 X2 Zoom	out
	1		1000		2000	-
Sequence					[= 7
<pre>dequence</pre>						

See Also

Bioinformatics Toolbox functions: aa2nt, aacount, aminolookup, basecount, baselookup, dimercount, emblread, fastaread, fastawrite, genbankread, geneticcode, genpeptread, getembl, getgenbank, getgenpept, nt2aa, proteinplot, seqcomplement, seqdisp, seqrcomplement, seqreverse, seqshoworfs, seqshowwords, seqwordcount

seqwordcount

Purpose	Count number of occurrences of word in sequence				
Syntax	seqwordcount(Seq, Word)				
Arguments	Seq	Enter a nucleotide or amino acid sequence of characters. You can also enter a structure with the field Sequence.			
	Word	Enter a short sequence of characters.			
Description	seqwordcount(Seq, Word) counts the number of times that a word appears in a sequence, and then returns the number of occurrences of that word.				
	If Word contains nucleotide or amino acid symbols that represent multiple possible symbols (ambiguous characters), then seqwordcou counts all matches. For example, the symbol R represents either G or A (purines). For another example, if word equals 'ART', then seqwordcount counts occurrences of both 'AAT' and 'AGT'.				
Examples	seqwordcount does not count overlapping patterns multiple times. In the following example, seqwordcount reports three matches. TATATATA is counted as two distinct matches, not three overlapping occurrences.				
	<pre>seqwordcount('GCTATAACGTATATATAT','TATA')</pre>				
	ans = 3				
		g example reports two matches ('TAGT' and 'TAAT'). B nous code for G, T, or C, while R is an ambiguous code for			
	seqwordco	ount('GCTAGTAACGTATATATAAT','BART')			
	ans = 2				

See Also Bioinformatics Toolbox functions: codoncount, seqshoworfs, seqshowwords, seqtool, seq2regexp

 $MATLAB \ function: \ \texttt{strfind}$

showalignment

Purpose	Display color-coded sequence alignment
Syntax	<pre>showalignment(Alignment) showalignment(Alignment,'MatchColor', MatchColorValue,) showalignment(Alignment,'SimilarColor' SimilarColorValue,) showalignment(Alignment,'StartPointers', StartPointersValue,) showalignment(Alignment,'Columns', ColumnsValue,)</pre>

Arguments	Alignment	Either of the following:
		• 3-by-N character array showing the pairwise alignment of two sequences, such as returned by the nwalign or swalign function.
		• Vector or character array containing a multiple alignment, such as returned by the multialign function.
	MatchColorValue	Color to highlight matching characters. Can be either of the following:
		• 1-by-3 RGB vector
		• String specifying one of the following colors:
		■ 'r' — red
		■ 'g' — green
		■ 'b' — blue
		■ 'c' — cyan
		■ 'm' — magenta
		• 'y' — yellow
		Default is red, [255 0 0] or 'r'.

	SimilarColorValue	Color to highlight similar characters. Can be either of the following:
		• 1-by-3 RGB vector
		• String specifying one of the following colors:
		■ 'r' — red
		■ 'g' — green
		■ 'b' — blue
		■ 'c' — cyan
		■ 'm' — magenta
		• 'y' — yellow
		Default is magenta, [255 0 255] or 'm'.
	StarterPointersValue	Two-element vector that specifies the starting indices in the original sequences of a local pairwise alignment, such as the third output returned by the swalign function.
	ColumnsValue	Scalar that specifies the number of characters to display in one row when displaying a pairwise alignment. Default is 64 .
Description	<pre>showalignment(Alignment) displays a color-coded alignment in a MATLAB Figure window. For pairwise sequence alignments, matching and similar characters are highlighted in red and magenta, respectively. For multiple sequence alignments, highly conserved positions are highlighted in red and conserved positions are highlighted in magenta. showalignment(Alignment,'PropertyName', PropertyValue,) calls showalignment with optional properties that use property name/property value pairs. You can specify one or more properties in</pre>	

any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

showalignment(*Alignment*, ... 'MatchColor', *MatchColorValue*, ...) specifies the color to highlight matching characters in the output display. Default is red, [255 0 0] or 'r'. For example, to use cyan, enter [0 255 255] or 'c'.

showalignment(Alignment, ...'SimilarColor'
SimilarColorValue, ...) specifies the color to highlight
similar characters in the output display. Default is magenta, [255 0
255] or 'm'.

Note The 'StartPointers' and 'Columns' properties are available only when displaying pairwise alignments.

```
showalignment(Alignment,
```

... 'StartPointers', *StartPointersValue*, ...) specifies the starting indices in the original sequences of a local pairwise alignment.

Tip You can use the third output returned by the swalign function as the *StartPointersValue*.

showalignment(*Alignment*, ...'Columns', *ColumnsValue*, ...) specifies the number of characters to display in one row when displaying a pairwise alignment, and labels the start of each row with the sequence positions. Default is 64.

Tip To view a multiple-sequence alignment and interact with it, use the multialignviewer function.

showalignment

Examples Globally align two amino acid sequences and display their color-coded alignment.

```
[Score, Alignment] = nwalign('VSPAGMASGYD','IPGKASYD');
showalignment(Alignment);
```

📣 Aligned Sequences	_ 🗆 🗙
8	¥.
Identities = 6/11 (55%), Positives = 7/11 (64% VSPAGMASGYD : I-P-GKAS-YD	\$)

Read a multiple-sequence alignment file and display the color-coded alignment.

```
gag = multialignread('aagag.aln');
showalignment(gag)
```

📣 Aligned Seq	uences
4	
	-
HIV-2	MGAR-NSVLRGKKADELERIRLRPGGKKKYRLKHIVWAANKLDRFGLAESLLES
HIV2-MCN13	MGAR-NSVLKGKKADELETIRLRPGGKKKYRLKHIVWAANELDRFGLAESLLES
SIVMM251	MGAR-NSVLSGKKADELEKIRLRPGGKKKYMLKHVVWAANELDRFGLAESLLEI
SIVMM239	MGVR-NSVLSGKKADELEKIRLRPNGKKKYMLKHVVWAANELDRFGLAESLLEI
HIV-2UC1	MGAR-SSVLSGKKTDELEKVRLRPGGKKRYCLKHIIWAVNELDRFGLAESLLE:
SIVsmSL92b	MGAR-GSVLSGKKADELEKVRLRPGGRKKYMLKHIIWAARELDRFGSAESLLE:
SIVAGM677A	MGGG-HSALSGRSLDTFEKIRLRPNGKKKYQIKHLIWAGKEMERFGLHEKLLE
SIVAGM3	MGAA-TSALNRRQLDKFEHIRLRPTGKKKYQIKHLIWAGKEMERFGLHERLLE:
SIVmnd5440	MGAS-ASGLRGEKLDELEKIRLRPSGKKKYQLKHVIWVSKELDRFGLHEKLLE:
HIV-1	MGAR-ASVLSGGKLDKWEKIRLRPGGKKKYRLKHIVWASRELERYALNPGLLE
HIV1-NDK	MGAR-ASVLSGGKLDTWERIRLRPGGKKKYALKHLIWASRELERFTLNPGLLE
SIVcpz	MGAR-ASVLTGGRLDAWEKIRLRPGGKKKYMMKHLVWASRELDRFACNPGLME
CIVcpzUS	MGAR-ASVLTGGRLDAWEKIRLRPGGKKKYMMKHLVWASRELERFACNPGLME
SIVcpzTAN1	MGAR-ASVLRGDKLDTWESIRLKSRGRKKYLIKHLVWAGSELQRFAMNPGLMEI
SIVmon	MGARHSAMLSGTKLDKYEKVRLRPRGKKKYLIKHIVWAAKELDRFGLSDSLLE
SIVlhoest	MGSG-NSVLSRQIEKDFCSVRLRPGSKKTYQKRHVEWATKELDRFGLGSQLLE
•	

Tip To view a multiple-sequence alignment and interact with it, use the multialignviewer function.

See Also Bioinformatics Toolbox functions: multialign, multialignviewer, nwalign, swalign

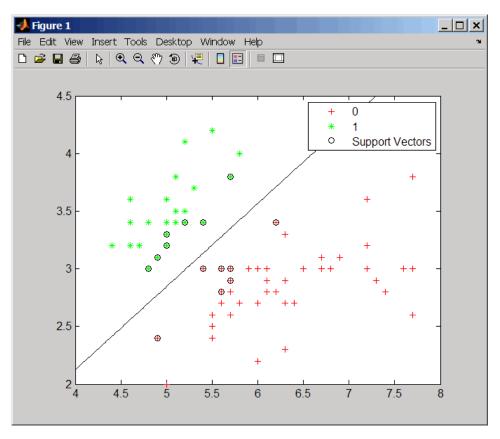
showhmmprof

Purpose	Plot hidden Markov model (HMM) profile	
Syntax	<pre>showhmmprof(Model) showhmmprof(Model,'Scale', ScaleValue,) showhmmprof(Model,'Order', OrderValue,)</pre>	
Arguments	Model	Hidden Markov model created by the function gethmmprof or pfamhmmread.
	ScaleValue	 Property to select a probability scale. Enter one of the following values: 'logprob' — Log probabilities
		• 'prob' — Probabilities
		 'logodds' — Log-odd ratios
	OrderValue	Property to specify the order of the amino acid alphabet. Enter a character string with the 20 standard amino acids characters $A \in N \in C \in G \in H$ I L K M F P S T W Y V. The ambiguous characters B Z X are not allowed.
Description	<pre>showhmmprof(Model) plots a profile hidden Markov model described by the structure Model. showhmmprof(, 'PropertyName', PropertyValue,) calls showhmmprof with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows: showhmmprof(Model,'Scale', ScaleValue,) specifies the scale to use. If log probabilities (ScaleValue='logprob'), probabilities (ScaleValue='prob'), or log-odd ratios (ScaleValue='logodds'). To compute the log-odd ratios, the null model probabilities are used for symbol emission and equally distributed transitions are used for the null transition probabilities. The default ScaleValue is 'logprob'.</pre>	

	showhmmprof(<i>Model</i> ,'Order', <i>OrderValue</i> ,) specifies the order in which the symbols are arranged along the vertical axis. This option allows you reorder the alphabet and group the symbols according to their properties.	
Examples	Load a model example.	
	<pre>model = pfamhmmread('pf00002.ls')</pre>	
	2 Plot the profile.	
	<pre>showhmmprof(model, 'Scale', 'logodds')</pre>	
	3 Order the alphabet by hydrophobicity.	
	<pre>hydrophobic = 'IVLFCMAGTSWYPHNDQEKR' 4 Plot the profile.</pre>	
	<pre>showhmmprof(model, 'Order', hydrophobic)</pre>	
See Also	Bioinformatics Toolbox functions: gethmmprof, hmmprofalign, hmmprofestimate, hmmprofgenerate, hmmprofstruct, pfamhmmread	

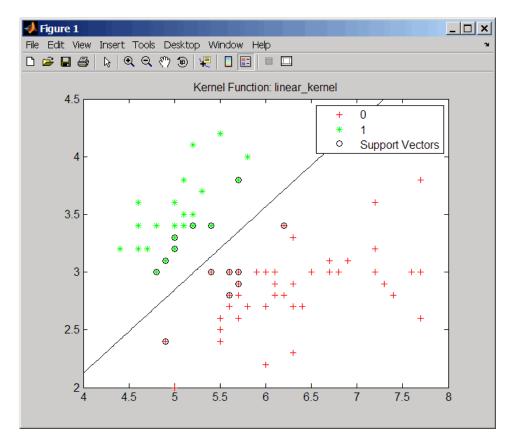
sptread

Purpose	Read data from SPOT file	
Syntax	<pre>SPOTData = sptread(File) SPOTData = sptread(File, 'CleanColNames', CleanColNamesValue)</pre>	
Arguments	File	Either of the following:
		 String specifying a file name, a path and file name, or a URL pointing to a file. The referenced file is a SPOT-formatted file (ASCII text file). If you specify only a file name, that file must be on the MATLAB search path or in the MATLAB Current Directory. MATLAB character array that contains the
		• MATLAB character array that contains the text of a SPOT-formatted file.
	CleanColNamesValue	Controls the use of valid MATLAB variable names.
Description		File) reads File, a SPOT-formatted file, and TLAB structure containing the following fields:


	SPOTData = sptread(File, 'CleanColNames', CleanColNamesValue) controls the use of valid MATLAB variable names. The column names in the SPOT-formatted file contain periods and some characters that cannot be used in MATLAB variable names. If you plan to use the column names as variable names in a function, use this option with CleanColNames set to true and the function will return the field ColumnNames with valid variable names.		
	The Indices field of the structure includes the indices that you can be for plotting heat maps of the data.		
Examples	1 Read in a sample SPOT file and plot the median foreground intensity for the 635 nm channel. Note that the example file spotdata.txt is not provided with the Bioinformatics Toolbox software.		
	<pre>spotStruct = sptread('spotdata.txt') maimage(spotStruct,'Rmedian');</pre>		
	2 Alternately, create a similar plot using more basic graphics commands.		
	<pre>Rmedian = magetfield(spotStruct,'Rmedian'); imagesc(Rmedian(spotStruct.Indices)); colormap bone colorbar</pre>		
See Also	Bioinformatics Toolbox functions: affyread, agferead, celintensityread, geoseriesread, geosoftread, gprread, ilmnbsread, imageneread, maboxplot, magetfield		

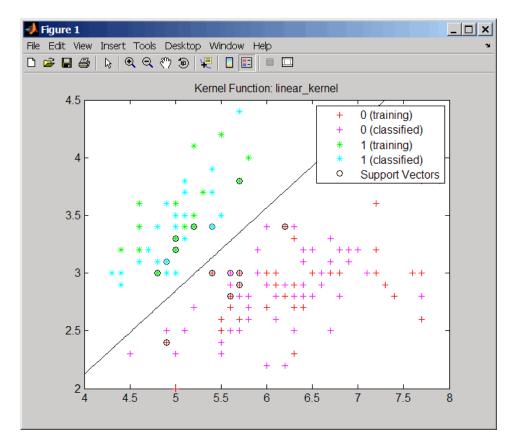
svmclassify

Purpose	Classify data using support vector machine	
Syntax	Group = svmclassify(SVMStruct, Sample) Group = svmclassify(SVMStruct, Sample, 'Showplot', ShowplotValue)	
Description	<pre>Group = svmclassify(SVMStruct, Sample) classifies each row of the data in Sample using the information in a support vector machine classifier structure SVMStruct, created using the svmtrain function. Sample must have the same number of columns as the data used to train the classifier in svmtrain. Group indicates the group to which each row of Sample has been assigned.</pre>	
	<pre>Group = svmclassify(SVMStruct, Sample, 'Showplot', ShowplotValue) controls the plotting of the sample data in the figure created using the Showplot property with the svmtrain function.</pre>	
Examples	 Load the sample data, which includes Fisher's iris data of 5 measurements on a sample of 150 irises. load fisheriris 	
	2 Create data, a two-column matrix containing sepal length and sepal width measurements for 150 irises.	
	data = [meas(:,1), meas(:,2)];	
	3 From the species vector, create a new column vector, groups, to classify data into two groups: Setosa and non-Setosa.	
	<pre>groups = ismember(species,'setosa');</pre>	
	4 Randomly select training and test sets.	
	[train, test] = crossvalind('holdOut',groups); cp = classperf(groups);	


5 Use the svmtrain function to train an SVM classifier using a linear kernel function and plot the grouped data.

```
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);
```

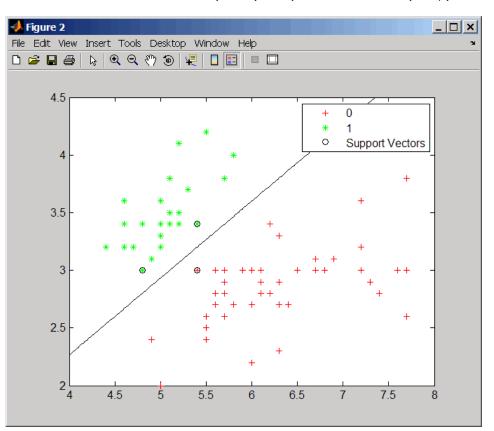

6 Add a title to the plot, using the KernelFunction field from the svmStruct structure as the title.


```
title(sprintf('Kernel Function: %s',...
func2str(svmStruct.KernelFunction)),...
'interpreter','none');
```


7 Classify the test set using a support vector machine.

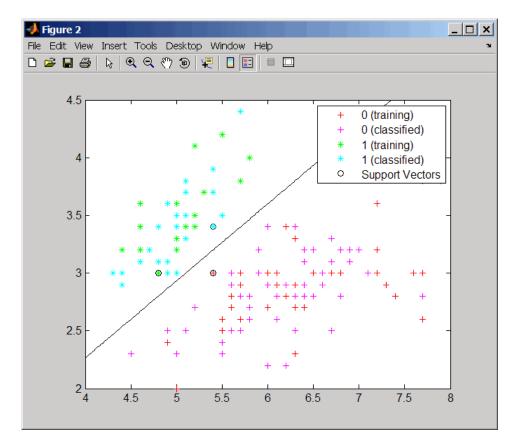
classes = svmclassify(svmStruct,data(test,:),'showplot',true);

svmclassify


8 Evaluate the performance of the classifier.

```
classperf(cp,classes,test);
cp.CorrectRate
ans =
    0.9867
```

9 Use a one-norm, hard margin support vector machine classifier by changing the boxconstraint property.


figure

svmStruct = svmtrain(data(train,:),groups(train),...
'showplot',true,'boxconstraint',1e6);

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

svmclassify

10 Evaluate the performance of the classifier.

```
classperf(cp,classes,test);
cp.CorrectRate
```

```
ans =
```

0.9867

References	[1] Kecman, V., Learning and Soft Computing, MIT Press, Cambridge, MA. 2001.		
	[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle, J., Least Squares Support Vector Machines, World Scientific, Singapore, 2002.		
	[3] Scholkopf, B., and Smola, A.J., Learning with Kernels, MIT Press, Cambridge, MA. 2002.		
	[4] Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, First Edition (Cambridge: Cambridge University Press). http://www.support-vector.net/		
See Also	Bioinformatics Toolbox functions: classperf, crossvalind, knnclassify, svmtrain		
	Statistics Toolbox function: classify		
	Optimization Toolbox [™] function: quadprog		

Purpose	Create or edit Sec structure	quential Minimal Optimization (SMO) options
Syntax	'Property2Na SMO_OptsStruct Property1Val	<pre>= svmsmoset('Property1Name', Property1Value, me', Property2Value,) = svmsmoset(OldOpts, 'Property1Name', ue, 'Property2Name', Property2Value,) = svmsmoset(OldOpts, NewOpts)</pre>
Arguments	OldOpts	Structure that specifies options used by the SMO method of the svmtrain function.
	NewOpts	Structure that specifies options used by the SMO method of the svmtrain function.

PropertyName	Description of PropertyValue
TolKKT	Value that specifies the tolerance with which the KKT conditions are checked. KKT conditions are Karush-Kuhn-Tucker conditions. Default is 1.0000e-003.
MaxIter	Integer that specifies the maximum number of iterations of the main loop. If this limit is exceeded before the algorithm converges, then the algorithm stops and returns an error. Default is 15000.

PropertyName	Description of PropertyValue	
Display	 String that specifies the level of information about the optimization iterations that is displayed as the algorithm runs. Choices are: off — Default. Reports nothing. 	
	• iter — Reports every 500 iterations.	
	• final — Reports only when the algorithm finishes.	
KKTViolationLevel	el Value that specifies the fraction of variables allowed to violate the KKT conditions. Choices are any value ≥ 0 and < 1. Default is 0. For example, if you set KKTViolationLevel to 0.05 then 5% of the variables are allowed to violate the KKT conditions.	
	Tip Set this option to a positive value to help the algorithm converge if it is fluctuating near a good solution.	
	For more information on KKT conditions, see Cristianini, et al. 2000.	
KernelCacheLimit	Value that specifies the size of the kernel matrix cache. The algorithm keeps a matrix with up to KernelCacheLimit × KernelCacheLimit double-precision, floating-point numbers in memory. Default is 5000.	

Return Values

SMO_OptsStruct Structure that specifies options used by the SMO method used by the svmtrain function.

```
Description SMO_OptsStruct = svmsmoset('Property1Name', Property1Value,
'Property2Name', Property2Value, ...) creates SMO_OptsStruct,
an SMO options structure from the specified inputs. This structure can
be used as input for the svmtrain function.
```

SMO_OptsStruct = svmsmoset(OldOpts, 'Property1Name', Property1Value, 'Property2Name', Property2Value, ...) alters the options in OldOpts, an existing SMO options structure, with the specified inputs, creating a new output options structure.

SMO_OptsStruct = svmsmoset(OldOpts, NewOpts) alters the options
in OldOpts, an existing SMO options structure, with the options
specified in NewOpts, another SMO options structure, creating a new
output options structure.

Examples 1 Create an SMO options structure and specify the Display, MaxIter, and KernelCacheLimit properties.

```
opts = svmsmoset('Display','final','MaxIter',20000,...
'KernelCacheLimit',1000)
```

opts =

```
Display: 'final'
TolKKT: 1.0000e-003
MaxIter: 20000
KKTViolationLevel: 0
KernelCacheLimit: 1000
```

2 Create an alternate SMO options structure from the previous structure. Specify different Display and KKTViolationLevel properties.

```
alt_opts = svmsmoset(opts,'Display','iter','KKTViolationLevel',.05)
alt_opts =
```

Display: 'iter'

	TolKKT: 1.0000e-003 MaxIter: 20000 KKTViolationLevel: 0.0500	
	KernelCacheLimit: 1000	
References	[1] Cristianini, N., and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, First Edition (Cambridge: Cambridge University Press). http://www.support-vector.net/	
	[2] Platt, J.C. (1999). Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines. In Advances in Kernel Methods - Support Vector Learning, B. Scholkopf, J.C. Burges, and A.J. Smola, eds. (Cambridge MA: MIT Press), pp. 185–208.	
	[3] Fan, R.E., Chen, P.H., and Lin, C.J. (2005). Working Set Selection Using Second Order Information for Training SVM. Journal of Machine Learning Research <i>6</i> , 1889–1918.	
	[4] Bottou, L. and Lin, C.J. (2006). Support Vector Machine Solvers. http://www.csie.ntu.edu.tw/~cjlin/papers.html	
See Also	Bioinformatics Toolbox functions: svmclassify, svmtrain Optimization Toolbox function: optimset	

Purpose	Train support vector mad	chine classifier
Syntax	<pre>Kernel_FunctionValue, SVMStruct = svmtrain(SVMStruct = svmtrain(SVMStruct = svmtrain(Mlp_ParamsValue,) SVMStruct = svmtrain(SVMStruct = svmtrain(QuadProg_OptsValue SVMStruct = svmtrain(BoxConstraintValue SVMStruct = svmtrain()</pre>	<pre>, 'Kernel_Function',) , 'RBF_Sigma', RBFSigmaValue,) , 'Polyorder', PolyorderValue,) , 'Mlp_Params', , 'Method', MethodValue,) , 'QuadProg_Opts', ,) , 'SMO_Opts', SMO_OptsValue,) , 'BoxConstraint',</pre>
Arguments	Training Group	Matrix of training data, where each row corresponds to an observation or replicate, and each column corresponds to a feature or variable. Column vector, character array, or cell array
		of strings for classifying data in <i>Training</i> into two groups. It has the same number of elements as there are rows in <i>Training</i> . Each element specifies the group to which the corresponding row in <i>Training</i> belongs.

Kernel_FunctionValue	 String or function handle specifying the kernel function that maps the training data into kernel space. Choices are: linear — Default. Linear kernel or dot product.
	• quadratic — Quadratic kernel.
	 rbf — Gaussian Radial Basis Function kernel with a default scaling factor, sigma, of 1.
	 polynomial — Polynomial kernel with a default order of 3.
	 mlp — Multilayer Perceptron kernel with default scale and bias parameters of [1, -1].
	• @functionname — Handle to a kernel function specified using @and the functionname. For example, @kfun, or an anonymous function.
RBFSigmaValue	Positive number that specifies the scaling factor, sigma, in the radial basis function kernel. Default is 1.
PolyorderValue	Positive number that specifies the order of a polynomial kernel. Default is 3 .
Mlp_ParamsValue	Two-element vector, $[p1, p2]$, that specifies the scale and bias parameters of the multilayer perceptron (mlp) kernel. K = tanh(p1*U*V' + p2). p1 must be > 0, and p2 must be < 0. Default is $[1, -1]$.

MethodValue	 String specifying the method to find the separating hyperplane. Choices are: QP — Quadratic Programming (requires the Optimization Toolbox software). The classifier is a two-norm, soft-margin support vector machine. 	
	• SMO — Sequential Minimal Optimization. The classifier is a one-norm, soft-margin support vector machine.	
	• LS — Least-Squares.	
	If you installed the Optimization Toolbox software, the QP method is the default. Otherwise, the SMO method is the default.	
QuadProg_OptsValue	An options structure created by the optimset function (Optimization Toolbox software). This structure specifies options used by the QP method. For more information on creating this structure, see the optimset and quadprog reference pages.	
SMO_OptsValue	An options structure created by the svmsmoset function. This structure specifies options used by the SMO method. For more information on creating this structure, see the svmsmoset function.	

BoxConstraintValue	Box constraints for the soft margin. Choices are:Strictly positive numeric scalar.	
	• Array of strictly positive values with the number of elements equal to the number of rows in the <i>Training</i> matrix.	
	If <i>BoxConstraintValue</i> is a scalar, it is automatically rescaled by $N/(2*N1)$ for the data points of group one and by $N/(2*N2)$ for the data points of group two. N1 is the number of elements in group one, N2 is the number of elements in group two, and N = N1 + N2. This rescaling is done to take into account unbalanced groups, that is cases where N1 and N2 have very different values.	
	If <i>BoxConstraintValue</i> is an array, then each array element is taken as a box constraint for the data point with the same index. Default is a scalar value of 1.	
AutoscaleValue	Controls the shifting and scaling of data points before training. When <i>AutoscaleValue</i> is true, the columns of the input data matrix <i>Training</i> are shifted to zero mean and scaled to unit variance. Default is true.	
ShowplotValue	Controls the display of a plot of the grouped data, including the separating line for the classifier, when using two-dimensional data. Choices are true or false (default).	

Return Values	SVMStruct	Structure containing information about the trained SVM classifier, including the following fields:SupportVectors
		• Alpha
		• Bias
		• KernelFunction
		 KernelFunctionArgs
		• GroupNames
		 SupportVectorIndices
		• ScaleData
		• FigureHandles
		Tip You can use <i>SVMStruct</i> as input to the <i>svmclassify</i> function, to use for classification.

Description SVMStruct = svmtrain(Training, Group) trains a support vector machine (SVM) classifier using Training, a matrix of training data taken from two groups, specified by Group. svmtrain treats NaNs or empty strings in Group as missing values and ignores the corresponding rows of Training. Information about the trained SVM classifier is returned in SVMStruct, a structure with the following fields.

- SupportVectors
- Alpha
- Bias
- KernelFunction

- KernelFunctionArgs
- GroupNames
- SupportVectorIndices
- ScaleData
- FigureHandles

SVMStruct = svmtrain(Training, Group, ...'PropertyName', PropertyValue, ...) calls svmtrain with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

SVMStruct = svmtrain(..., 'Kernel_Function', Kernel_FunctionValue, ...) specifies the kernel function (Kernel_FunctionValue) that maps the training data into kernel space. Kernel_FunctionValue can be one of the following strings or a function handle:

- linear Default. Linear kernel or dot product.
- quadratic Quadratic kernel.
- rbf Gaussian Radial Basis Function kernel with a default scaling factor, sigma, of 1.
- polynomial Polynomial kernel with a default order of 3.
- mlp Multilayer Perceptron kernel with default scale and bias parameters of [1, -1].
- @functionname Handle to a kernel function specified using @and the functionname. For example, @kfun, or an anonymous function.

A kernel function must be of the following form:

function K = kfun(U, V)

Input arguments U and V are matrices with m and n rows respectively. Return value K is an m-by-n matrix. If kfun is parameterized, you can use anonymous functions to capture the problem-dependent parameters. For example, suppose that your kernel function is:

function K = kfun(U,V,P1,P2)K = tanh(P1*(U*V')+P2);

You can set values for $\mathsf{P1}$ and $\mathsf{P2}$ and then use an anonymous function as follows:

@(U,V) kfun(U,V,P1,P2)

For more information on the types of functions that can be used as kernel functions, see Cristianini and Shawe-Taylor, 2000.

SVMStruct = svmtrain(..., 'RBF_Sigma', RBFSigmaValue, ...) specifies the scaling factor, sigma, in the radial basis function kernel. RBFSigmaValue must be a positive number. Default is 1.

SVMStruct = svmtrain(..., 'Polyorder', PolyorderValue, ...) specifies the order of a polynomial kernel. *PolyorderValue* must be a positive number. Default is 3.

SVMStruct = svmtrain(..., 'Mlp_Params', Mlp_ParamsValue, ...) specifies the scale and bias parameters of the multilayer perceptron (mlp) kernel as a two-element vector, [p1, p2]. K = tanh(p1*U*V' + p2), p1 > 0, and p2 < 0. p1 must be > 0, and p2 must be < 0. Default is [1, -1].</pre>

SVMStruct = svmtrain(..., 'Method', MethodValue, ...)
specifies the method to find the separating hyperplane. Choices are:

- QP Quadratic Programming (requires the Optimization Toolbox software). The classifier is a two-norm, soft-margin support vector machine.
- SMO Sequential Minimal Optimization. The classifier is a one-norm, soft-margin support vector machine.
- LS Least-Squares.

If you installed the Optimization Toolbox software, the QP method is the default. Otherwise, the SMO method is the default.

Note If you specify the QP method, the classifier is a two-norm, soft-margin support vector machine.

```
SVMStruct = svmtrain(..., 'QuadProg_Opts',
QuadProg_OptsValue, ...) specifies an options structure
created by the optimset function (Optimization Toolbox software). This
structure specifies options used by the QP method. For more information
on creating this structure, see the optimset and quadprog functions.
```

SVMStruct = svmtrain(..., 'SMO_Opts', SMO_OptsValue, ...) specifies an options structure created by svmsmoset function. This structure specifies options used by the SMO method. For more information on creating this structure, see the svmsmoset function.

```
SVMStruct = svmtrain(..., 'BoxConstraint',
BoxConstraintValue, ...) specifies box constraints for the
soft margin. BoxConstraintValue can be either of the following:
```

- Strictly positive numeric scalar
- Array of strictly positive values with the number of elements equal to the number of rows in the *Training* matrix

If *BoxConstraintValue* is a scalar, it is automatically rescaled by N/(2*N1) for the data points of group one and by N/(2*N2) for the data points of group two. N1 is the number of elements in group one, N2 is the number of elements in group two, and N = N1 + N2. This rescaling is done to take into account unbalanced groups, that is cases where N1 and N2 have very different values.

If *BoxConstraintValue* is an array, then each array element is taken as a box constraint for the data point with the same index. Default is a scalar value of 1.

SVMStruct = svmtrain(..., 'Autoscale', AutoscaleValue, ...) controls the shifting and scaling of data points before training. When AutoscaleValue is true, the columns of the input data matrix Training are shifted to zero mean and scaled to unit variance. Default is true.

SVMStruct = svmtrain(..., 'Showplot', ShowplotValue, ...), controls the display of a plot of the grouped data, including the separating line for the classifier, when using two-dimensional data. Choices are true or false (default).

Memory Usage and Out of Memory Error

When you set 'Method' to 'QP', the svmtrain function operates on a data set containing N elements, it creates an (N+1)-by-(N+1) matrix to find the separating hyperplane. This matrix needs at least $8*(n+1)^2$ bytes of contiguous memory. If this size of contiguous memory is not available, the software displays an "out of memory" message.

When you set 'Method' to 'SMO', memory consumption is controlled by the SMO option KernelCacheLimit. For more information on the KernelCacheLimit option, see the svmsmoset function. The SMO algorithm stores only a submatrix of the kernel matrix, limited by the size specified by the KernelCacheLimit option. However, if the number of data points exceeds the size specified by the KernelCacheLimit option, the SMO algorithm slows down because it has to recalculate the kernel matrix elements.

When using svmtrain on large data sets, and you run out of memory or the optimization step is very time consuming, try either of the following:

- Use a smaller number of samples and use cross validation to test the performance of the classifier.
- Set 'Method' to 'SMO', and set the KernelCacheLimit option as large as your system permits. For information on setting the KernelCacheLimit option, see the svmsmoset function.

Tip If you set 'Method' to 'SMO', setting the 'BoxConstraint' property as small as possible will help the SMO algorithm run faster.

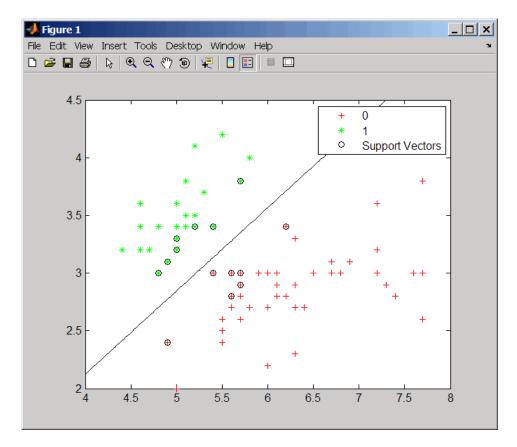
Examples 1 Load the sample data, which includes Fisher's iris data of 5 measurements on a sample of 150 irises.

load fisheriris

2 Create data, a two-column matrix containing sepal length and sepal width measurements for 150 irises.

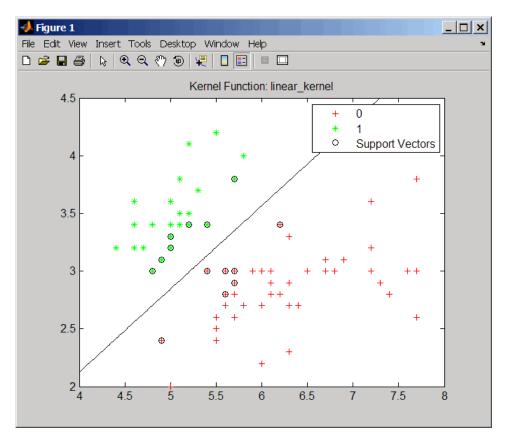
```
data = [meas(:,1), meas(:,2)];
```

3 From the species vector, create a new column vector, groups, to classify data into two groups: Setosa and non-Setosa.

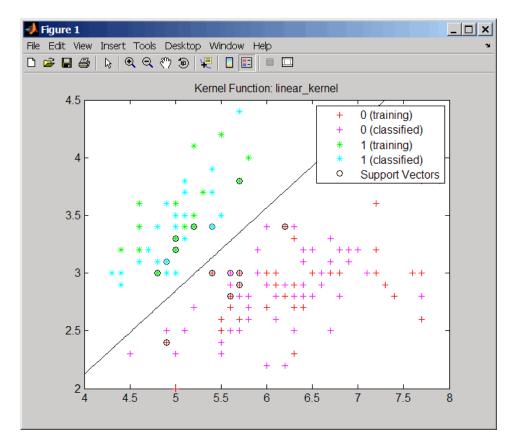

groups = ismember(species, 'setosa');

4 Randomly select training and test sets.

```
[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);
```


5 Train an SVM classifier using a linear kernel function and plot the grouped data.

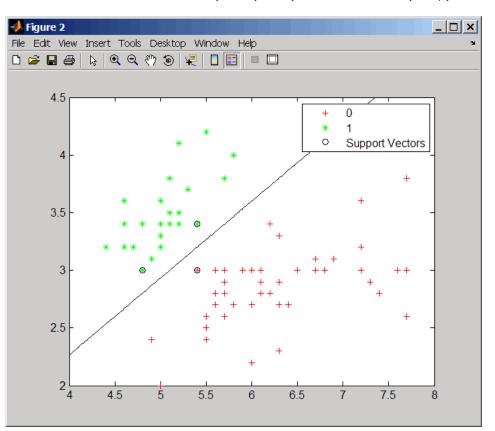
svmStruct = svmtrain(data(train,:),groups(train),'showplot',true);


6 Add a title to the plot, using the KernelFunction field from the svmStruct structure as the title.

```
title(sprintf('Kernel Function: %s',...
func2str(svmStruct.KernelFunction)),...
'interpreter','none');
```

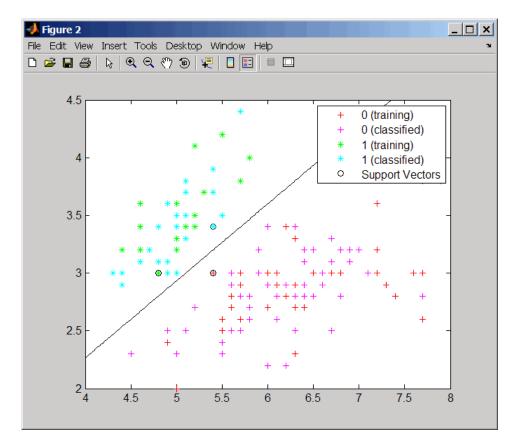

7 Use the svmclassify function to classify the test set.

classes = svmclassify(svmStruct,data(test,:),'showplot',true);


8 Evaluate the performance of the classifier.

```
classperf(cp,classes,test);
cp.CorrectRate
ans =
    0.9867
```

9 Use a one-norm, hard margin support vector machine classifier by changing the boxconstraint property.


figure

svmStruct = svmtrain(data(train,:),groups(train),...
'showplot',true,'boxconstraint',1e6);

classes = svmclassify(svmStruct,data(test,:),'showplot',true);

svmtrain

10 Evaluate the performance of the classifier.

```
classperf(cp,classes,test);
cp.CorrectRate
```

```
ans =
```

0.9867

svmtrain

References	[1] Kecman, V. (2001). Learning and Soft Computing (Cambridge, MA: MIT Press).
	[2] Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle, J. (2002). Least Squares Support Vector Machines (Singapore: World Scientific).
	[3] Scholkopf, B., and Smola, A.J. (2002). Learning with Kernels (Cambridge, MA: MIT Press).
	[4] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, First Edition (Cambridge: Cambridge University Press). http://www.support-vector.net/
See Also	Bioinformatics Toolbox functions: knnclassify, svmclassify, svmsmoset
	Statistics Toolbox function: classify
	Optimization Toolbox function: quadprog
	MATLAB function: optimset
See Also	svmsmoset Statistics Toolbox function: classify
	MATLAB function: optimset

Purpose	Locally align two sequences using Smith-Waterman algorithm		
Syntax	<pre>Score = swalign(Seq1, Seq2) [Score, Alignment] = swalign(Seq1, Seq2) [Score, Alignment, Start] = swalign(Seq1, Seq2) = swalign(Seq1,Seq2,'Alphabet', AlphabetValue) = swalign(Seq1,Seq2,'ScoringMatrix', ScoringMatrixValue,) = swalign(Seq1,Seq2,'Scale', ScaleValue,) = swalign(Seq1,Seq2,'ExtendGap', ExtendGapValue,) = swalign(Seq1,Seq2,'Showscore', ShowscoreValue,)</pre>		
Arguments	nents Seq1, Seq2	 Amino acid or nucleotide sequences. Enter any of the following: Character string of letters representing amino acids or nucleotides, such as returned by int2aa or int2nt Vector of integers representing amino acids or nucleotides, such as returned by aa2int or nt2int Structure containing a Sequence field Tip For help with letter and integer representations of amino acids and 	
		nucleotides, see Amino Acid Lookup on page 2-91 or Nucleotide Lookup on page 2-102.	
	AlphabetValue	String specifying the type of sequence. Choices are 'AA' (default) or 'NT'.	

ScoringMatrixValue String specifying the scoring matrix to use for the local alignment. Choices for amino acid sequences are:

- 'PAM40'
- 'PAM250'
- 'DAYHOFF'
- 'GONNET'
- 'BLOSUM30' increasing by 5 up to 'BLOSUM90'
- 'BLOSUM62'
- 'BLOSUM100'

Default is:

- 'BLOSUM50' (when *AlphabetValue* equals 'AA')
- 'NUC44' (when *AlphabetValue* equals 'NT')

Note All of the above scoring matrices have a built-in scale factor that returns *Score* in bits.

ScaleValue	Scale factor used to return <i>Score</i> in arbitrary units other than bits. Choices are any positive value. For example, if you enter log(2) for <i>ScaleValue</i> , then swalign returns <i>Score</i> in nats.
GapOpenValue	Penalty for opening a gap in the alignment. Choices are any positive integer. Default is 8 .

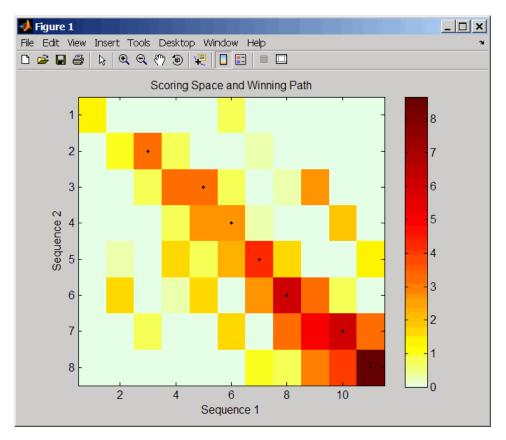
	ExtendGapValue	Penalty for extending a gap. Choices are any positive integer. Default is equal to <i>GapOpenValue</i> .	
	ShowscoreValue	Controls the display of the scoring space and the winning path of the alignment. Choices are true or false (default).	
Return Values	Score	Optimal local alignment score in bits.	
	Alignment	3-by-N character array showing the two sequences, <i>Seq1</i> and <i>Seq2</i> , in the first and third rows, and symbols representing the optimal local alignment between them in the second row.	
	Start	2-by-1 vector of indices indicating the starting point in each sequence for the alignment.	
Description	<i>Score</i> = swalign(<i>Seq1</i> , <i>Seq2</i>) returns the optimal local alignment score in bits. The scale factor used to calculate the score is provided b the scoring matrix.		
	[Score, Alignment] = swalign(Seq1, Seq2) returns a 3-by-N character array showing the two sequences, Seq1 and Seq2, in the first and third rows, and symbols representing the optimal local alignment between them in the second row. The symbol indicates amino acids or nucleotides that match exactly. The symbol : indicates amino acids or nucleotides that are related as defined by the scoring matrix (nonmatches with a zero or positive scoring matrix value).		
		<pre>Start] = swalign(Seq1, Seq2) returns a indicating the starting point in each sequence</pre>	

... = swalign(Seq1,Seq2, ... 'PropertyName', PropertyValue, ...) calls swalign with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = swalign(Seq1,Seq2, ... 'Alphabet', AlphabetValue) specifies the type of sequences. Choices are 'AA' (default) or 'NT'.

... = swalign(Seq1,Seq2, ...'ScoringMatrix', ScoringMatrixValue, ...) specifies the scoring matrix to use for the local alignment. Default is:

• 'BLOSUM50' (when AlphabetValue equals 'AA')


• 'NUC44' (when AlphabetValue equals 'NT')

... = swalign(Seq1,Seq2, ... 'Scale', ScaleValue, ...) specifies the scale factor used to return Score in arbitrary units other than bits. Choices are any positive value.

... = swalign(Seq1,Seq2, ... 'GapOpen', GapOpenValue, ...) specifies the penalty for opening a gap in the alignment. Choices are any positive integer. Default is 8.

... = swalign(Seq1,Seq2, ... 'ExtendGap', ExtendGapValue, ...) specifies the penalty for extending a gap in the alignment. Choices are any positive integer. Default is equal to GapOpenValue.

... = swalign(Seq1,Seq2, ... 'Showscore', ShowscoreValue, ...) controls the display of the scoring space and winning path of the alignment. Choices are true or false (default)

The scoring space is a heat map displaying the best scores for all the partial alignments of two sequences. The color of each (n1,n2)coordinate in the scoring space represents the best score for the pairing of subsequences Seq1(s1:n1) and Seq2(s2:n2), where n1 is a position in Seq1, n2 is a position in Seq2, s1 is any position in Seq1 between 1:n1, and s2 is any position in Seq2 between 1:n2. The best score for a pairing of specific subsequences is determined by scoring all possible alignments of the subsequences by summing matches and gap penalties.

The winning path is represented by black dots in the scoring space and represents the pairing of positions in the optimal local alignment. The

color of the last point (lower right) of the winning path represents the optimal local alignment score for the two sequences and is the *Score* output returned by swalign.

Tip The scoring space visually shows tandem repeats, small segments that potentially align, and partial alignments of domains from rearranged sequences.

Examples

1 Locally align two amino acid sequences using the BLOSUM50 (default) scoring matrix and the default values for the GapOpen and ExtendGap properties. Return the optimal local alignment score in bits and the alignment character array. Return the optimal global alignment score in bits and the alignment character array.

2 Locally align two amino acid sequences specifying the PAM250 scoring matrix and a gap open penalty of 5.

```
[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE',...
'ScoringMatrix', 'pam250',...
'GapOpen',5)
```

Score =

	8 Alignment =
	GAWGHE : PAW-HE
	3 Locally align two amino acid sequences returning the <i>Score</i> in nat units (nats) by specifying a scale factor of log(2).
	[Score, Alignment] = swalign('HEAGAWGHEE','PAWHEAE','Scale',log(2))
	Score =
	6.4694
	Alignment =
	AWGHE AW-HE
References	[1] Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998). Biological Sequence Analysis (Cambridge University Press).
	[2] Smith, T., and Waterman, M. (1981). Identification of common molecular subsequences. Journal of Molecular Biology <i>147</i> , 195–197.
See Also	Bioinformatics Toolbox functions: blosum, nt2aa, nwalign, pam, pdbsuperpose, seqdotplot, showalignment

traceplot

Purpose	Draw nucleotide trace plots	
Syntax	<pre>traceplot(TraceStructure) traceplot(A, C, G, T) h = traceplot()</pre>	
Description	traceplot(<i>TraceStructure</i>) creates a trace plot from data in a structure with fields A, C, G, T.	
	traceplot(A, C, G, T) creates a trace plot from data in vectors A, C, G, T.	
	h = traceplot() returns a structure with the handles of the lines corresponding to A, C, G, T.	
Examples	<pre>tstruct = scfread('sample.scf'); traceplot(tstruct)</pre>	
See Also	Bioinformatics Toolbox function: scfread	

```
Purpose
                  Perform background adjustment on Affymetrix microarray probe-level
                  data using zone-based method
Syntax
                  BackAdjustedData = zonebackadj(Data)
                  [BackAdjustedData, ZoneStruct] = zonebackadj(Data)
                  [BackAdjustedData, ZoneStruct,
                     Background] = zonebackadj(Data)
                  ... = zonebackadj(Data, ... 'NumZones', NumZonesValue, ...)
                  ... = zonebackadj(Data, ... 'Percent', PercentValue, ...)
                  ... = zonebackadj(Data, ... 'SmoothFactor',
                  SmoothFactorValue,
                     ...)
                  ... = zonebackadj(Data, ...'NoiseFrac',
                  NoiseFracValue, ...)
                  ... = zonebackadj(Data, ... 'CDF', CDFValue, ...)
                  ... = zonebackadj(Data, ... 'Mask', MaskValue, ...)
                  ... = zonebackadj(Data, ... 'Showplot', ShowplotValue, ...)
```

```
Arguments
```

Data

Either of the following:

- MATLAB structure containing probe intensities from an Affymetrix CEL file, such as returned by affyread when used to read a CEL file.
- Array of MATLAB structures containing probe intensities from multiple Affymetrix CEL files.

NumZonesValueScalar or two-element vector that specifies
the number of zones to use in the background
adjustment. If a scalar, it must be a square
number. If a two-element vector, the first
element specifies the number of rows and the
second element specifies the number of columns
in a nonsquare grid. Default is 16.

PercentValue	Value that specifies a percentage, P , such that the lowest P percent of ranked intensity values from each zone is used to estimate the background for that zone. Default is 2.
SmoothFactorValue	Value that specifies the smoothing factor used in the calculation of the weighted average of the contributions of each zone to the background of a point. Default is 100.
<i>NoiseFracValue</i>	Value that specifies the noise fraction, NF, such that the background-adjusted value is given by max((Intensity - WeightedBackground), NF*LocalNoiseEstimate). Default is 0.5.
CDFValue	 Either of the following: String specifying a file name or path and file name of an Affymetrix CDF library file. If you specify only a file name, the file must be on the MATLAB search path or in the current directory.
	• MATLAB structure containing information from an Affymetrix CDF library file, such as returned by affyread when used to read a CDF file.
	The CDF library file or structure specifies control cells, which are not used in the background estimates.
MaskValue	Logical vector that specifies which cells to mask and not use in the background estimates. In the vector, $0 = not$ masked and $1 = masked$. Defaults are the values in the Masked column of the Probes field of the CEL file.
ShowplotValue	Controls the plotting of an image of the background estimates. Choices are true or false (default).

Return Values	BackAdjustedData	Matrix or cell array of vectors containing background-adjusted probe intensity values.	
	ZoneStruct	MATLAB structure containing the centers of the zones used to perform the background adjustment and the estimates of the background values at the center of each zone.	
	Background	Matrix or cell array of vectors containing the estimated background values for each probe.	
Description	<pre>BackAdjustedData = zonebackadj(Data) returns the background-adjusted probe intensities from Data, which contains probe intensities from Affymetrix CEL files. Details of the background adjustment are described in Statistical Algorithms Description Document. [BackAdjustedData, ZoneStruct] = zonebackadj(Data) also returns a structure containing the centers of the zones used to perform the background adjustment and the estimates of the background values at the center of each zone.</pre>		
	zonebackadj(<i>Data</i>) a	<i>ZoneStruct</i> , <i>Background</i>] = lso returns a matrix or cell array of estimated background values for each probe.	
) calls zonebackad name/property value p any order. Each Prope	Data, 'PropertyName', PropertyValue, dj with optional properties that use property pairs. You can specify one or more properties in ertyName must be enclosed in single quotation ensitive. These property name/property value	
		Data,'NumZones', <i>NumZonesValue</i> ,) f zones to use in the background adjustment.	

NumZonesValue can be either a scalar that is a square number or a two-element array in which the first element specifies the number of rows and the second element specifies the number of columns in a nonsquare grid. Default is 16.

... = zonebackadj (*Data*, ... 'Percent', *PercentValue*, ...) specifies a percentage, *P*, such that the lowest *P* percent of ranked intensity values from each zone is used to estimate the background for that zone. Default is 2.

... = zonebackadj(Data, ... 'SmoothFactor', SmoothFactorValue, ...) specifies the smoothing factor used in the calculation of the weighted average of the contributions of each zone to the background of a point, thus providing a smooth transition between zones. Default is 100.

... = zonebackadj(Data, ...'NoiseFrac', NoiseFracValue, ...) specifies the noise fraction, such that the background-adjusted value is given by max((Intensity - WeightedBackground), NF*LocalNoiseEstimate), where NF is NoiseFracValue. Default is 0.5.

... = zonebackadj (*Data*, ... 'CDF', *CDFValue*, ...) specifies an Affymetrix CDF library file or structure, which specifies control cells, which are not used in the background estimates.

... = zonebackadj(Data, ...'Mask', MaskValue, ...) specifies a logical vector of that specifies which cells to mask and not use in the background estimates. In the vector, 0 = not masked and 1 = masked. Defaults are the values in the Masked column of the Probes field of the CEL file.

... = zonebackadj(*Data*, ... 'Showplot', *ShowplotValue*, ...) plots an image of the background estimates. Choices are true or false (default).

zonebackadj

Figure 1	terest Terele				_ 🗆 ×
File Ealt View	insert Tools । २३ 🔍 🔍 🔍 🕅		м нер 🗄 🗎 🗖		<u>د</u>
		Estimated B	ackground		
	×	×	(x)		46 45
	×	×	×		44
	x	×	×	×	42
	×	×	×	×	40 39

Examples The following example uses a sample CEL file and CDF library file from the *E. coli* Antisense Genome array, which you can download from:

http://www.affymetrix.com/support/technical/sample_data/demo_data.affx

After you download the demo data, you will need the Affymetrix Data Transfer Tool to extract the CEL file from a DTT file. You can download the Affymetrix Data Transfer Tool from:

http://www.affymetrix.com/products/software/specific/dtt.affx

	The following example assumes that the Ecoli-antisense-121502.CEL file is stored on the MATLAB search path or in the current directory. It also assumes that the associated CDF library file, Ecoli_ASv2.CDF, is stored at D:\Affymetrix\LibFiles\Ecoli.
	1 Use the affyread function to read an Affymetrix CEL file and create celStruct, a MATLAB structure containing probe intensities for a single Affymetrix GeneChip.
	<pre>celStruct = affyread('Ecoli-antisense-121502.CEL');</pre>
	2 Perform background adjustment on the probe intensities in the structure, excluding the probe intensities from the control cells on the chip.
	BackAdjMatrix = zonebackadj(celStruct, 'cdf', 'D:\Affymetrix\LibFiles\Ecoli\Ecoli_ASv2.CDF');
References	[1] Statistical Algorithms Description Document, http://www.affymetrix.com/support/technical/whitepapers/ sadd_whitepaper.pdf
See Also	Bioinformatics Toolbox functions: affyinvarsetnorm, affyread, celintensityread, gcrma, gcrmabackadj, probelibraryinfo, probesetlink, probesetlookup, probesetvalues, quantilenorm, rmabackadj, rmasummary

Method Reference

Phylogenetic Tree (p. 3-1)	Select, modify, and plot phylogenetic trees using phytree object methods
Graph Visualization (p. 3-2)	View relationships between data visually with interactive maps, hierarchy plots, and pathways using biograph object methods
Gene Ontology (p. 3-3)	Explore and analyze Gene Ontology data using geneont object methods
Clustergram (p. 3-4)	Visualize and explore hierarchical clustering analysis data using clustergram object methods
DataMatrix (p. 3-4)	Explore and analyze microarray data using DataMatrix object methods

Phylogenetic Tree

Following are methods for use with a phytree object.

get (phytree)	Retrieve information about phylogenetic tree object
getbyname (phytree)	Branches and leaves from phytree object
getcanonical (phytree)	Calculate canonical form of phylogenetic tree

getmatrix (phytree)	Convert phytree object into relationship matrix
getnewickstr (phytree)	Create Newick-formatted string
pdist (phytree)	Calculate pairwise patristic distances in phytree object
plot (phytree)	Draw phylogenetic tree
prune (phytree)	Remove branch nodes from phylogenetic tree
reorder (phytree)	Reorder leaves of phylogenetic tree
reroot (phytree)	Change root of phylogenetic tree
select (phytree)	Select tree branches and leaves in phytree object
subtree (phytree)	Extract phylogenetic subtree
view (phytree)	View phylogenetic tree
weights (phytree)	Calculate weights for phylogenetic tree

Graph Visualization

Following are methods for use with a biograph object.

allshortestpaths (biograph)	Find all shortest paths in biograph object
conncomp (biograph)	Find strongly or weakly connected components in biograph object
dolayout (biograph)	Calculate node positions and edge trajectories
get (biograph)	Retrieve information about biograph object
getancestors (biograph)	Find ancestors in biograph object

Find descendants in biograph object
Get handles to edges in biograph object
Get connection matrix from biograph object
Get handles to nodes
Find relatives in biograph object
Test for cycles in biograph object
Find isomorphism between two biograph objects
Determine if tree created from biograph object is spanning tree
Calculate maximum flow in biograph object
Find minimal spanning tree in biograph object
Set property of biograph object
Solve shortest path problem in biograph object
Perform topological sort of directed acyclic graph extracted from biograph object
Traverse biograph object by following adjacent nodes
Draw figure from biograph object

Gene Ontology

Following are methods for use with a geneont object.

getancestors (geneont)	Find terms that are ancestors of specified Gene Ontology (GO) term
getdescendants (geneont)	Find terms that are descendants of specified Gene Ontology (GO) term
getmatrix (geneont)	Convert geneont object into relationship matrix
getrelatives (geneont)	Find terms that are relatives of specified Gene Ontology (GO) term

Clustergram

Following are methods for use with a clustergram object.

get (clustergram)	Retrieve information about clustergram object
plot (clustergram)	Render clustergram heat map and dendrograms for clustergram object
set (clustergram)	Set property of clustergram object
view (clustergram)	View clustergram heat map and dendrograms for clustergram object

DataMatrix

Following are methods for use with a DataMatrix object.

colnames (DataMatrix)	Retrieve or set column names of DataMatrix object
disp (DataMatrix)	Display DataMatrix object
dmarrayfun (DataMatrix)	Apply function to each element in DataMatrix object

dmbsxfun (DataMatrix)	Apply element-by-element binary operation to two DataMatrix objects with singleton expansion enabled
double (DataMatrix)	Convert DataMatrix object to double-precision array
eq (DataMatrix)	Test DataMatrix objects for equality
ge (DataMatrix)	Test DataMatrix objects for greater than or equal to
get (DataMatrix)	Retrieve information about DataMatrix object
gt (DataMatrix)	Test DataMatrix objects for greater than
horzcat (DataMatrix)	Concatenate DataMatrix objects horizontally
isequal (DataMatrix)	Test DataMatrix objects for equality
isequalwithequalnans (DataMatrix)	Test DataMatrix objects for equality, treating NaNs as equal
ldivide (DataMatrix)	Left array divide DataMatrix objects
le (DataMatrix)	Test DataMatrix objects for less than or equal to
lt (DataMatrix)	Test DataMatrix objects for less than
max (DataMatrix)	Return maximum values in DataMatrix object
mean (DataMatrix)	Return average or mean values in DataMatrix object
median (DataMatrix)	Return median values in DataMatrix object
min (DataMatrix)	Return minimum values in DataMatrix object
minus (DataMatrix)	Subtract DataMatrix objects
ndims (DataMatrix)	Return number of dimensions in DataMatrix object

ne (DataMatrix)	Test DataMatrix objects for inequality
numel (DataMatrix)	Return number of elements in DataMatrix object
plot (DataMatrix)	Draw 2-D line plot of DataMatrix object
plus (DataMatrix)	Add DataMatrix objects
power (DataMatrix)	Array power DataMatrix objects
rdivide (DataMatrix)	Right array divide DataMatrix objects
rownames (DataMatrix)	Retrieve or set row names of DataMatrix object
set (DataMatrix)	Set property of DataMatrix object
single (DataMatrix)	Convert DataMatrix object to single-precision array
sortcols (DataMatrix)	Sort columns of DataMatrix object in ascending or descending order
sortrows (DataMatrix)	Sort rows of DataMatrix object in ascending or descending order
std (DataMatrix)	Return standard deviation values in DataMatrix object
sum (DataMatrix)	Return sum of elements in DataMatrix object
times (DataMatrix)	Multiply DataMatrix objects
var (DataMatrix)	Return variance values in DataMatrix object
vertcat (DataMatrix)	Concatenate DataMatrix objects vertically

Methods — Alphabetical List

Purpose	Find all shortest paths in biograph object	
Syntax	<pre>[dist] = allshortestpaths(BGObj) [dist] = allshortestpaths(BGObj,'Directed', DirectedValue,) [dist] = allshortestpaths(BGObj,'Weights', WeightsValue,)</pre>	
Arguments	BGObj	Biograph object created by biograph (object constructor).
	DirectedValue	Property that indicates whether the graph is directed or undirected. Enter false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.
	WeightsValue	Column vector that specifies custom weights for the edges in the N-by-N adjacency matrix extracted from a biograph object, <i>BGObj</i> . It must have one entry for every nonzero value (edge) in the matrix. The order of the custom weights in the vector must match the order of the nonzero values in the matrix when it is traversed column-wise. This property lets you use zero-valued weights. By default, allshortestpaths gets weight information from the nonzero entries in the matrix.
Description	[<i>dist</i>] = allsh	ctory information on graph theory functions, see "Graph s" in the <i>Bioinformatics Toolbox User's Guide</i> .
		les in a graph represented by an N-by-N adjacency l from a biograph object, <i>BGObj</i> , using Johnson's

algorithm. Nonzero entries in the matrix represent the weights of the edges.

Output *dist* is an N-by-N matrix where *dist*(S,T) is the distance of the shortest path from node S to node T. A 0 in this matrix indicates the source node; an Inf is an unreachable node.

Johnson's algorithm has a time complexity of O(N*log(N)+N*E), where N and E are the number of nodes and edges respectively.

[...] = allshortestpaths (*BGObj*, '*PropertyName*', *PropertyValue*, ...) calls allshortestpaths with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

[dist] = allshortestpaths(BGObj, ...'Directed', DirectedValue, ...) indicates whether the graph is directed or undirected. Set DirectedValue to false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.

[dist] = allshortestpaths(BGObj, ..., 'Weights', WeightsValue, ...) lets you specify custom weights for the edges. WeightsValue is a column vector having one entry for every nonzero value (edge) in the N-by-N adjacency matrix extracted from a biograph object, BGObj. The order of the custom weights in the vector must match the order of the nonzero values in the N-by-N adjacency matrix when it is traversed column-wise. This property lets you use zero-valued weights. By default, allshortestpaths gets weight information from the nonzero entries in the N-by-N adjacency matrix.

References [1] Johnson, D.B. (1977). Efficient algorithms for shortest paths in sparse networks. Journal of the ACM *24(1)*, 1-13.

[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

allshortestpaths (biograph)

See Also Bioinformatics Toolbox functions: biograph (object constructor), graphallshortestpaths

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: conncomp, isdag, isomorphism, isspantree, maxflow, minspantree, shortestpath, topoorder, traverse

Purpose	Retrieve or set column names of DataMatrix object		
Syntax	ReturnColNames = colnames(DMObj) ReturnColNames = colnames(DMObj, ColIndices) DMObjNew = colnames(DMObj, ColIndices, ColNames)		

Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).
	ColIndices	One or more columns in <i>DMObj</i> , specified by any of the following:
		Positive integer
		• Vector of positive integers
		• String specifying a column name
		• Cell array of strings
		• Logical vector
	ColNames	Column names specified by any of the following:
		Numeric vector
		• Cell array of strings
		• Character array
		• Single string, which is used as a prefix for column names, with column numbers appended to the prefix
		• Logical true or false (default). If true, unique column names are assigned using the format col1, col2, col3, etc. If false, no column names are assigned.

Note The number of elements in *ColNames* must equal the number of elements in *ColIndices*.

Return Values		String or cell array of strings containing column names in <i>DMObj</i> .
	DMObjNew	DataMatrix object created with names specified by <i>ColIndices</i> and <i>ColNames</i> .
Description	<i>ReturnColNames</i> = colnames(<i>DMObj</i>) returns <i>ReturnColNames</i> , a cell array of strings specifying the column names in <i>DMObj</i> , a DataMatrix object.	
	ReturnColNames = colnames(DMObj, ColIndices) returns the column names specified by ColIndices. ColIndices can be a positive integer, vector of positive integers, string specifying a column name, cell array of strings, or a logical vector.	
	DMObjNew = colnames(DMObj, ColIndices, ColNames) returns DMObjNew, a DataMatrix object with columns specified by ColIndices set to the names specified by ColNames. The number of elements in ColIndices must equal the number of elements in ColNames.	
See Also	Bioinformatics Too	olbox function: DataMatrix (object constructor) olbox object: DataMatrix object olbox method of a DataMatrix object: rownames

Purpose	Find strongly or weakly connected components in biograph object		
Syntax	<pre>[S, C] = conncomp(BGObj) [S, C] = conncomp(BGObj,'Directed', DirectedValue,) [S, C] = conncomp(BGObj,'Weak', WeakValue,)</pre>		
Arguments	BGObj	Biograph object created by biograph (object constructor).	
	DirectedValue	Property that indicates whether the graph is directed or undirected. Enter false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true. A DFS-based algorithm computes the connected components. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.	
	WeakValue	Property that indicates whether to find weakly connected components or strongly connected components. A weakly connected component is a maximal group of nodes that are mutually reachable by violating the edge directions. Set <i>WeakValue</i> to true to find weakly connected components. Default is false, which finds strongly connected components. The state of this parameter has no effect on undirected graphs because weakly and strongly connected components are the same in undirected graphs. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.	
.			

Description

Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the *Bioinformatics Toolbox User's Guide*.

[S, C] = conncomp(BGObj) finds the strongly connected components of an N-by-N adjacency matrix extracted from a biograph object, BGObjusing Tarjan's algorithm. A strongly connected component is a maximal group of nodes that are mutually reachable without violating the edge directions. The N-by-N sparse matrix represents a directed graph; all nonzero entries in the matrix indicate the presence of an edge.

The number of components found is returned in S, and C is a vector indicating to which component each node belongs.

Tarjan's algorithm has a time complexity of O(N+E), where N and E are the number of nodes and edges respectively.

[S, C] = conncomp(BGObj, ...'PropertyName', PropertyValue, ...) calls conncomp with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

[S, C] = conncomp(BGObj, ...'Directed', DirectedValue, ...) indicates whether the graph is directed or undirected. Set DirectedValue to false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true. A DFS-based algorithm computes the connected components. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.

[S, C] = conncomp(*BGObj*, ...'Weak', *WeakValue*, ...) indicates whether to find weakly connected components or strongly connected components. A weakly connected component is a maximal group of nodes that are mutually reachable by violating the edge directions. Set *WeakValue* to true to find weakly connected components. Default is false, which finds strongly connected components. The state of this parameter has no effect on undirected graphs because weakly and strongly connected components are the same in undirected graphs. Time complexity is O(N+E), where N and E are number of nodes and edges respectively. **Note** By definition, a single node can be a strongly connected component.

Note A directed acyclic graph (DAG) cannot have any strongly connected components larger than one.

References [1] Tarjan, R.E., (1972). Depth first search and linear graph algorithms. SIAM Journal on Computing *1(2)*, 146–160.

[2] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms (Addison-Wesley).

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor), graphconncomp

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: allshortestpaths, isdag, isomorphism, isspantree, maxflow, minspantree, shortestpath, topoorder, traverse

Purpose	Display DataMatrix object	
Syntax	disp(DMObj)	
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).
Description	disp(DMObj) displays the DataMatrix object DMObj, including row names and column names, without printing the DataMatrix object name.	
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor) Bioinformatics Toolbox object: DataMatrix object	

Purpose	Apply function to each element in DataMatrix object		
Syntax	<pre>DMObjNew1 = dmarrayfun(Func, DMObj1) DMObjNew1 = dmarrayfun(Func, DMObj1, DMObj2,) [DMObjNew1, DMObjNew2,] = dmarrayfun(Func, DMObj1,) [DMObjNew1,] = dmarrayfun(Func, DMObj1, 'UniformOutput', UniformOutputValue,) [DMObjNew1,] = dmarrayfun(Func, DMObj1, 'DataMatrixOutput', DataMatrixOutputValue,) [DMObjNew1,] = dmarrayfun(Func, DMObj1,'Rows', RowsValue,) [DMObjNew1,] = dmarrayfun(Func, DMObj1,'Columns', ColumnsValue,) [DMObjNew1,] = dmarrayfun(Func, DMObj1,'Columns', ColumnsValue,)</pre>		
Arguments	Func	Function handle for a function that returns one or more scalars, and returns values of the same class each time it is called.	
	DMObj1	DataMatrix object, such as created by DataMatrix (object constructor).	
	DMObj2	Either of the following:	
		 DataMatrix object, such as created by DataMatrix (object constructor) 	
		MATLAB numeric array	
		Note <i>DMObj2</i> and subsequent input objects or arrays must be the same size (number of rows and columns) as <i>DMObj1</i> .	

dmarrayfun (DataMatrix)

UniformOutputValue	Specifies whether <i>Func</i> must return output values without encapsulation in a cell array. Choices are true (default) or false. If true, dmarrayfun must return scalar values that can be concatenated into an array. These values can also be a cell array. If false, dmarrayfun returns a cell array (or multiple cell arrays), where the I,Jth cell contains the value equal to <i>Func</i> (<i>DMObj1</i> (I,J),).
DataMatrixOutputValue	Specifies whether return values must be DataMatrix objects. Choices are true (default) or false. If you set the 'UniformOutput' property to false, this property is ignored.
RowsValue, ColumnsValue	Specifies the rows or columns to which to apply the function. Choices are:
	• Positive integer
	• Vector of positive integers
	• String specifying a row or column name
	• Cell array of strings
	• Logical vector
ErrorHandlerValue	Specifies a function handle to a function that dmarrayfun calls if the call to <i>Func</i> fails.

Return Values	DMObjNew1, DMObjNew2	DataMatrix objects created from applying the function to each element in one or more DataMatrix objects. The size (number of rows and columns), row names, and column names will be the same as <i>DMObj1</i> .	
Description	DMObjNew1 = dmarrayfun(Func, DMObj1) applies the function specified by Func to each element in DMObj1, a DataMatrix object, and returns the results in DMObjNew1, a new DataMatrix object. DMObjNew1 has the same size (number of rows and columns), row names, and column names as DMObj1. The I,Jth element of DMObjNew1 is equal to Func (DMObj1(I,J)), where Func is a function handle for a function that takes one input argument, returns one scalar value, and returns values of the same class each time it is called.		
	<pre>DMObjNew1 = dmarrayfun(Func, DMObj1, DMObj2,) evaluates the function specified by Func using elements in DMObj1, DMObj2, etc. as input arguments. The I,Jth element of DMObjNew1 is equal to Func(DMObj1(I,J), DMObj2(I,J),), where Func is a function handle for a function that takes multiple input arguments, returns one scalar, and returns values of the same class each time it is called.</pre>		
	[DMObjNew1, DMObjNew2,] = dmarrayfun(Func, DMObj1,) evaluates the function specified by Func using elements in DMObj1, and possibly other input arguments. Func is a function handle for a function that takes one or more input arguments, returns multiple scalars, and returns values of the same class each time it is called. It returns DataMatrix objects DMObjNew1, DMObjNew2, etc. with each one corresponding to one of the outputs of Func. The outputs of Func may be of different classes, however, but each output must be the same each time it is called.		
	'PropertyNam optional propertie] = dmarrayfun(<i>Func</i> , <i>DMObj1</i> , me', <i>PropertyValue</i> ,) calls dmarrayfun with as that use property name/property value pairs. You more properties in any order. Each <i>PropertyName</i>	

must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

```
[DMObjNew1, ...] = dmarrayfun(Func, DMObj1,
...'UniformOutput', UniformOutputValue, ...) specifies
whether Func must return output values without encapsulation in a cell
array. Choices are true (default) or false. If true, dmarrayfun must
return scalar values that can be concatenated into an array. These
values can also be a cell array. If false, dmarrayfun returns a cell
array (or multiple cell arrays), where the I,Jth cell contains the value
equal to Func(DMObj1(I,J),...).
```

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'DataMatrixOutput', DataMatrixOutputValue, ...) specifies whether return values must be DataMatrix objects. Choices are true (default) or false. If you set the 'UniformOutput' property to false, this property is ignored.

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'Rows', RowsValue, ...) applies the function only to the rows in the DataMatrix object specified by RowsValue, which can be a positive integer, vector of positive integers, string specifying a row name, cell array of strings, or a logical vector.

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'Columns', ColumnsValue, ...) applies the function only to the columns in the DataMatrix object specified by ColsValue, which can be a positive integer, vector of positive integers, string specifying a column name, cell array of strings, or a logical vector.

[DMObjNew1, ...] = dmarrayfun(Func, DMObj1, ...'ErrorHandler', ErrorHandlerValue, ...) specifies a function handle to a function that dmarrayfun calls if the call to Func fails. The error handling function will be called with these input arguments:

- Structure with the following fields:
 - identifier Identifier of the error

- message Error message text
- index Linear index into the input array(s) at which the error occurred
- Set of input arguments at which the call to the function failed

If you do not specify ${\it ErrorHandlerValue}, {\tt dmarrayfun}$ rethrows the error from the call to ${\it Func}.$

See Also Bioinformatics Toolbox function: DataMatrix (object constructor) Bioinformatics Toolbox object: DataMatrix object Bioinformatics Toolbox method of a DataMatrix object: dmbsxfun MATLAB function: arrayfun

Purpose	Apply element-by-element binary operation to two DataMatrix objects with singleton expansion enabled	
Syntax	<i>DMObjNew</i> = dmbs	xfun(<i>Func, DMObj1, DMObj2</i>)
Arguments	Func	Function handle for an M-file function or a built-in function. For more information on built-in functions, see bsxfun.
	DMObj1,DMObj2	Either of the following:
		• DataMatrix object, such as created by DataMatrix (object constructor)
		MATLAB numeric array
		At least one of these input arguments must be a DataMatrix object.
Return Values	DMObjNew	DataMatrix object or MATLAB numeric array created from element-by-element binary operation of two DataMatrix objects with singleton expansion enabled.
Description	DMObjNew = dmbsxfun(Func, DMObj1, DMObj2) applies an element-by-element binary operation to the DataMatrix objects DMObj1 and DMObj2, with singleton expansion enabled. Func is a function handle, and can be for an M-file function or a built-in function. For more information on built-in functions, see bsxfun.	
	<i>DMObj1</i> and <i>DMObj2</i> can be DataMatrix objects or MATLAB numeric arrays; however, at least one of these input arguments must be a DataMatrix object. <i>DMObj1</i> and <i>DMObj2</i> must have the same number of rows or the same number or columns. If they don't have the same number of rows, then one must be a row vector and its rows are expanded down to be equal to the larger matrix. If they don't have the	

	columns are expanded across to be equal to the larger matrix.
	DMObjNew is a DataMatrix object, unless the larger input argument is a MATLAB numeric array; then DMObjNew is also a numeric array. The size (number of rows and columns) of DMObjNew is equal to the larger of the two input arguments. The row names and column names of DMObjNew come from the larger input argument, or, if both inputs are the same size, from the first input argument.
Examples	<pre>1 Use the DataMatrix constructor function to create a DataMatrix object. A = bioma.data.DataMatrix(magic(3), 'RowNames', true, 'ColNames',tru</pre>
	 2 Use the built-in function @minus to subtract the column means from this DataMatrix object. A = dmbsxfun(@minus, A, mean(A))
See Also	
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor)
	Bioinformatics Toolbox object: DataMatrix object
	MATLAB function: bsxfun

same number of columns, then one must be a column vector and its

Purpose	Calculate node positions and edge trajectories	
Syntax	dolayout(<i>BGobj</i>) dolayout(<i>BGobj</i> ,	'Paths', <i>PathsOnlyValue</i>)
Arguments	BGobj	Biograph object created by the biograph function (object constructor).
	PathsOnlyValue	Controls the calculation of only the edge paths, leaving the nodes at their current positions. Choices are true or false (default).
Description	 software license (f dolayout (<i>BGobj</i>) position for each n and then calculate engine uses the fol LayoutType — 'equilibrium' LayoutScale — layout engine. T overlapping of r NodeAutoSize — the layout engine uses the biograph object 	- Rescales the sizes of the node before calling the This gives more space to the layout and reduces the

For more information on the above properties, see Properties of a Biograph Object on page 5-4. For information on accessing and specifying the above properties of a biograph object, see Determining Properties and Property Values of a Biograph Object on page 5-10 and Specifying Properties of a Biograph Object on page 5-11. dolayout(BGobj, 'Paths', PathsOnlyValue) controls the calculation of only the edge paths, leaving the nodes at their current positions. Choices are true or false (default). **Examples** 1 Create a biograph object. $cm = [0 \ 1 \ 1 \ 0 \ 0; 1 \ 0 \ 0 \ 1 \ 1; 1 \ 0 \ 0 \ 0; 0 \ 0 \ 0 \ 1; 1 \ 0 \ 1 \ 0 \ 0];$ bg = biograph(cm)Biograph object with 5 nodes and 9 edges. bg.nodes(1).Position ans = [] Nodes do not have a position yet. **2** Call the layout engine and render the graph. dolayout(bg) bg.nodes(1).Position ans = 112 224 view(bg) **3** Manually modify a node position and recalculate the paths only.

```
bg.nodes(1).Position = [150 150];
dolayout(bg, 'Pathsonly', true)
```

view(bg)

See AlsoBioinformatics Toolbox function: biograph (object constructor)Bioinformatics Toolbox object: biograph objectBioinformatics Toolbox methods of a biograph object: dolayout, get,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, set, view

double (DataMatrix)

Purpose	Convert DataMatrix object to double-precision array	
Syntax	B = double(DMOb) B = double(DMOb) B = double(DMOb)	j, Rows)
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).
	Rows, Cols	Row(s) or column(s) in <i>DMObj</i> , specified by one of the following:
		• Scalar
		• Vector of positive integers
		• String specifying a row or column name
		• Cell array of row or column names
		• Logical vector
Return Values	В	MATLAB numeric array.
Description		j) converts <i>DMObj</i> , a DataMatrix object, to a rray, which it returns in <i>B</i> .
	B = double(DMObj, Rows) converts a subset of $DMObj$, a DataMatrix object, specified by Rows, to a double-precision array, which it returns in <i>B</i> . Rows can be a positive integer, vector of positive integers, string specifying a row name, cell array of row names, or a logical vector.	
	DataMatrix object	<i>j</i> , <i>Rows</i> , <i>Cols</i>) converts a subset of <i>DMObj</i> , a , specified by <i>Rows</i> and <i>Cols</i> , to a double-precision curns in <i>B</i> . <i>Cols</i> can be a positive integer, vector of

positive integers, string specifying a column name, cell array of column names, or a logical vector.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: single

Purpose	Test DataMatrix objects for equality	
Syntax	T = eq(DMObj1, DMObj2) T = DMObj1 == DMObj2 T = eq(DMObj1, B) T = DMObj1 == B T = eq(B, DMObj1) T = B == DMObj1	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	Τ	Logical matrix of the same size as $DMObj1$ and $DMObj2$ or $DMObj1$ and B . It contains logical 1 (true) where elements in the first input are equal to the corresponding element in the second input, and logical 0 (false) when they are not equal.
Description	DMObj2 compares of corresponding elem	DMObj2) or the equivalent $T = DMObj1 ==each element in DataMatrix object DMObj1 to thenent in DataMatrix object DMObj2, and returns T,the same size as DMObj1 and DMObj2, containing$

DMOD j 2 compares each element in DataMatrix object DMOD j 7 to the corresponding element in DataMatrix object DMOD j 2, and returns 7, a logical matrix of the same size as DMOD j 1 and DMOD j 2, containing logical 1 (true) where elements in DMOD j 1 are equal to the corresponding element in DMOD j 2, and logical 0 (false) when they are not equal. DMOD j 1 and DMOD j 2 must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). DMOD j 1 and DMOD j 2 can have different Name properties.

T = eq(DMObj1, B) or the equivalent T = DMObj1 == B compares each element in DataMatrix object DMObj1 to the corresponding element in *B*, a numeric or logical array, and returns *T*, a logical matrix of the same size as DMObj1 and *B*, containing logical 1 (true) where elements

	in $DMObj1$ are equal to the corresponding element in <i>B</i> , and logical 0 (false) when they are not equal. $DMObj1$ and <i>B</i> must have the same size (number of rows and columns), unless one is a scalar.
	T = eq(B, DMObj1) or the equivalent $T = B == DMObj1$ compares each element in <i>B</i> , a numeric or logical array, to the corresponding element in DataMatrix object $DMObj1$, and returns <i>T</i> , a logical matrix of the same size as <i>B</i> and $DMObj1$, containing logical 1 (true) where elements in <i>B</i> are equal to the corresponding element in $DMObj1$, and logical 0 (false) when they are not equal. <i>B</i> and $DMObj1$ must have the same size (number of rows and columns), unless one is a scalar.
	MATLAB calls $T = eq(X, Y)$ for the syntax $T = X == Y$ when X or Y is a DataMatrix object.
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor) Bioinformatics Toolbox object: DataMatrix object Bioinformatics Toolbox method of a DataMatrix object: ne

Purpose	Test DataMatrix objects for greater than or equal to		
Syntax	T = ge(DMObj1, DMObj2) $T = DMObj1 \ge DMObj2$ T = ge(DMObj1, B) $T = DMObj1 \ge B$ T = ge(B, DMObj1) $T = B \ge DMObj1$		
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).	
	В	MATLAB numeric or logical array.	
Return Values	Τ	Logical matrix of the same size as $DMObj1$ and $DMObj2$ or $DMObj1$ and B . It contains logical 1 (true) where elements in the first input are greater than or equal to the corresponding element in the second input, and logical 0 (false) otherwise.	
Description	T = ge(DMObj1, DMObj2) or the equivalent $T = DMObj1 >=DMObj2$ compares each element in DataMatrix object $DMObj1$ to the corresponding element in DataMatrix object $DMObj2$, and returns T , a logical matrix of the same size as $DMObj1$ and $DMObj2$, containing logical 1 (true) where elements in $DMObj1$ are greater than or equal to the corresponding element in $DMObj2$, and logical 0 (false) otherwise. DMObj1 and $DMObj2$ must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). $DMObj1$ and DMObj2 can have different Name properties.		
	T = ge(DMObj1, I	$T = ge(DMObj1, B)$ or the equivalent $T = DMObj1 \ge B$ compares each	

T = ge(DMObj1, B) or the equivalent T = DMObj1 >= B compares each element in DataMatrix object DMObj1 to the corresponding element in B, a numeric or logical array, and returns T, a logical matrix of the same size as DMObj1 and B, containing logical 1 (true) where elements

	in <i>DMObj1</i> are greater than or equal to the corresponding element in <i>B</i> , and logical 0 (false) otherwise. <i>DMObj1</i> and <i>B</i> must have the same size (number of rows and columns), unless one is a scalar.
	$T = ge(B, DMObj1)$ or the equivalent $T = B \ge DMObj1$ compares each element in <i>B</i> , a numeric or logical array, to the corresponding element in DataMatrix object $DMObj1$, and returns <i>T</i> , a logical matrix of the same size as <i>B</i> and $DMObj1$, containing logical 1 (true) where elements in <i>B</i> are greater than or equal to the corresponding element in $DMObj1$, and logical 0 (false) otherwise. <i>B</i> and $DMObj1$ must have the same size (number of rows and columns), unless one is a scalar.
	MATLAB calls $T = ge(X, Y)$ for the syntax $T = X \ge Y$ when X or Y is a DataMatrix object.
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor) Bioinformatics Toolbox object: DataMatrix object Bioinformatics Toolbox method of a DataMatrix object: le

get (biograph)

Purpose	Retrieve information about biograph object	
Syntax	get(BGobj) BGStruct = get(BGobj) PropertyValue = get(BGobj, 'PropertyName') [Property1Value, Property2Value,] = get(BGobj, 'Property1Name', 'Property2Name',)	
Arguments	BGobj	Biograph object created with the function biograph.
	PropertyName	Property name for a biograph object.
Return Values	BGStruct	Scalar structure, in which each field name is a property of a biograph object, and each field contains the value of that property.
	PropertyValue	Value of the property specified by <i>PropertyName</i> .
Description	get(<i>BGobj</i>) disp biograph object.	alays all properties and their current values of <i>BGobj</i> , a
	<i>BGStruct</i> = get(<i>BGobj</i>) returns all properties of <i>BGobj</i> , a biograph object, to <i>BGStruct</i> , a scalar structure, in which each field name is a property of a biograph object, and each field contains the value of that property.	
	<pre>PropertyValue = get(BGobj, 'PropertyName') returns the value of the specified property of BGobj, a biograph object.</pre>	
	<pre>[Property1Value, Property2Value,] = get(BGobj, 'Property1Name', 'Property2Name',) returns the values of the specified properties of BGobj, a biograph object.</pre>	

Properties of a Biograph Object

Property	Description
ID	String to identify the biograph object. Default is ''.
Label	String to label the biograph object. Default is ''.
Description	String that describes the biograph object. Default is ''.
LayoutType	 String that specifies the algorithm for the layout engine. Choices are: 'hierarchical' (default) — Uses a topological order of the graph to assign levels, and then arranges the nodes from top to bottom, while minimizing crossing edges. 'radial' — Uses a topological order of the graph to assign levels, and then arranges the nodes from inside to outside of the circle, while minimizing crossing edges. 'equilibrium' — Calculates layout by minimizing the energy in a dynamic spring system.

Properties of a Biograph	Object	(Continued)
--------------------------	--------	-------------

Property	Description
EdgeType	String that specifies how edges display. Choices are:
	• 'straight'
	• 'curved' (default)
	• 'segmented'
	Note Curved or segmented edges occur only when necessary to avoid obstruction by nodes. Biograph objects with LayoutType equal to 'equilibrium' or 'radial' cannot produce curved or segmented edges.
Scale	Positive number that post-scales the node coordinates. Default is 1.
LayoutScale	Positive number that scales the size of the nodes before calling the layout engine. Default is 1.
EdgeTextColor	Three-element numeric vector of RGB values. Default is [0, 0, 0], which defines black.
EdgeFontSize	Positive number that sets the size of the edge font in points. Default is 8.
ShowArrows	Controls the display of arrows with the edges. Choices are 'on' (default) or 'off'.
ArrowSize	Positive number that sets the size of the arrows in points. Default is 8.
ShowWeights	Controls the display of text indicating the weight of the edges. Choices are 'on' (default) or 'off'.

Property	Description
ShowTextInNodes	String that specifies the node property used to label nodes when you display a biograph object using the view method. Choices are:
	• 'Label' — Uses the Label property of the node object (default).
	 'ID' — Uses the ID property of the node object.
	• 'None'
NodeAutoSize	Controls precalculating the node size before calling the layout engine. Choices are 'on' (default) or 'off'.
NodeCallback	User-defined callback for all nodes. Enter the name of a function, a function handle, or a cell array with multiple function handles. After using the view function to display the biograph object in the Biograph Viewer, you can double-click a node to activate the first callback, or right-click and select a callback to activate. Default is the anonymous function, @(node) inspect(node), which displays the Property Inspector dialog box.

Properties of a Biograph Object (Continued)

Property	Description
EdgeCallback	User-defined callback for all edges. Enter the name of a function, a function handle, or a cell array with multiple function handles. After using the view function to display the biograph object in the Biograph Viewer, you can double-click an edge to activate the first callback, or right-click and select a callback to activate. Default is the anonymous function, @(edge) inspect(edge), which displays the Property Inspector dialog box.
CustomNodeDrawFcn	Function handle to a customized function to draw nodes. Default is [].
Nodes	Read-only column vector with handles to node objects of a biograph object. The size of the vector is the number of nodes. For properties of node objects, see Properties of a Node Object on page 5-7.
Edges	Read-only column vector with handles to edge objects of a biograph object. The size of the vector is the number of edges. For properties of edge objects, see Properties of an Edge Object on page 5-9.

Properties of a Biograph Object (Continued)

Examples 1 Create a biograph object and assign the node IDs.

2 Use the get function to display the node IDs.

get(bg.nodes,'ID')

ans = 'M30931' 'L07625' 'K03454' 'M27323' 'M15390'

See AlsoBioinformatics Toolbox function: biograph (object constructor)Bioinformatics Toolbox object: biograph objectBioinformatics Toolbox method of a biograph object: set

get (clustergram)

Purpose	Retrieve information about clustergram object	
Syntax	get(CGobj) CGStruct = get(CGobj) PropertyValue = get(CGobj, 'PropertyName') [Property1Value, Property2Value,] = get(CGobj, 'Property1Name', 'Property2Name',)	
Arguments	CGobj	Clustergram object created with the function clustergram.
	PropertyName	Property name for a clustergram object.
Description	<pre>get(CGobj) displays all properties and their current values of CGobj, a clustergram object. CGStruct = get(CGobj) returns all properties of CGobj, a clustergram object, to CGStruct, a scalar structure, in which each field name is a property of a clustergram object, and each field contains the value of that property. PropertyValue = get(CGobj, 'PropertyName') returns the value of the specified property of CGobj, a clustergram object.</pre>	
	'Property1Name	re, Property2Value,] = get(CGobj, ', 'Property2Name',) returns the values of the ies of CGobj, a clustergram object.

Property	Description
RowLabels	Vector of numbers or cell array of text strings to label the rows in the dendrogram and heat map. Default is a vector of values 1 through <i>M</i> , where <i>M</i> is the number of rows in <i>Data</i> , the matrix of data used by the clustergram function to create the clustergram object.
ColumnLabels	Vector of numbers or cell array of text strings to label the columns in the dendrogram and heat map. Default is a vector of values 1 through <i>N</i> , where <i>N</i> is the number of columns in <i>Data</i> , the matrix of data used by the clustergram function to create the clustergram object.
RowGroupNames	A cell array of text strings containing the names of the row groups exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window.
RowNodeNames	A cell array of text strings containing the names of the row nodes exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window.
ColumnGroupNames	A cell array of text strings containing the names of the column groups exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window.

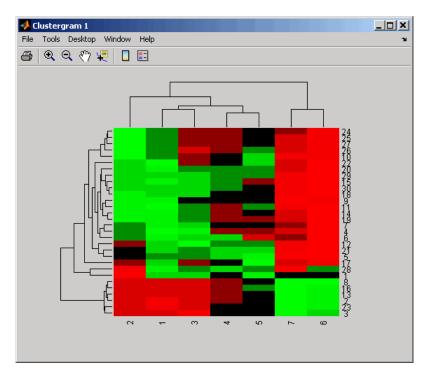
Properties of a Clustergram Object

Property	Description
ColumnNodeNames	A cell array of text strings containing the names of the column nodes exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window.
ExprValues	An <i>M</i> -by- <i>N</i> matrix of data, where <i>M</i> and <i>N</i> are the number of row nodes and column nodes respectively, exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window. If the matrix contains gene expression data, typically each row corresponds to a gene and each column corresponds to a sample.
Standardize	 Text string that specifies the dimension for standardizing the values in the data. The standardized values are transformed so that the mean is 0 and the standard deviation is 1 in the specified dimension. Possibilities are: 'Column (1)' — Standardized along the columns of data.
	 'Row (2)' — Standardized along the rows of data.
	• 'None (3)' — Did not perform standardization.

Property	Description
Cluster	Text string that specifies the dimension for clustering the values in the data. Possibilities are:
	• 'Row (1)' — Clustered rows of data only.
	• 'Column (2)' — Clustered columns of data only.
	• 'All (3)' — Clustered rows of data, then cluster columns of row-clustered data.
RowPdist	String or cell array that specifies the distance metric and optional arguments passed to the pdist function (Statistics Toolbox software) used to calculate the pairwise distances between rows. For information on possibilities, see the pdist function.
ColumnPdist	String or cell array that specifies the distance metric and optional arguments passed to the pdist function (Statistics Toolbox software) used to calculate the pairwise distances between columns. For information on possibilities, see the pdist function.
Linkage	String or two-element cell array of strings that specifies the linkage method passed to the linkage function (Statistics Toolbox software) used to create the hierarchical cluster tree for rows and columns. If a two-element cell array of strings, the first element is for linkage between rows, and the second element is for linkage between columns. For information on possibilities, see the linkage function.

Property	Description
Dendrogram	Scalar or two-element numeric vector or cell array that specifies the 'colorthreshold' property passed to the dendrogram function (Statistics Toolbox software) used to create the dendrogram plot. If a two-element numeric vector or cell array, the first element is for the rows, and the second element is for the columns. For more information, see the dendrogram function.
OptimalLeafOrder	Property that enabled or disabled the optimal leaf ordering calculation, which determines the leaf order that maximizes the similarity between neighboring leaves. Possibilities are 1 (enabled) or 0 (disabled).
LogTrans	Controlled the \log_2 transform of the data from natural scale. Possibilities are 1 (true) or 0 (false).
ColorMap	 Either of the following: <i>M</i>-by-3 matrix of RGB values Name or function handle of a function that
	returns a colormap, such as redgreencmap or redbluecmap
DisplayRange	Positive scalar that specifies the display range of standardized values.
	For example, if you specify redgreencmap for the 'ColorMap' property, pure red represents values \geq DisplayRange, and pure green represents values \leq -DisplayRange.

Property	Description
SymmetricRange	Property to force the color scale of the heat map to be symmetric around zero. Possibilities are 1 (true) or 0 (false).
Ratio	 Either of the following: Scalar Two-element vector It specifies the ratio of space that the row and column dendrograms occupy relative to the heat map. If Ratio is a scalar, it is the ratio for both dendrograms. If Ratio is a two-element vector, the first element is for the ratio of the row dendrogram width to the heat map width, and the second element is for the ratio of the column dendrogram height to the heat map height. The second element is ignored for one-dimensional clustergrams.
Impute	 Any of the following: Name of a function that imputes missing data. Handle to a function that imputes missing data. Cell array where the first element is the name of or handle to a function that imputes missing data and the remaining elements are property name/property value pairs used as inputs to the function.

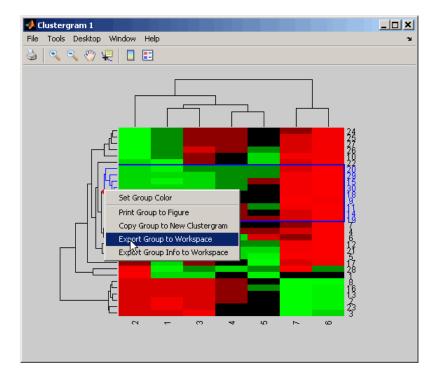

Property	Description
RowMarkers	Optional structure array for annotating the groups (clusters) of rows determined by the clustergram function. Each structure in the array represents a group of rows and contains the following fields:
	• GroupNumber — Number to annotate the row group.
	• Annotation — String specifying text to annotate the row group.
	• Color — String or three-element vector of RGB values specifying a color, which is used to label the row group. For more information on specifying colors, see colorspec. If this field is empty, default is 'blue'.
ColumnMarkers	Optional structure array for annotating groups (clusters) of columns determined by the clustergram function. Each structure in the array represents a group of rows and contains the following fields:
	 GroupNumber — Number to annotate the column group.
	• Annotation — String specifying text to annotate the column group.
	• Color — String or three-element vector of RGB values specifying a color, which is used to label the column group. For more information on specifying colors, see colorspec. If this field is empty, default is 'blue'.

Examples 1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains yeastvalues, a matrix of gene expression data.

load filteredyeastdata

2 Create a clustergram object and display the dendrograms and heat map from the gene expression data in the first 30 rows of the yeastvalues matrix.

```
cgo = clustergram(yeastvalues(1:30,:))
Clustergram object with 30 rows of nodes and 7 columns of nodes.
```



3 Use the get method to display the properties of the clustergram object, cgo.

get (clustergram)

get(cgo)

RowLabels:	{30x1 cell}
ColumnLabels:	{7x1 cell}
Standardize:	{'ROW (2)'}
Cluster:	{'ALL (3)'}
RowPDist:	{'Euclidean'}
ColumnPDist:	{'Euclidean'}
Linkage:	{'Average'}
Dendrogram:	{[0]}
OptimalLeafOrder:	1
LogTrans:	0
Colormap:	[11x3 double]
DisplayRange:	3
SymmetricRange:	1
Ratio:	[0.2000 0.2000]
Impute:	[]
RowMarkers:	[]
ColumnMarkers:	[]

4 Export a clustergram object of a group (cluster) of rows to the MATLAB Workspace by right-clicking a node in the row dendrogram, and then selecting **Export Group to Workspace**.

5 In the Export to Workspace dialog box, type **cgo2** for the Workspace variable name for the clustergram object, and then click **OK**.

<mark>4 Export</mark> to Works	
Workspace variable na cgo2	ame ?
ок	Cancel

6 Use the get method to display the properties of cgo2, the clustergram object of the exported group.

get(cgo2)

get (clustergram)

RowGroupNames:	{8x1 cell}
RowNodeNames:	{9x1 cell}
ColumnGroupNames:	{6x1 cell}
ColumnNodeNames:	{7x1 cell}
ExprValues:	[9x7 double]
Standardize:	{'ROW (2)'}
Cluster:	{'ALL (3)'}
RowPDist:	{'Euclidean'}
ColumnPDist:	{'Euclidean'}
Linkage:	{'Average'}
Dendrogram:	{[0]}
OptimalLeafOrder:	1
LogTrans:	0
Colormap:	[11x3 double]
DisplayRange:	3
SymmetricRange:	1
Ratio:	[0.2000 0.2000]
Impute:	[]
RowMarkers:	[]
ColumnMarkers:	[]

See AlsoBioinformatics Toolbox function: clustergram (object constructor)Bioinformatics Toolbox object: clustergram objectBioinformatics Toolbox methods of a clustergram object: plot, set, view

Purpose	Retrieve information about DataMatrix object		
Syntax	<pre>get(DMObj) DMStruct = get(DMObj) PropertyValue = get(DMObj, 'PropertyName') [Property1Value, Property2Value,] = get(DMObj,</pre>		
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).	
	PropertyName	Property name of a DataMatrix object.	
Return Values	DMStruct PropertvValue	Scalar structure, in which each field name is a property of a DataMatrix object, and each field contains the value of that property. Value of the property specified by <i>PropertyName</i> .	
Description	get (<i>DMObj</i>) displays all properties and their current values of <i>DMObj</i> , DataMatrix object.		
	<pre>DMStruct = get(DMObj) returns all properties of DMObj, a DataMatrix object, to DMStruct, a scalar structure, in which each field name is a property of a DataMatrix object, and each field contains the value of that property. PropertyValue = get(DMObj, 'PropertyName') returns the value of the specified property of DMObj, a DataMatrix object.</pre>		
	[<i>Property1Value</i> , <i>Property2Value</i> ,] = get(<i>DMObj</i> , ' <i>Property1Name</i> ', ' <i>Property2Name</i> ',) returns the values of th specified properties of <i>DMObj</i> , a DataMatrix object.		

Property	Description
Name	String that describes the DataMatrix object. Default is ''.
RowNames	Empty array or cell array of strings that specifies the names for the rows, typically gene names or probe identifiers. The number of elements in the cell array must equal the number of rows in the matrix. Default is an empty array.
ColNames	Empty array or cell array of strings that specifies the names for the columns, typically sample identifiers. The number of elements in the cell array must equal the number of columns in the matrix.
NRows	Positive number that specifies the number of rows in the matrix.
NCols	Positive number that specifies the number of columns in the matrix.
NDims	Positive number that specifies the number of dimensions in the matrix.
ElementClass	String that specifies the class type, such as single or double.

Properties of a DataMatrix Object

Examples 1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene expression data, genes, a cell array of GenBank accession numbers for labeling the rows in yeastvalues, and times, a vector of time values for labeling the columns in yeastvalues.

load filteredyeastdata

2 Import the microarray object package so that the DataMatrix constructor function will be available.

import bioma.data.*

3 Create a DataMatrix object from the gene expression data in the first 30 rows of the yeastvalues matrix. Use the genes column vector and times row vector to specify the row names and column names.

```
dmo = DataMatrix(yeastvalues(1:30,:),genes(1:30,:),times);
```

4 Use the get method to display the properties of the DataMatrix object, dmo.

get(dmo)

```
Name: ''
RowNames: {30x1 cell}
ColNames: {' 0' ' 9.5' '11.5' '13.5' '15.5' '18.5'
NRows: 30
NCols: 7
NDims: 2
ElementClass: 'double'
```

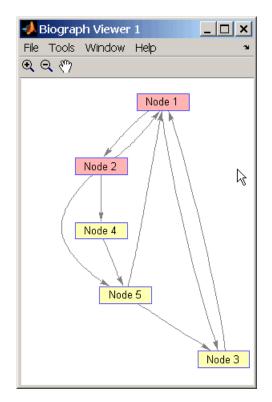
See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: set

get (phytree)

Purpose	Retrieve information about phylogenetic tree object	
Syntax	[Value1, Value2,] = get(Tree, 'Property1','Property2',) get(Tree) V = get(Tree)	
Arguments	Tree	Phytree object created with the function phytree.
	Name	Property name for a phytree object.
Description	[Value1. Value2.] = get(Tree.

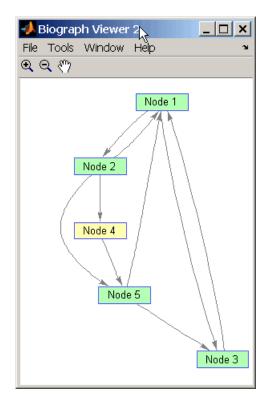
ESCRIPTION [Value1, Value2,...] = get(Tree, 'Property1', 'Property2',...) returns the specified properties from a phytree object (Tree).

Properties for a phytree object are listed in the following table.


Property	Description	
NumLeaves	Number of leaves	
NumBranches	Number of branches	
NumNodes	Number of nodes (NumLeaves + NumBranches)	
Pointers	Branch to leaf/branch connectivity list	
Distances	Edge length for every leaf/branch	
LeafNames	Names of the leaves	
BranchNames	Names of the branches	
NodeNames	Names of all the nodes	

get(*Tree*) displays all property names and their current values for a phytree object (*Tree*).

V = get(Tree) returns a structure where each field name is the name of a property of a phytree object (*Tree*) and each field contains the value of that property.


getancestors (biograph)

Purpose	Find ancestors in biograph object		
Syntax	Nodes = getancestors(BiographNode) Nodes = getancestors(BiographNode, NumGenerations)		
Arguments	BiographNode NumGenerations	Node in a biograph object. Number of generations. Enter a positive integer.	
Description	<pre>Nodes = getancestors(BiographNode) returns a node(BiographNode) and all of its direct ancestors. Nodes = getancestors(BiographNode, NumGenerations) finds the node(BiographNode) and its direct ancestors up to a specified number of generations(NumGenerations).</pre>		
Examples	<pre>1 Create a biograph object. cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0</pre>		

3 Find two generations of ancestors for node 2.

```
ancNodes = getancestors(bg.nodes(2),2);
set(ancNodes,'Color',[.7 1 .7]);
bg.view;
```


See Also

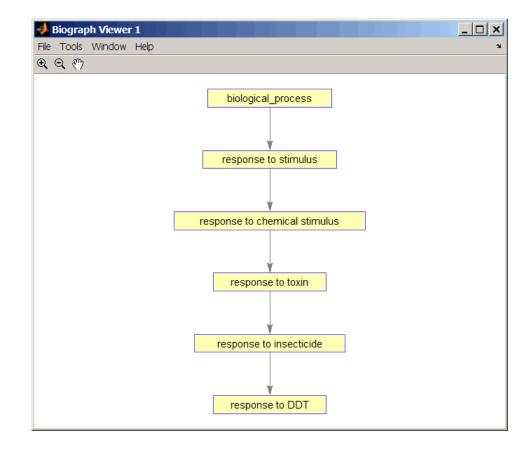
Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: dolayout, get, getancestors, getdescendants, getedgesbynodeid, getnodesbyid, getrelatives, set, view

Purpose	Find terms that are ancestors of specified Gene Ontology (GO) term	
Syntax	<pre>AncestorIDs = getancestors(GeneontObj, ID) [AncestorIDs, Counts] = getancestors(GeneontObj, ID) = getancestors(, 'Height', HeightValue,) = getancestors(, 'Relationtype', RelationtypeValue,) = getancestors(, 'Exclude', ExcludeValue,)</pre>	
Arguments	GeneontObj	A geneont object, such as created by the geneont function.
	ID HeightValue	GO term identifier or vector of identifiers. Positive integer specifying the number of levels to search upward in the gene ontology.
	RelationtypeValue	<pre>String specifying the relationship types to search for in the gene ontology. Choices are: 'is_a'</pre>
		• 'part_of'
		• 'both' (default)
	ExcludeValue	Controls excluding <i>ID</i> , the original queried term(s), from the output <i>AncestorIDs</i> , unless the term was reached while searching the gene ontology. Choices are true or false (default).

Return Values	AncestorIDs	Vector of GO term identifiers including <i>ID</i> .
	Counts	Column vector with the same number of elements as terms in <i>GeneontObj</i> , indicating the number of times each ancestor is found.
Description	<pre>AncestorIDs = getancestors(GeneontObj, ID) searches GeneontObj, a geneont object, for GO terms that are ancestors of the GO term(s) specified by ID, which is a GO term identifier or vector of identifiers. It returns AncestorIDs, a vector of GO term identifiers including ID. ID is a nonnegative integer or a vector containing nonnegative integers. [AncestorIDs, Counts] = getancestors(GeneontObj, ID) also returns the number of times each ancestor is found. Counts is a column vector with the same number of elements as terms in GeneontObj.</pre>	
	Tip The <i>Counts</i> return value is useful when tallying counts in gene enrichment studies. For more information, see the Gene Ontology Enrichment in Microarray Data demo.	
	<pre> = getancestors(, 'PropertyName', PropertyValue,) calls getancestors with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows: = getancestors(, 'Height', HeightValue,) searches</pre>	
		d number of levels, <i>HeightValue</i> , in the gene <i>ie</i> is a positive integer. Default is Inf.


	<pre> = getancestors(, 'Relationtype', RelationtypeValue,) searches for specified relationship types, RelationtypeValue, in the gene ontology. RelationtypeValue is a string. Choices are 'is_a', 'part_of', or 'both' (default).</pre>	
	= getancestors(, 'Exclude', <i>ExcludeValue</i> ,) controls excluding <i>ID</i> , the original queried term(s), from the output <i>AncestorIDs</i> , unless the term was reached while searching the gene ontology. Choices are true or false (default).	
Examples	1 Download the current version of the Gene Ontology database from the Web into a geneont object in the MATLAB software.	
	GO = geneont('LIVE', true)	
The MATLAB software creates a geneont object and disp number of terms in the database.		
	Gene Ontology object with 24316 Terms.	
	2 Retrieve the ancestors of the Gene Ontology term with an identifier of 46680 .	
	ancestors = getancestors(G0,46680)	
	ancestors = 8150 9636 17085 42221	
	46680 50896	
	3 Create a subordinate Gene Ontology.	
	<pre>subontology = GO(ancestors)</pre>	
	Gene Ontology object with 6 Terms.	

4 Create a report of the subordinate Gene Ontology terms.

```
[cm acc rels] = getmatrix(subontology);
rpt = [num2goid(acc) get(subontology.Terms, 'name')]';
disp(sprintf('%s --> %s\n',rpt{:}))
G0:0008150 --> biological_process
G0:0009636 --> response to toxin
G0:0017085 --> response to insecticide
G0:0042221 --> response to chemical stimulus
G0:0046680 --> response to DDT
G0:0050896 --> response to stimulus
```

5 View relationships of the subordinate Gene Ontology using the biograph function and methods.

```
BG = biograph(cm, get(subontology.Terms, 'name'));
view(BG)
```


See Also Bioinformatics Toolbox functions: geneont (object constructor), goannotread, num2goid

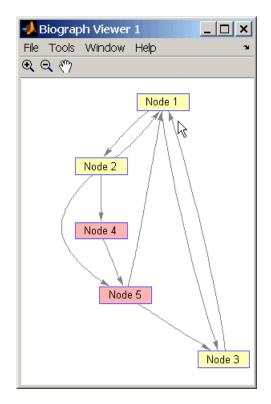
Bioinformatics Toolbox methods of geneont object: getdescendants, getmatrix, getrelatives

getbyname (phytree)

Purpose	Branches and leaves from phytree object	
Syntax	S = getbyname(Tree, Expression) S = getbyname(Tree, String, 'Exact', true)	
Arguments	Tree	phytree object created by phytree function (object constructor).
	Expression	Regular expression. When <i>Expression</i> is a cell array of strings, getbyname returns a matrix where every column corresponds to every query in <i>Expression</i> .
		For information about the symbols that you can use in a matching regular expression, see the MATLAB function regexp.
	String	String or cell array of strings.
Description	<pre>S = getbyname(Tree, Expression) returns a logical vector (S) of size NumNodes-by-1 with the node names of a phylogenetic tree (Tree) that match the regular expression (Expression) regardless of letter case. S = getbyname(Tree, String, 'Exact', true) looks for exact string matches and ignores case. When String is a cell array of char strings, getbyname returns a vector with indices.</pre>	
Examples	1 Load a phylogenetic tree created from a protein family.	
	<pre>tr = phytreeread('pf00002.tree');</pre>	
	2 Select all the 'mouse' and 'human' proteins.	
	<pre>sel = getbyname(tr,{'mouse','human'}); view(tr,any(sel,2));</pre>	
See Also	Bioinformatics Toolbox function: phytree (object constructor)	

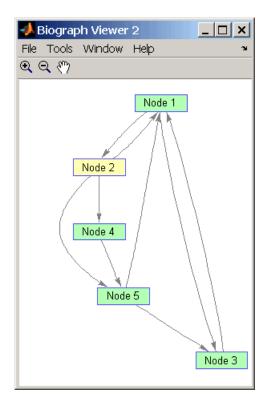
Bioinformatics Toolbox methods of phytree object: get, prune, select

getcanonical (phytree)


Purpose	Calculate canonical form of phylogenetic tree	
Syntax	Pointers = getcanonical(Tree) [Pointers, Distances, Names] = getcanonical(Tree)	
Arguments	Tree phytree object created by phytree function (object constructor).	
Description	Pointers = getcanonical(<i>Tree</i>) returns the pointers for the canonical form of a phylogenetic tree (<i>Tree</i>). In a canonical tree the leaves are ordered alphabetically and the branches are ordered first by their width and then alphabetically by their first element. A canonical tree is isomorphic to all the trees with the same skeleton independently of the order of their leaves and branches.	
	[<i>Pointers, Distances, Names</i>] = getcanonical(<i>Tree</i>) returns, in addition to the pointers described above, the reordered distances (<i>Distances</i>) and node names (<i>Names</i>).	
Examples	<pre>I Create two phylogenetic trees with the same skeleton but slightly different distances. b = [1 2; 3 4; 5 6; 7 8;9 10]; tr_1 = phytree(b,[.1 .2 .3 .3 .4]'); tr 2 = phytree(b,[.2 .1 .2 .3 .4]');</pre>	
	2 Plot the trees. plot(tr_1) plot(tr_2)	
	3 Check whether the trees have an isomorphic construction.	
	<pre>isequal(getcanonical(tr_1),getcanonical(tr_2))</pre>	

ans = 1

See AlsoBioinformatics Toolbox functions: phytree (object constructor),
phytreereadBioinformatics Toolbox methods of phytree object: getbyname, select,
subtree


getdescendants (biograph)

Purpose	Find descendants in biograph object	
Syntax	Nodes = getdescendants(BiographNode) Nodes = getdescendants(BiographNode,NumGenerations)	
Arguments	BiographNodeNode in a biograph object.NumGenerationsNumber of generations. Enter a positive integer.	
Description	<pre>Nodes = getdescendants(BiographNode) finds a given node (BiographNode) all of its direct descendants. Nodes = getdescendants(BiographNode,NumGenerations) finds the node (BiographNode) and all of its direct descendants up to a specified number of generations (NumGenerations).</pre>	
Examples	<pre>1 Create a biograph object. cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0</pre>	

3 Find two generations of descendants for node 4.

desNodes = getdescendants(bg.nodes(4),2); set(desNodes,'Color',[.7 1 .7]); bg.view;

See Also

Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: dolayout, get, getancestors, getdescendants, getedgesbynodeid, getnodesbyid, getrelatives, set, view

Purpose	Find terms that are descendants of specified Gene Ontology (GO) term	
Syntax	<pre>DescendantIDs = getdescendants(GeneontObj, ID) [DescendantIDs, Counts] = getdescendants(GeneontObj, ID) = getdescendants(, 'Depth', DepthValue,) = getdescendants(, 'Relationtype', RelationtypeValue,) = getdescendants(, 'Exclude', ExcludeValue,)</pre>	
Arguments	GeneontObj ID	A geneont object, such as created by the geneont function. GO term identifier or vector of identifiers.
	DepthValue	Positive integer specifying the number of levels to search downward in the gene ontology.
	RelationtypeValue	String specifying the relationship types to search for in the gene ontology. Choices are:'is_a'
		• 'part_of'
		• 'both' (default)
	ExcludeValue	Controls excluding <i>ID</i> , the original queried term(s), from the output <i>DescendantIDs</i> , unless the term was reached while searching the gene ontology. Choices are true or false (default).
Return	DescendantIDs	Vector of GO term identifiers including <i>ID</i> .
Values	Counts	Column vector with the same number of elements as terms in <i>GeneontObj</i> , indicating the number of times each descendant is found.

Description

DescendantIDs = getdescendants(GeneontObj, ID) searches GeneontObj, a geneont object, for GO terms that are descendants of the GO term(s) specified by ID, which is a GO term identifier or vector of identifiers. It returns DescendantIDs, a vector of GO term identifiers including ID. ID is a nonnegative integer or a vector containing nonnegative integers.

[DescendantIDs, Counts] = getdescendants(GeneontObj, ID) also returns the number of times each descendant is found. Counts is a column vector with the same number of elements as terms in GeneontObj.

Tip The *Counts* return value is useful when tallying counts in gene enrichment studies. For more information, see the Gene Ontology Enrichment in Microarray Data demo.

... = getdescendants(..., '*PropertyName*', *PropertyValue*, ...) calls getdescendants with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotation marks and is case insensitive. These property name/property value pairs are as follows:

... = getdescendants(..., 'Depth', *DepthValue*, ...) searches down through a specified number of levels, *DepthValue*, in the gene ontology. *DepthValue* is a positive integer. Default is Inf.

... = getdescendants(..., 'Relationtype', RelationtypeValue, ...) searches for specified relationship types, RelationtypeValue, in the gene ontology. RelationtypeValue is a string. Choices are 'is_a', 'part_of', or 'both' (default).

... = getdescendants(..., 'Exclude', *ExcludeValue*, ...) controls excluding *ID*, the original queried term(s), from the output *DescendantIDs*, unless the term was found while searching the gene ontology. Choices are true or false (default). **Examples** 1 Download the current version of the Gene Ontology database from the Web into a geneont object in the MATLAB software.

GO = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of terms in the database.

Gene Ontology object with 24316 Terms.

2 Retrieve the descendants of the mithochondrial respiratory chain GO term with an identifier of **5746**.

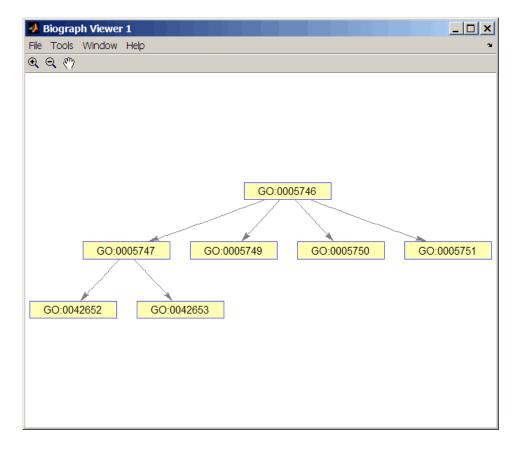
descendants = getdescendants(G0,5746)

descendants =

- 5746 5747 5749 5750 5751 42652 42653
- **3** Create a subordinate Gene Ontology.

subontology = GO(descendants)

Gene Ontology object with 7 Terms.


4 Create a report of the subordinate Gene Ontology terms.

```
[cm acc rels] = getmatrix(subontology);
rpt = [num2goid(acc) get(subontology.Terms, 'name')]';
disp(sprintf('%s --> %s\n',rpt{:}))
G0:0005746 --> mitochondrial respiratory chain
G0:0005747 --> mitochondrial respiratory chain complex I
```

```
G0:0005749 --> mitochondrial respiratory chain complex II
G0:0005750 --> mitochondrial respiratory chain complex III
G0:0005751 --> mitochondrial respiratory chain complex IV
G0:0042652 --> mitochondrial respiratory chain complex I, peripheral segment
G0:0042653 --> mitochondrial respiratory chain complex I, membrane segment
```

5 View relationships of the subordinate Gene Ontology using the biograph function and methods.

```
BG = biograph(cm, num2goid(acc));
view(BG)
```


See Also Bioinformatics Toolbox functions: geneont (object constructor), goannotread, num2goid

Bioinformatics Toolbox methods of geneont object: getancestors, getmatrix, getrelatives

getedgesbynodeid (biograph)

Purpose	Get handles to edges in biograph object			
Syntax	Edges = getedgesby	<pre>Edges = getedgesbynodeid(BGobj,SourceIDs,SinkIDs)</pre>		
Arguments	BGobj SourceIDs, SinkIDs	Biograph object. Enter a cell string, or an empty cell array (gets all edges).		
Description	<pre>Edges = getedgesbynodeid(BGobj,SourceIDs,SinkIDs) gets the handles to the edges that connect the specified source nodes (SourceIDs) to the specified sink nodes (SinkIDs) in a biograph object.</pre>			
Example	<pre>to the specified sink nodes (SINKIDS) in a biograph object. 1 Create a biograph object for the Hominidae family. species = { 'Homo', 'Pan', 'Gorilla', 'Pongo', 'Baboon', 'Macaca', 'Gibbon'}; cm = magic(7)>25 & 1-eye(7); bg = biograph(cm, species); 2 Find all the edges that connect to the Homo node. EdgesIn = getedgesbynodeid(bg,[], 'Homo'); EdgesOut = getedgesbynodeid(bg, 'Homo',[]); set(EdgesIn, 'LineColor',[0 1 0]); set(EdgesOut, 'LineColor',[1 0 0]); bg.view; 3 Find all edges that connect members of the Cercopithecidae family to members of the Hominidae family. Cercopithecidae = {'Macaca', 'Baboon'}; Hominidae = {'Homo', 'Pan', 'Gorilla', 'Pongo'}; edgesSel = getedgesbynodeid(bg,Cercopithecidae,Hominidae); set(bg.edges, 'LineColor',[.5 .5 .5]); </pre>			

bg.view;

See AlsoBioinformatics Toolbox function: biograph (object constructor)Bioinformatics Toolbox object: biograph objectBioinformatics Toolbox methods of a biograph object: dolayout, get,
getancestors, getdescendants, getedgesbynodeid, getnodesbyid,
getrelatives, set, view

Get connection matrix from biograph object		
[<i>Matrix, ID, Distances</i>] = getmatrix(<i>BGObj</i>)		
BGObj Biograph object created by biograph (object constructor).		
[Matrix, ID, Distances] = getmatrix(BGObj) converts the biograph object, BiographObj, into a logical sparse matrix, Matrix, in which 1 indicates that a node (row index) is connected to another node (column index). ID is a cell array of strings listing the ID properties for each node, and corresponds to the rows and columns of Matrix. Distances is a column vector with one entry for every nonzero entry in Matrix traversed column-wise and representing the respective Weight property for each edge.		
<pre>cm = [0 1 1 0 0;2 0 0 4 4;4 0 0 0 0;0 0 0 0 2;4 0 5 0 0]; bg = biograph(cm); [cm, IDs, dist] = getmatrix(bg)</pre>		
Bioinformatics Toolbox function: biograph (object constructor) Bioinformatics Toolbox object: biograph object Bioinformatics Toolbox methods of a biograph object: dolayout, getancestors, getdescendants, getedgesbynodeid, getnodesbyid, getrelatives, view		

Purpose	Convert geneont object into relationship matrix
Syntax	[Matrix, ID, Relationship] = getmatrix(GeneontObj)
Arguments	<i>GeneontObj</i> geneont object created by geneont (object constructor)
Description	[<i>Matrix, ID, Relationship</i>] = getmatrix(<i>GeneontObj</i>) converts a geneont object, <i>GeneontObj</i> , into <i>Matrix</i> , a matrix of relationship values between nodes (row and column indices), in which 0 indicates no relationship, 1 indicates an "is_a" relationship, and 2 indicates a "part_of" relationship. <i>ID</i> is a column vector listing Gene Ontology IDs that correspond to the rows and columns of <i>Matrix</i> . <i>Relationship</i> is a cell array of strings defining the types of relationships.
Examples	GO = geneont('LIVE',true); [MATRIX, ID, REL] = getmatrix(GO);
See Also	Bioinformatics Toolbox functions: geneont (object constructor), goannotread, num2goid Bioinformatics Toolbox object: geneont object
	Bioinformatics Toolbox methods of geneont object:getancestors, getdescendants, getmatrix, getrelatives

getmatrix (phytree)

Purpose	Convert phytree object into relationship matrix
Syntax	[<i>Matrix, ID, Distances</i>] = getmatrix(<i>PhytreeObj</i>)
Arguments	<i>PhytreeObj</i> phytree object created by phytree (object constructor).
Description	[Matrix, ID, Distances] = getmatrix(PhytreeObj) converts a phytree object, PhytreeObj, into a logical sparse matrix, Matrix, in which 1 indicates that a branch node (row index) is connected to its child (column index). The child can be either another branch node or a leaf node. ID is a column vector of strings listing the labels that correspond to the rows and columns of Matrix, with the labels from 1 to Number of Leaves being the leaf nodes, then the labels from Number of Leaves + 1 to Number of Leaves + Number of Branches being the branch nodes, and the label for the last branch node also being the root node. Distances is a column vector with one entry for every nonzero entry in Matrix traversed column-wise and representing the distance between the branch node and the child.
Examples	T = phytreeread('pf00002.tree') [MATRIX, ID, DIST] = getmatrix(T);
See Also	Bioinformatics Toolbox functions: phytree (object constructor), phytreetool Bioinformatics Toolbox object: phytree object Bioinformatics Toolbox methods of phytree object: get, pdist, prune

Purpose	Create Newick-formatted string	
Syntax	getnewickstr(,	kstr(Tree) 'PropertyName', PropertyValue,) 'Distances', DistancesValue) 'BranchNames', BranchNamesValue)
Arguments	Tree	Phytree object created with the function phytree.
	DistancesValue	Property to control including or excluding distances in the output. Enter either true (include distances) or false (exclude distances). Default is true.
	BranchNamesValue	Property to control including or excluding branch names in the output. Enter either true (include branch names) or false (exclude branch names). Default is false.
Description	String = getnewickstr(Tree) returns the Newick formatted string of a phylogenetic tree object (Tree).	
	getnewickstr(, ' <i>PropertyName</i> ', <i>PropertyValue</i> ,) defines optional properties using property name/value pairs. getnewickstr(, 'Distances', <i>DistancesValue</i>), when <i>DistancesValue</i> is false, excludes the distances from the output.	
		'BranchNames', <i>BranchNamesValue</i>), when strue, includes the branch names in the output.
References	Information about the Newick tree format.	
	http://evolution.genetics.washington.edu/phylip/newicktree.html	

Examples	1 Create some random sequences.	
	<pre>seqs = int2nt(ceil(rand(10)*4));</pre>	
	2 Calculate pairwise distances.	
<pre>dist = seqpdist(seqs,'alpha','nt');</pre>		
	<pre>3 Construct a phylogenetic tree. tree = seqlinkage(dist);</pre>	
	4 Get the Newick string.	
	<pre>str = getnewickstr(tree)</pre>	
See Also	Bioinformatics Toolbox functions: phytree (object constructor), phytreeread, phytreetool, phytreewrite, seqlinkage	
	Bioinformatics Toolbox methods of phytree object: get, getbyname, getcanonical	

Purpose	Get handles to nodes		
Syntax	NodesHandles = getnodesbyid(BGobj,NodeIDs)		
Arguments	BGobj Biograph object.NodeIDs Enter a cell string of node identifications.		
Description	<i>NodesHandles</i> = getnodesbyid(<i>BGobj</i> , <i>NodeIDs</i>) gets the handles for the specified nodes (<i>NodeIDs</i>) in a biograph object.		
Example	<pre>1 Create a biograph object. species = {'Homosapiens','Pan','Gorilla','Pongo','Baboon', 'Macaca','Gibbon'}; cm = magic(7)>25 & 1-eye(7); bg = biograph(cm, species)</pre> 2 Find the handles to members of the Cercopithecidae family and members of the Hominidae family.		
	Cercopithecidae = {'Macaca','Baboon'}; Hominidae = {'Homosapiens','Pan','Gorilla','Pongo'}; CercopithecidaeNodes = getnodesbyid(bg,Cercopithecidae); HominidaeNodes = getnodesbyid(bg,Hominidae);		
	3 Color the families differently and draw a graph.		
See Also	Bioinformatics Toolbox function: biograph (object constructor)		
	Bioinformatics Toolbox object: biograph object		
	Bioinformatics Toolbox methods of a biograph object: dolayout, get, getancestors, getdescendants, getedgesbynodeid, getnodesbyid, getrelatives, set, view		

getrelatives (biograph)

Purpose	Find relatives in biograph object		
Syntax	Nodes = getrelatives(BiographNode) Nodes = getrelatives(BiographNode,NumGenerations)		
Arguments	BiographNode NumGenerations	Node in a biograph object. Number of generations. Enter a positive integer.	
Description	<i>Nodes</i> = getrelatives(<i>BiographNode</i>) finds all the direct relatives for a given node (<i>BiographNode</i>).		
	-	(BiographNode,NumGenerations) finds the ren node (BiographNode) up to a specified NumGenerations).	
Examples	Create a biograph object.		
	<pre>cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0</pre>		
	_	elatives(bg.nodes(1)); plor',[.7 .7 1]);	
See Also	Bioinformatics Toolbox	function: biograph (object constructor)	
	Bioinformatics Toolbox	object: biograph object	
		methods of a biograph object: dolayout, get, endants, getedgesbynodeid, getnodesbyid, w	

Purpose	Find terms that are relatives of specified Gene Ontology (GO) term	
Syntax	<pre>[RelativeIDs, Count = getrelatives(= getrelatives(= getrelatives(= getrelatives(= getrelatives()</pre>	<pre>latives(GeneontObj, ID) s] = getrelatives(GeneontObj, ID), 'Height', HeightValue,), 'Depth', DepthValue,), 'Levels', LevelsValue,), 'Relationtype', RelationtypeValue,, 'Exclude', ExcludeValue,)</pre>
Arguments	GeneontObj ID	A geneont object, such as created by the geneont function. GO term identifier or vector of identifiers.
	HeightValue	Positive integer specifying the number of levels to search upward in the gene ontology.
	DepthValue	Positive integer specifying the number of levels to search downward in the gene ontology.
	LevelsValue	Positive integer specifying the number of levels up and down to search in the gene ontology. When specified, it overrides <i>HeightValue</i> and <i>DepthValue</i> .
	RelationtypeValue	String specifying the relationship types to search for in the gene ontology. Choices are:'is_a'
		• 'part_of'
		• 'both' (default)
	ExcludeValue	Controls excluding <i>ID</i> , the original queried term(s), from the output <i>RelativeIDs</i> , unless the term was reached while searching the gene ontology. Choices are true or false (default).

Return Values	RelativeIDs Counts	Vector of GO term identifiers including <i>ID</i> . Column vector with the same number of elements as terms in <i>GeneontObj</i> , indicating the number of times each relative is found.	
Description	RelativeIDs = getrelatives(GeneontObj, ID) searches GeneontObj, a geneont object, for GO terms that are relatives of the GO term(s) specified by ID, which is a GO term identifier or vector of identifiers. It returns RelativeIDs, a vector of GO term identifiers including ID. ID is a nonnegative integer or a vector containing nonnegative integers.		
	returns the number of	s] = getrelatives(GeneontObj, ID) also times each relative is found. Counts is a column number of elements as terms in GeneontObj.	
	-	n value is useful when tallying counts in gene or more information, see the Gene Ontology rray Data demo.	
) calls getrelative name/property value p any order. Each <i>Prope</i> marks and is case inse pairs are as follows:	(, 'PropertyName', PropertyValue, ves with optional properties that use property airs. You can specify one or more properties in ertyName must be enclosed in single quotation ensitive. These property name/property value	
	up through a specified	<pre>Height', HeightValue,) searches number of levels, HeightValue, in the gene is a positive integer. Default is 1.</pre>	

... = getrelatives(..., 'Depth', DepthValue, ...) searches down through a specified number of levels, DepthValue, in the gene ontology. DepthValue is a positive integer. Default is 1.

... = getrelatives(..., 'Levels', *LevelsValue*, ...) searches up and down through a specified number of levels, *LevelsValue*, in the gene ontology. *LevelsValue* is a positive integer. When specified, it overrides *HeightValue* and *DepthValue*.

... = getrelatives(..., 'Relationtype', RelationtypeValue, ...) searches for specified relationship types, RelationtypeValue, in the gene ontology. RelationtypeValue is a string. Choices are 'is_a', 'part_of', or 'both' (default).

... = getrelatives(..., 'Exclude', *ExcludeValue*, ...) controls excluding *ID*, the original queried term(s), from the output *RelativeIDs*, unless a term was found while searching the gene ontology. Choices are true or false (default).

Examples 1 Download the current version of the Gene Ontology database from the Web into a geneont object in the MATLAB software.

GO = geneont('LIVE', true)

The MATLAB software creates a geneont object and displays the number of terms in the database.

Gene Ontology object with 24316 Terms.

2 Retrieve the immediate relatives for the mitochondrial membrane GO term with an identifier of **31966**.

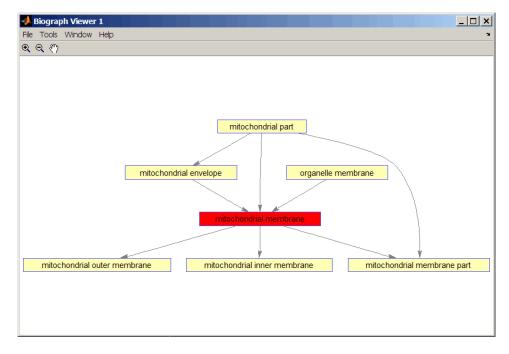
relatives = getrelatives(GO,31966,'levels',1) relatives = 5740 5741 5743

```
31090
31966
44429
44455
```

3 Create a subordinate Gene Ontology.

```
subontology = GO(relatives)
```

Gene Ontology object with 7 Terms.


4 Create a report of the subordinate Gene Ontology terms.

```
[cm acc rels] = getmatrix(subontology);
rpt = [num2goid(acc) get(subontology.Terms, 'name')]';
disp(sprintf('%s --> %s\n',rpt{:}))
G0:0005740 --> mitochondrial envelope
G0:0005741 --> mitochondrial outer membrane
G0:0005743 --> mitochondrial inner membrane
```

```
G0:0031090 --> organelle membrane
G0:0031966 --> mitochondrial membrane
G0:0044429 --> mitochondrial part
G0:0044455 --> mitochondrial membrane part
```

5 View relationships of the subordinate Gene Ontology using the biograph function and methods and color the mitochondrial membrane GO terms red.

```
BG = biograph(cm, get(subontology.Terms, 'name'));
BG.nodes(acc==31966).Color = [1 0 0];
view(BG)
```


6 Retrieve all relatives for the mithocondrial outer membrane GO term with an identifier of **5741**.

relatives = getrelatives(G0,5741, 'levels', inf);

7 Create a subordinate Gene Ontology.

subontology = GO(relatives)

Gene Ontology object with 28 Terms.

8 View relationships using the biograph functions.

```
[cm acc rels] = getmatrix(subontology);
BG = biograph(cm, get(subontology.Terms, 'name'));
BG.nodes(acc==5741).Color = [1 0 0];
```

view(BG)

See AlsoBioinformatics Toolbox functions: geneont (object constructor),
goannotread, num2goidBioinformatics Toolbox methods of geneont object: getancestors,
getdescendants, getmatrix

Purpose	Test DataMatrix objects for greater than	
Syntax	T = gt(DMObj1, DMObj2) T = DMObj1 > DMObj2 T = gt(DMObj1, B) T = DMObj1 > B T = gt(B, DMObj1) T = B > DMObj1	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	Τ	Logical matrix of the same size as <i>DMObj1</i> and <i>DMObj2</i> or <i>DMObj1</i> and <i>B</i> . It contains logical 1 (true) where elements in the first input are greater than the corresponding element in the second input, and logical 0 (false) otherwise.
Description	T = gt(DMObj1, DMObj2) or the equivalent $T = DMObj1 > DMObj2compares each element in DataMatrix object DMObj1 to thecorresponding element in DataMatrix object DMObj2, and returns T, alogical matrix of the same size as DMObj1 and DMObj2, containing logical1 (true) where elements in DMObj1 are greater than the correspondingelement in DMObj2, and logical 0 (false) otherwise. DMObj1 and DMObj2must have the same size (number of rows and columns), unless oneis a scalar (1-by-1 DataMatrix object). DMObj1 and DMObj2 can havedifferent Name properties.T = gt(DMObj1, B)$ or the equivalent $T = DMObj1 > B$ compares each element in DataMatrix object $DMObj1$ to the corresponding element in B , a numeric or logical array, and returns T , a logical matrix of the same size as $DMObj1$ and B , containing logical 1 (true) where elements	

in DMObj1 are greater than the corresponding element in *B*, and logical 0 (false) otherwise. DMObj1 and *B* must have the same size (number of rows and columns), unless one is a scalar.

 $T = \operatorname{gt}(B, DMObj1)$ or the equivalent T = B > DMObj1 compares each element in *B*, a numeric or logical array, to the corresponding element in DataMatrix object DMObj1, and returns *T*, a logical matrix of the same size as *B* and DMObj1, containing logical 1 (true) where elements in *B* are greater than the corresponding element in DMObj1, and logical 0 (false) otherwise. *B* and DMObj1 must have the same size (number of rows and columns), unless one is a scalar.

MATLAB calls T = gt(X, Y) for the syntax T = X > Y when X or Y is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: 1t

Purpose	Concatenate DataMatrix objects horizontally	
Syntax	DMObjNew = horzcat(DMObj1, DMObj2,) DMObjNew = (DMObj1, DMObj2,) DMObjNew = horzcat(DMObj1, B,) DMObjNew = (DMObj1, B,)	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	DMObjNew	DataMatrix object created by horizontal concatenation.
Description	DMObjNew = horzcat(DMObj1, DMObj2,) or the equivalent DMObjNew = (DMObj1, DMObj2,) horizontally concatenates the DataMatrix objects DMObj1 and DMObj2 into DMObjNew, another DataMatrix object. DMObj1 and DMObj2 must have the same number of rows. The row names and the order of rows for DMObjNew are the same as DMObj1. The row names of DMObj2 and any other DataMatrix object input arguments are not preserved. The columns names for DMObjNew are the column names of DMObj1, DMObj2, and other DataMatrix object input arguments.	
	DMObjNew = horzcat(DMObj1, B,) or the equivalent $DMObjNew = (DMObj1, B,)$ horizontally concatenates the DataMatrix object $DMObj1$ and a numeric or logical array B into $DMObjNew$, another DataMatrix object. $DMObj1$ and B must have the same number of rows. The row names for $DMObjNew$ are the same as $DMObj1$. The row names of $DMObj2$ and any other DataMatrix object input arguments are not preserved. The column names for $DMObjNew$ are the column names of $DMObj1$ and empty for the columns from B .	

MATLAB calls DMObjNew = horzcat(X1, X2, X3, ...) for the syntax DMObjNew = [X1, X2, X3, ...] when any one of X1, X2, X3, etc. is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox methods of a DataMatrix object: vertcat

Purpose	Test for cycles in biograph object		
Syntax	isdag(<i>BGObj</i>)		
Arguments	BGOb <i>j</i> Biograph object created by biograph (object constructor).		
Description	Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the <i>Bioinformatics Toolbox User's Guide</i> .		
	<pre>isdag(BGObj) returns logical 1 (true) if an N-by-N adjacency matrix extracted from a biograph object, BGObj, is a directed acyclic graph (DAG) and logical 0 (false) otherwise. In the N-by-N sparse matrix, all nonzero entries indicate the presence of an edge.</pre>		
References	[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).		
See Also	Bioinformatics Toolbox functions: biograph (object constructor), graphisdag		
	Bioinformatics Toolbox object: biograph object		
	Bioinformatics Toolbox methods of a biograph object: allshortestpaths, conncomp, isomorphism, isspantree, maxflow, minspantree, shortestpath, topoorder, traverse		

isequal (DataMatrix)

Purpose	Test DataMatrix objects for equality		
Syntax	<pre>TF = isequal(DMObj1, DMObj2) TF = isequal(DMObj1, DMObj2, DMObj3,)</pre>		
Arguments	DMObj1, DMObj2, DMObj3DataMatrix objects, such as created by DataMatrix (object constructor).		
Return Values	<i>TF</i> Logical value indicating if inputs are numerically equal (have the same contents), have the same size (same NRows and NCols properties), and have the same RowNames and ColNames properties. NaNs are		
Description	not considered equal to each other. <i>TF</i> = isequal(<i>DMObj1</i> , <i>DMObj2</i>) returns logical 1 (true) if the input DataMatrix objects, <i>DMObj1</i> and <i>DMObj2</i> , meet the following:		
	• Are numerically equal (have the same contents)		
	• Have the same size (same NRows and NCols properties)		
	 Have the same RowNames and ColNames properties Otherwise, it returns logical 0 (false). DMObj1 and DMObj2 do not have to have the same Name property. NaNs are not considered equal to each other. TF = isequal(DMObj1, DMObj2, DMObj3,) returns logical 1 (true) if all input DataMatrix objects, DMObj1, DMObj2, DMObj3, etc. meet the following: Are numerically equal (have the same contents) 		
	• Have the same size (same NRows and NCols properties)		
	• Have the same RowNames and ColNames properties		

Otherwise, it returns logical O (false). The input DataMatrix objects do not have to have the same Name property. NaNs are not considered equal to each other.

See Also Bioinformatics Toolbox function: DataMatrix (object constructor)

Bioinformatics Toolbox object: DataMatrix object

Bioinformatics Toolbox methods of a DataMatrix object: isequalwithequalnans

isequalwithequalnans (DataMatrix)

Purpose	Test DataMatrix objects for equality, treating NaNs as equal		
Syntax	<pre>TF = isequalwithequalnans(DMObj1, DMObj2) TF = isequalwithequalnans(DMObj1, DMObj2, DMObj3,)</pre>		
Arguments	DMObj1,DMObj2, DMObj3	DataMatrix objects, such as created by DataMatrix (object constructor).	
Return Values	TF	Logical value indicating if inputs are numerically equal (have the same contents), have the same size (same NRows and NCols properties), and have the same RowNames and ColNames properties. NaNs are considered equal to each other.	
Description	<i>TF</i> = isequalwithequalnans(<i>DMObj1</i> , <i>DMObj2</i>) returns logical 1 (true) if the input DataMatrix objects, <i>DMObj1</i> and <i>DMObj2</i> , meet the following:		
	 Are numerically equal (have the same contents) 		
	• Have the same	size (same NRows and NCols properties)	
	 Have the same RowNames and ColNames properties Otherwise, it returns logical 0 (false). DMObj1 and DMObj2 do not have to have the same Name property. NaNs are considered equal to each other. TF = isequalwithequalnans(DMObj1, DMObj2, DMObj3,) returns logical 1 (true) if all input DataMatrix objects, DMObj1, DMObj2, DMObj3, etc. meet the following: 		
	• Are numerically equal (have the same contents)		
	• Have the same	size (same NRows and NCols properties)	

	• Have the same RowNames and ColNames properties		
	Otherwise, it returns logical O (false). The input DataMatrix objects do not have to have the same Name property. NaNs are considered equal to each other.		
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor)		
	Bioinformatics Toolbox object: DataMatrix object		
	Bioinformatics Toolbox methods of a DataMatrix object: isequal		

isomorphism (biograph)

Purpose	Find isomorphism between two biograph objects	
Syntax	[Isomorphic, Map] = isomorphism(BGObj1, BGObj2) [Isomorphic, Map] = isomorphism(BGObj1, BGObj2,'Directed', DirectedValue)	
Arguments	BGObj1	Biograph object created by biograph (object constructor).
	BGObj2	Biograph object created by biograph (object constructor).
	DirectedValue	Property that indicates whether the graphs are directed or undirected. Enter false when both <i>BGObj1</i> and <i>BGObj2</i> produce undirected graphs. In this case, the upper triangles of the sparse matrices extracted from <i>BGObj1</i> and <i>BGObj2</i> are ignored. Default is true, meaning that both graphs are directed.

Description

Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the *Bioinformatics Toolbox User's Guide*.

[Isomorphic, Map] = isomorphism(BGObj1, BGObj2) returns logical 1 (true) in Isomorphic if two N-by-N adjacency matrices extracted from biograph objects BGObj1 and BGObj2 are isomorphic graphs, and logical 0 (false) otherwise. A graph isomorphism is a 1-to-1 mapping of the nodes in the graph from BGObj1 and the nodes in the graph from BGObj2 such that adjacencies are preserved. Return value Isomorphic is Boolean. When Isomorphic is true, Map is a row vector containing the node indices that map from BGObj2 to BGObj1. When Isomorphic is false, the worst-case time complexity is O(N!), where N is the number of nodes.

isspantree (biograph)

Purpose	Determine if tree created from biograph object is spanning tree		
Syntax	<i>TF</i> = isspantree(<i>BGObj</i>)		
Arguments	BGOb <i>j</i> Biograph object created by biograph (object constructor).		
Description	Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the <i>Bioinformatics Toolbox User's Guide</i> .		
	<i>TF</i> = isspantree(<i>BGObj</i>) returns logical 1 (true) if the N-by-N adjacency matrix extracted from a biograph object, <i>BGObj</i> , is a spanning tree, and logical 0 (false) otherwise. A spanning tree must touch all the nodes and must be acyclic. The lower triangle of the N-by-N adjacency matrix represents an undirected graph, and all nonzero entries indicate the presence of an edge.		
References	[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).		
See Also	Bioinformatics Toolbox functions: biograph (object constructor), graphisspantree		
	Bioinformatics Toolbox object: biograph object		
	Bioinformatics Toolbox methods of a biograph object: allshortestpaths, conncomp, isdag, isomorphism, maxflow, minspantree, shortestpath, topoorder, traverse		

Purpose	Left array divide DataMatrix objects	
Syntax	DMObjNew = ldivide(DMObj1, DMObj2) DMObjNew = DMObj1 .\ DMObj2 DMObjNew = ldivide(DMObj1, B) DMObjNew = DMObj1 .\ B DMObjNew = ldivide(B, DMObj1) DMObjNew = B .\ DMObj1	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	DMObjNew	DataMatrix object created by left array division.
Description	$DMOb jNew = 1 divide (DMOb j1, DMOb j2) \text{ or the equivalent } DMOb jNew = DMOb j1 . \ DMOb j2 performs an element-by-element left array division of the DataMatrix objects DMOb j1 and DMOb j2 and places the results in DMOb jNew, another DataMatrix object. In other words, 1 divide divides each element in DMOb j2 by the corresponding element in DMOb j1.DMOb j1 and DMOb j2 must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). The size (number of rows and columns), row names, and column names for DMOb jNew are the same as DMOb j1, unless DMOb j1 is a scalar; then they are the same as DMOb j1, B or the equivalent DMOb jNew = DMOb j1 \cdot B performs an element-by-element left array division of the DataMatrix object DMOb j1 and B, a numeric or logical array, and places the results in DMOb jNew, another DataMatrix object. In other words, I divide divides each element in B by the corresponding element in DMOb jNew and DMOb jNew.$	
	DMObj1. DMObj1 and B must have the same size (number of rows and	

columns), unless *B* is a scalar. The size (number of rows and columns), row names, and column names for *DMObjNew* are the same as *DMObj1*.

DMObjNew = ldivide(B, DMObj1) or the equivalent DMObjNew = B.\ DMObj1 performs an element-by-element left array division of B, a numeric or logical array, and the DataMatrix object DMObj1, and places the results in DMObjNew, another DataMatrix object. In other words, ldivide divides each element in DMObj1 by the corresponding element in B.DMObj1 and B must have the same size (number of rows and columns), unless B is a scalar. The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1.

Note Arithmetic operations between a scalar DataMatrix object and a nonscalar array are not supported.

MATLAB calls DMObjNew = 1divide(X, Y) for the syntax $DMObjNew = X \cdot Y$ when X or Y is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox methods of a DataMatrix object: rdivide, times

Purpose	Test DataMatrix objects for less than or equal to	
Syntax	T = le(DMObj1, DMObj2) $T = DMObj1 \le DMObj2$ T = le(DMObj1, B) $T = DMObj1 \le B$ T = le(B, DMObj1) $T = B \le DMObj1$	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	Τ	Logical matrix of the same size as $DMObj1$ and $DMObj2$ or $DMObj1$ and B . It contains logical 1 (true) where elements in the first input are less than or equal to the corresponding element in the second input, and logical 0 (false) otherwise.
Description	$T = le(DMObj1, DMObj2)$ or the equivalent $T = DMObj1 \le DMObj2$ compares each element in DataMatrix object $DMObj1$ to the corresponding element in DataMatrix object $DMObj2$, and returns T , a logical matrix of the same size as $DMObj1$ and $DMObj2$, containing logical 1 (true) where elements in $DMObj1$ are less than or equal to the corresponding element in $DMObj2$, and logical 0 (false) otherwise. $DMObj1$ and $DMObj2$ must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). $DMObj1$ and $DMObj1$ and $DMObj2$ can have different Name properties. $T = le(DMObj1, B)$ or the equivalent $T = DMObj1 \le B$ compares each element in DataMatrix object $DMObj1$ to the corresponding element in B , a numeric or logical array, and returns T , a logical matrix of the same size as $DMObj1$ and B , containing logical 1 (true) where elements	

in DMObj1 are less than or equal to the corresponding element in B, and logical 0 (false) otherwise. DMObj1 and B must have the same size (number of rows and columns), unless one is a scalar.

T = le(B, DMObj1) or the equivalent $T = B \le DMObj1$ compares each element in *B*, a numeric or logical array, to the corresponding element in DataMatrix object DMObj1, and returns *T*, a logical matrix of the same size as *B* and DMObj1, containing logical 1 (true) where elements in *B* are less than or equal to the corresponding element in DMObj1, and logical 0 (false) otherwise. *B* and DMObj1 must have the same size (number of rows and columns), unless one is a scalar.

MATLAB calls T = le(X, Y) for the syntax $T = X \le Y$ when X or Y is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: ge

Purpose	Test DataMatrix objects for less than	
Syntax	T = lt(DMObj1, DMObj2) T = DMObj1 < DMObj2 T = lt(DMObj1, B) T = DMObj1 < B T = lt(B, DMObj1) T = B < DMObj1	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	Τ	Logical matrix of the same size as <i>DMObj1</i> and <i>DMObj2</i> or <i>DMObj1</i> and <i>B</i> . It contains logical 1 (true) where elements in the first input are less than the corresponding element in the second input, and logical 0 (false) otherwise.
Description	T = lt(DMObj1, DMObj2) or the equivalent $T = DMObj1 < DMObj2compares each element in DataMatrix object DMObj1 to thecorresponding element in DataMatrix object DMObj2, and returns T, alogical matrix of the same size as DMObj1 and DMObj2, containing logical1 (true) where elements in DMObj1 are less than the correspondingelement in DMObj2, and logical 0 (false) otherwise. DMObj1 and DMObj2must have the same size (number of rows and columns), unless oneis a scalar (1-by-1 DataMatrix object). DMObj1 and DMObj2 can havedifferent Name properties.T = lt(DMObj1, B)$ or the equivalent $T = DMObj1 < B$ compares each element in DataMatrix object $DMObj1$ to the corresponding element in B, a numeric or logical array, and returns T, a logical matrix of the same size as $DMObj1$ and B, containing logical 1 (true) where elements	

in DMObj1 are less than the corresponding element in *B*, and logical 0 (false) otherwise. DMObj1 and *B* must have the same size (number of rows and columns), unless one is a scalar.

T = 1t(B, DMObj1) or the equivalent T = B < DMObj1 compares each element in *B*, a numeric or logical array, to the corresponding element in DataMatrix object DMObj1, and returns *T*, a logical matrix of the same size as *B* and DMObj1, containing logical 1 (true) where elements in *B* are less than the corresponding element in DMObj1, and logical 0 (false) otherwise. *B* and DMObj1 must have the same size (number of rows and columns), unless one is a scalar.

MATLAB calls T = 1t(X, Y) for the syntax T = X < Y when X or Y is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: gt

Purpose	Return maximum values in DataMatrix object	
Syntax	<pre>M = max(DMObj1) [M, Indices] = max(DMObj1) [M, Indices, Names] = max(DMObj1) = max(DMObj1, [], Dim) MA = max(DMObj1, DMObj2)</pre>	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
		Note <i>DMObj1</i> and <i>DMObj2</i> must be the same size, unless one is a scalar.
	Dim	Scalar specifying the dimension of <i>DMObj</i> to return the maximum values. Choices are:
		• 1 — Default. Returns a row vector containing a maximum value for each column.
		• 2 — Returns a column vector containing a maximum value for each row.

Return Values	М	One of the following:		
		• Scalar specifying the maximum value in <i>DMObj</i> when it contains vector of data		
		 Row vector containing the maximum value for each column in DMObj (when Dim = 1) 		
		 Column vector containing the maximum value for each row in DMObj (when Dim = 2) 		
	Indices	Either of the following:		
		• Positive integer specifying the index of the maximum value in a DataMatrix object containing a vector of data		
		 Vector containing the indices for the maximum value in each column (if <i>Dim</i> = 1) or row (if <i>Dim</i> = 2) in a DataMatrix object containing a matrix of data 		
	Names	Vector of the row names (if <i>Dim</i> = 1) or column names (if <i>Dim</i> = 2) corresponding to the maximum value in each column or each row of a DataMatrix object.		
	MA	Numeric array created from the maximum elements in either of the following:		
		Two DataMatrix objects		
		• A DataMatrix object and a numeric array		
Description	DataMatrix If DMObj1 c	MObj1) returns the maximum value(s) in DMObj1, a cobject. If DMObj1 contains a vector of data, <i>M</i> is a scalar. The ontains a matrix of data, <i>M</i> is a row vector containing a value in each column.		
		[<i>M</i> , <i>Indices</i>] = max(<i>DMObj1</i>) returns <i>Indices</i> , the indices of the maximum value(s) in <i>DMObj1</i> , a DataMatrix object. If <i>DMObj1</i> contains		

a vector of data, *Indices* is a positive integer. If DMObj1 contains a matrix of data, *Indices* is a vector containing the indices for the maximum value in each column (if Dim = 1) or row (if Dim = 2). If there are multiple maximum values in a column or row, the index for the first value is returned.

 $[M, Indices, Names] = \max(DMObj1)$ returns Names, a vector of the row names (if Dim = 1) or column names (if Dim = 2) corresponding to the maximum value in each column or each row of DMObj1, a DataMatrix object. If there are multiple maximum values in a column or row, the row or column name for the first value is returned.

... = max(DMObj1, [], Dim) specifies which dimension to return the maximum values for, that is each column or each row in a DataMatrix object. If Dim = 1, returns *M*, a row vector containing the maximum value in each column. If Dim = 2, returns *M*, a column vector containing the maximum value in each row. Default Dim = 1.

MA = max(DMObj1, DMObj2) returns MA, a numeric array containing the larger of the two values from each position of DMObj1 and DMObj2. DMObj1 and DMObj2 can both be DataMatrix objects, or one can be a DataMatrix object and the other a numeric array. They must be the same size, unless one is a scalar. MA has the same size (number of rows and columns) as the first nonscalar input.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox methods of a DataMatrix object: min, sum

maxflow (biograph)

Purpose	Calculate maximum flow in biograph object		
Syntax	<pre>[MaxFlow, FlowMatrix, Cut] = maxflow(BGObj, SNode, TNode) [] = maxflow(BGObj, SNode, TNode,'Capacity', CapacityValue,) [] = maxflow(BGObj, SNode, TNode,'Method', MethodValue,)</pre>		
Arguments	BGOb j	Biograph object created by biograph (object constructor).	
	SNode	Node in a directed graph represented by an N-by-N adjacency matrix extracted from biograph object, <i>BGObj</i> .	
	TNode	Node in a directed graph represented by an N-by-N adjacency matrix extracted from biograph object, <i>BGObj</i> .	

CapacityValue	Column vector that specifies custom capacities for the edges in the N-by-N adjacency matrix. It must have one entry for every nonzero value (edge) in the N-by-N adjacency matrix. The order of the custom capacities in the vector must match the order of the nonzero values in the N-by-N adjacency matrix when it is traversed column-wise. By default, maxflow gets capacity information from the nonzero entries in the N-by-N adjacency matrix.
MethodValue	 String that specifies the algorithm used to find the minimal spanning tree (MST). Choices are: 'Edmonds' — Uses the Edmonds and Karp algorithm, the implementation of which is based on a variation called the <i>labeling algorithm</i>. Time complexity is O(N*E^2), where N and E are the number of nodes and edges respectively.
	 'Goldberg' — Default algorithm. Uses the Goldberg algorithm, which uses the generic method known as <i>preflow-push</i>. Time complexity is O(N^2*sqrt(E)), where N and E are the number of nodes and edges respectively.
-	ory information on graph theory functions, see "Graph ' in the <i>Bioinformatics Toolbox User's Guide</i> .

[MaxFlow, FlowMatrix, Cut] = maxflow(BGObj, SNode, TNode)calculates the maximum flow of a directed graph represented by an N-by-N adjacency matrix extracted from a biograph object, BGObj, from node SNode to node TNode. Nonzero entries in the matrix determine the capacity of the edges. Output MaxFlow is the maximum flow, and FlowMatrix is a sparse matrix with all the flow values for every edge. FlowMatrix(X,Y) is the flow from node X to node Y. Output Cut

Description

is a logical row vector indicating the nodes connected to *SNode* after calculating the minimum cut between *SNode* and *TNode*. If several solutions to the minimum cut problem exist, then *Cut* is a matrix.

Tip The algorithm that determines Cut, all minimum cuts, has a time complexity of $O(2^N)$, where N is the number of nodes. If this information is not needed, use the maxflow method without the third output.

[...] = maxflow(BGObj, SNode, TNode, ...'PropertyName', PropertyValue, ...) calls maxflow with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

[...] = maxflow(BGObj, SNode, TNode, ...'Capacity', CapacityValue, ...) lets you specify custom capacities for the edges. CapacityValue is a column vector having one entry for every nonzero value (edge) in the N-by-N adjacency matrix. The order of the custom capacities in the vector must match the order of the nonzero values in the matrix when it is traversed column-wise. By default, graphmaxflow gets capacity information from the nonzero entries in the matrix.

[...] = maxflow(*BGObj*, *SNode*, *TNode*, ...'Method', *MethodValue*, ...) lets you specify the algorithm used to find the minimal spanning tree (MST). Choices are:

- 'Edmonds' Uses the Edmonds and Karp algorithm, the implementation of which is based on a variation called the *labeling algorithm*. Time complexity is O(N*E^2), where N and E are the number of nodes and edges respectively.
- 'Goldberg' Default algorithm. Uses the Goldberg algorithm, which uses the generic method known as *preflow-push*. Time

complexity is $O(N^2*sqrt(E))$, where N and E are the number of nodes and edges respectively.

References [1] Edmonds, J. and Karp, R.M. (1972). Theoretical improvements in the algorithmic efficiency for network flow problems. Journal of the ACM *19*, 248-264.

[2] Goldberg, A.V. (1985). A New Max-Flow Algorithm. MIT Technical Report MIT/LCS/TM-291, Laboratory for Computer Science, MIT.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor), graphmaxflow

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: allshortestpaths, conncomp, isdag, isomorphism, isspantree, minspantree, shortestpath, topoorder, traverse

<u>mean (DataMatrix)</u>

Purpose	Return average or mean values in DataMatrix object		
Syntax	<pre>M = mean(DMObj) M = mean(DMObj, M = mean(DMObj,</pre>		
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).	
	Dim	Scalar specifying the dimension of <i>DMObj</i> to calculate the means. Choices are:	
		• 1 — Default. Returns mean values for elements in each column.	
		• 2 — Returns mean values for elements in each row.	
	IgnoreNaN	Specifies if NaNs should be ignored. Choices are true (default) or false.	
Return Values	М	Either of the following:	
		• Row vector containing the mean values from elements in each column in <i>DMObj</i> (when <i>Dim</i> = 1)	
		• Column vector containing the mean values from elements in each row in <i>DMObj</i> (when <i>Dim</i> = 2)	
Description	<pre>M = mean(DMObj) returns the mean values of the elements in the columns of a DataMatrix object, treating NaNs as missing values. M is a row vector containing the mean values for elements in each column in DMObj.</pre>		
		<pre>Dim) returns the mean values of the elements in the f a DataMatrix object, as specified by Dim. If Dim = 1,</pre>	

returns M, a row vector containing the mean values for elements in each column in DMObj. If Dim = 2, returns M, a column vector containing the mean values for elements in each row in DMObj. Default Dim = 1.
 M = mean(DMObj, Dim, IgnoreNaN) specifies if NaNs should be ignored. IgnoreNaN can be true (default) or false.
 See Also Bioinformatics Toolbox function: DataMatrix (object constructor) Bioinformatics Toolbox object: DataMatrix object
 Bioinformatics Toolbox methods of a DataMatrix object: max, median, min, sum

median (DataMatrix)

Purpose	Return median values in DataMatrix object	
Syntax	<pre>Med = median(DMObj) Med = median(DMObj, Dim) Med = median(DMObj, Dim, IgnoreNaN)</pre>	
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).
	Dim	Scalar specifying the dimension of <i>DMObj</i> to calculate the medians. Choices are:
		• 1 — Default. Returns median values for elements in each column.
		• 2 — Returns median values for elements in each row.
	IgnoreNaN	Specifies if NaNs should be ignored. Choices are true (default) or false.
Return Nalues	Med	Either of the following:
		• Row vector containing the median values from elements in each column in <i>DMObj</i> (when <i>Dim</i> = 1)
		 Column vector containing the median values from elements in each row in DMObj (when Dim = 2)
Description	Med = median(DMObj) returns the median values of the elements in the columns of a DataMatrix object, treating NaNs as missing values. Med is a row vector containing the median values for elements in each	

column in DMObj.

Med = median(DMObj, Dim) returns the median values of the elements in the columns or rows of a DataMatrix object, as specified by Dim. If Dim = 1, returns Med, a row vector containing the median values for elements in each column in DMObj. If Dim = 2, returns Med, a column vector containing the median values for elements in each row in DMObj. Default Dim = 1.

Med = median(DMObj, Dim, IgnoreNaN) specifies if NaNs should be ignored. IgnoreNaN can be true (default) or false.

See Also Bioinformatics Toolbox function: DataMatrix (object constructor)

Bioinformatics Toolbox object: DataMatrix object

 $\operatorname{Bioinformatics}$ Toolbox methods of a DataMatrix object: max, mean, min, sum

min (DataMatrix)

Purpose	Return minimum values in DataMatrix object		
Syntax	<pre>M = min(DMObj1) [M, Indices] = min(DMObj1) [M, Indices, Names] = min(DMObj1) = min(DMObj1, [], Dim) MA = min(DMObj1, DMObj2)</pre>		
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).	
		Note <i>DMObj1</i> and <i>DMObj2</i> must be the same size, unless one is a scalar.	
	Dim	Scalar specifying the dimension of <i>DMObj</i> to return the minimum values. Choices are:	
		• 1 — Default. Returns a row vector containing a minimum value for each column.	
		• 2 — Returns a column vector containing a minimum value for each row.	

min (DataMatrix)

Return Values	М	One of the following:	
		• Scalar specifying the minimum value in <i>DMObj</i> when it contains vector of data	
		 Row vector containing the minimum value for each column in DMObj (when Dim = 1) 	
		 Column vector containing the minimum value for each row in DMObj (when Dim = 2) 	
	Indices	Either of the following:	
		• Positive integer specifying the index of the minimum value in a DataMatrix object containing a vector of data	
		• Vector containing the indices for the minimum value in each column (if <i>Dim</i> = 1) or row (if <i>Dim</i> = 2) in a DataMatrix object containing a matrix of data	
	Names	Vector of the row names (if $Dim = 1$) or column names (if $Dim = 2$) corresponding to the minimum value in each column or each row of a DataMatrix object.	
	МА	Numeric array created from the minimum elements in either of the following:	
		• Two DataMatrix objects	
		• A DataMatrix object and a numeric array	
Description	M = min(DMObj1) returns the minimum value(s) in DMObj1 DataMatrix object. If DMObj1 contains a vector of data, M is If DMObj1 contains a matrix of data, M is a row vector contain minimum value in each column.		
	[<i>M</i> , <i>Indices</i>] = min(<i>DMObj1</i>) returns <i>Indices</i> , the indices of the minimum value(s) in <i>DMObj1</i> , a DataMatrix object. If <i>DMObj1</i> contains		

a vector of data, *Indices* is a positive integer. If DMObj1 contains a matrix of data, *Indices* is a vector containing the indices for the minimum value in each column (if Dim = 1) or row (if Dim = 2). If there are multiple minimum values in a column or row, the index for the first value is returned.

 $[M, Indices, Names] = \min(DMObj1)$ returns Names, a vector of the row names (if Dim = 1) or column names (if Dim = 2) corresponding to the minimum value in each column or each row of DMObj1, a DataMatrix object. If there is more than one minimum value in a column or row, the row or column name for the first value is returned.

... = $\min(DMObj1, [], Dim)$ specifies which dimension to return the minimum values for, that is each column or each row in a DataMatrix object. If Dim = 1, returns *M*, a row vector containing the minimum value in each column. If Dim = 2, returns *M*, a column vector containing the minimum value in each row. Default Dim = 1.

MA = min(DMObj1, DMObj2) returns MA, a numeric array containing the smaller of the two values from each position of DMObj1 and DMObj2. DMObj1 and DMObj2 can both be DataMatrix objects, or one can be a DataMatrix object and the other a numeric array. They must be the same size, unless one is a scalar. MA has the same size (number of rows and columns) as the first nonscalar input.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox methods of a DataMatrix object: max, sum

Purpose	Find minimal spanning tree in biograph object		
Syntax	[Tree, pred] = minspantree(BGObj) [Tree, pred] = minspantree(BGObj, R) [Tree, pred] = minspantree(, 'Method', MethodValue,) [Tree, pred] = minspantree(, 'Weights', WeightsValue,)		
Arguments	BGObj R	Biograph object created by biograph (object constructor). Scalar between 1 and the number of nodes.	
Description		troductory information on graph theory functions, see "Graph nctions" in the <i>Bioinformatics Toolbox User's Guide</i> .	

[*Tree*, *pred*] = minspantree(*BGObj*) finds an acyclic subset of edges that connects all the nodes in the undirected graph represented by an N-by-N adjacency matrix extracted from a biograph object, *BGObj*, and for which the total weight is minimized. Weights of the edges are all nonzero entries in the lower triangle of the N-by-N sparse matrix. Output *Tree* is a spanning tree represented by a sparse matrix. Output *pred* is a vector containing the predecessor nodes of the minimal spanning tree (MST), with the root node indicated by 0. The root node defaults to the first node in the largest connected component. This computation requires an extra call to the graphconncomp function.

[Tree, pred] = minspantree(BGObj, R) sets the root of the minimal spanning tree to node R.

```
[Tree, pred] =
```

minspantree(..., 'PropertyName', PropertyValue, ...) calls minspantree with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each PropertyName must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows: [*Tree*, *pred*] = minspantree(..., 'Method', *MethodValue*, ...) lets you specify the algorithm used to find the minimal spanning tree (MST). Choices are:

- 'Kruskal' Grows the minimal spanning tree (MST) one edge at a time by finding an edge that connects two trees in a spreading forest of growing MSTs. Time complexity is O(E+X*log(N)), where X is the number of edges no longer than the longest edge in the MST, and N and E are the number of nodes and edges respectively.
- 'Prim' Default algorithm. Grows the minimal spanning tree (MST) one edge at a time by adding a minimal edge that connects a node in the growing MST with any other node. Time complexity is O(E*log(N)), where N and E are the number of nodes and edges respectively.

Note When the graph is unconnected, Prim's algorithm returns only the tree that contains R, while Kruskal's algorithm returns an MST for every component.

[*Tree*, *pred*] = minspantree(..., 'Weights', *WeightsValue*, ...) lets you specify custom weights for the edges. *WeightsValue* is a column vector having one entry for every nonzero value (edge) in the N-by-N sparse matrix. The order of the custom weights in the vector must match the order of the nonzero values in the N-by-N sparse matrix when it is traversed column-wise. By default, minspantree gets weight information from the nonzero entries in the N-by-N sparse matrix.

References [1] Kruskal, J.B. (1956). On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proceedings of the American Mathematical Society 7, 48-50.

[2] Prim, R. (1957). Shortest Connection Networks and Some Generalizations. Bell System Technical Journal *36*, 1389-1401.

[3] Siek, J.G. Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor), graphminspantree

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: allshortestpaths, conncomp, isdag, isomorphism, isspantree, maxflow, shortestpath, topoorder, traverse

Purpose	Subtract DataMatrix objects		
Syntax	DMObjNew = minus(DMObj1, DMObj2) DMObjNew = DMObj1 - DMObj2 DMObjNew = minus(DMObj1, B) DMObjNew = DMObj1 - B DMObjNew = minus(B, DMObj1) DMObjNew = B - DMObj1		
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).	
	В	MATLAB numeric or logical array.	
Return Values	DMObjNew	DataMatrix object created by subtraction.	
Description	<pre>DMObjNew = minus(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 - DMObj2 performs an element-by-element subtraction of the DataMatrix object DMObj2 from the DataMatrix object DMObj1 and places the results in DMObjNew, another DataMatrix object. DMObj1 and DMObj2 must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1, unless DMObj1 is a scalar; then they are the same as DMObj2.</pre>		
	 DMObjNew = minus(DMObj1, B) or the equivalent DMObjNew = DMObj1 B performs an element-by-element subtraction of B, a numeric or logical array, from the DataMatrix object DMObj1, and places the results in DMObjNew, another DataMatrix object. DMObj1 and B must have the same size (number of rows and columns), unless B is a scalar. The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1. 		

DMObjNew = minus(B, DMObj1) or the equivalent DMObjNew = B - DMObj1 performs an element-by-element subtraction of the DataMatrix object DMObj1 from B, a numeric or logical array, and places the results in DMObjNew, another DataMatrix object. DMObj1 and B must have the same size (number of rows and columns), unless B is a scalar. The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1.

Note Arithmetic operations between a scalar DataMatrix object and a nonscalar array are not supported.

MATLAB calls DMObjNew = minus(X, Y) for the syntax DMObjNew = X - Y when X or Y is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: plus

ndims (DataMatrix)

Purpose	Return number of dimensions in DataMatrix object		
Syntax	<pre>N = ndims(DMObj)</pre>		
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).	
Return Values	Ν	Positive integer representing the number of dimensions in <i>DMObj</i> . The number of dimensions in a DataMatrix object is always 2.	
Description) returns the number of dimensions in <i>DMObj</i> , a . The number of dimensions in a DataMatrix object	
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor) Bioinformatics Toolbox object: DataMatrix object		

Purpose	Test DataMatrix objects for inequality	
Syntax	T = ne(DMObj1, DMObj2) $T = DMObj1 \sim= DMObj2$ T = ne(DMObj1, B) $T = DMObj1 \sim= B$ T = ne(B, DMObj1) $T = B \sim= DMObj1$	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	Τ	Logical matrix of the same size as <i>DMObj1</i> and <i>DMObj2</i> or <i>DMObj1</i> and <i>B</i> . It contains logical 1 (true) where elements in the first input are not equal to the corresponding element in the second input, and logical 0 (false) when they are equal.
Description	$T = ne(DMObj1, DMObj2)$ or the equivalent $T = DMObj1 \sim=$ DMObj2 compares each element in DataMatrix object DMObj1 to the corresponding element in DataMatrix object DMObj2, and returns T , a logical matrix of the same size as DMObj1 and DMObj2, containing logical 1 (true) where elements in DMObj1 are not equal to the corresponding element in DMObj2, and logical 0 (false) when they are equal. DMObj1 and DMObj2 must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). DMObj1 and DMObj2 can have different Name properties.	
	$T = ne(DMObj1, B)$ or the equivalent $T = DMObj1 \sim B$ compares each element in DataMatrix object $DMObj1$ to the corresponding element in <i>B</i> , a numeric or logical array, and returns <i>T</i> , a logical matrix of the same size as $DMObj1$ and <i>B</i> , containing logical 1 (true) where elements	

in DMObj1 are not equal to the corresponding element in *B*, and logical 0 (false) when they are equal. DMObj1 and *B* must have the same size (number of rows and columns), unless one is a scalar.

T = ne(B, DMObj1) or the equivalent $T = B \sim DMObj1$ compares each element in *B*, a numeric or logical array, to the corresponding element in DataMatrix object DMObj1, and returns *T*, a logical matrix of the same size as *B* and DMObj1, containing logical 1 (true) where elements in *B* are not equal to the corresponding element in DMObj1, and logical 0 (false) when they are equal. *B* and DMObj1 must have the same size (number of rows and columns), unless one is a scalar.

MATLAB calls T = ne(X, Y) for the syntax $T = X \sim = Y$ when X or Y is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: eq

Purpose	Return number of elements in DataMatrix object	
Syntax	<pre>N = numel(DMObj) Ns = numel(DMObj, Index1, Index2)</pre>	
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).
	Index1	A row or range of rows in <i>DMObj</i> specified by a positive integer or a range using the format x:y, where x is the first row and y is the last row.
	Index2	A column or range of columns in <i>DMObj</i> specified by a positive integer or a range using the format x:y, where x is the first column and y is the last column.
Return Values	Ν	Positive integer representing the number of elements in <i>DMObj</i> , a DataMatrix object.
	Ns	Positive integer representing the number of subscripted elements in <i>DMObj</i> , a DataMatrix object.
Description	<pre>N = numel(DMObj) returns 1. To find the number of elements in DMObj, a DataMatrix object, use either of the following syntaxes:</pre>	
	prod(size(<i>DMObj</i>)) numel(<i>DMObj</i> ,':',':')	
	<pre>Ns = numel(DMObj, Index1, Index2) returns the number of subscripted elements in DMObj, a DataMatrix object. Index1 specifies a row or range of rows in DMObj. Index2 specifies a column or range of columns in DMObj.</pre>	
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor)	

Bioinformatics Toolbox object: DataMatrix object

Purpose	Calculate pairwise patristic distances in phytree object		
Syntax	<pre>D = pdist(Tree) [D,C] = pdist(Tree) pdist(, 'PropertyName', PropertyValue,) pdist(, 'Nodes', NodeValue) pdist(, Squareform', SquareformValue) pdist(, 'Criteria', CriteriaValue)</pre>		
Arguments	Tree NodeValue	Phylogenetic tree object created with the phytree constructor function. Property to select the nodes. Enter either 'leaves' (default) or 'all'.	
	SquareformValue	Property to control creating a square matrix.	
Description	D = pdist(Tree) returns a vector (D) containing the patristic distances between every possible pair of leaf nodes a phylogenetic tree object (<i>Tree</i>). The patristic distances are computed by following paths through the branches of the tree and adding the patristic branch distances originally created with seqlinkage.		
	The output vector D is arranged in the order $((2,1),(3,1),\ldots,(M,1),(3,2),\ldots,(M,3),\ldots,(M,M-1))$ (the lower-left triangle of the full M-by-M distance matrix). To get the distance between the Ith and Jth nodes $(I > J)$, use the formula $D((J-1)*(M-J/2)+I-J)$. M is the number of leaves.		
		e) returns in C the index of the closest common ry possible pair of query nodes.	
	<pre>pdist(, 'PropertyName', PropertyValue,) defines optional properties using property name/value pairs.</pre>		
	computation. When	', <i>NodeValue</i>) indicates the nodes included in the Node='leaves', the output is ordered as before, but r of nodes in the tree (NumLeaves+NumBranches).	

	bdist(, Squareform', SquareformValue), when Squareform is true, converts the output into a square formatted matrix, so that D(I,J) denotes the distance between the Ith and the Jth nodes. The boutput matrix is symmetric and has a zero diagonal.			
	<pre>pdist(, 'Criteria', CriteriaValue) changes the criteria used to relate pairs. C can be 'distance' (default) or 'levels'.</pre>			
Examples	<pre>1 Get a phylogenetic tree from a file. tr = phytreeread('pf00002.tree')</pre>			
	2 Calculate the tree distances between pairs of leaves.			
	<pre>dist = pdist(tr,'nodes','leaves','squareform',true)</pre>			
See Also	Bioinformatics Toolbox functions: phytree (object constructor), phytreeread, phytreetool, seqlinkage, seqpdist			

Purpose	Render clustergram heat map and dendrograms for clustergram object		
Syntax	<pre>plot(CGobj) plot(CGobj, H = plot(</pre>		
Arguments	CGobj	Clustergram object created with the function clustergram.	
	HFig	Handle to a MATLAB Figure window.	
Description	plot(<i>CGobj</i>) renders a heat map and dendrograms for <i>CGobj</i> , a clustergram object, in a MATLAB Figure window.		
	plot(CGobj, HFig) renders a heat map and dendrograms for CGobj, a clustergram object, in a MATLAB Figure window with the handle HFig.		
	• •	.) returns the handle to the figure. The graphic properties application data in the figure handle.	
Examples	Plot the clustergram object created in the Examples section of the clustergram function.		
	plot(cgo)		
See Also	Bioinformatic	s Toolbox function: clustergram (object constructor)	
	Bioinformatic	s Toolbox object: clustergram object	
	Bioinformatic	s Toolbox methods of a clustergram object: get, set, view	

plot (DataMatrix)

Purpose	Draw 2-D line plot of DataMatrix object	
Syntax	plot(<i>DMObj1</i> plot(<i>DMObj1</i> plot(, L.	, DMObj2)
Arguments	DMObj1, DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
		Note If both <i>DMObj1</i> and <i>DMObj2</i> are input arguments, one of the inputs can be a MATLAB numeric array.
	LineSpec	String specifying a line style, marker symbol, and color of the plotted lines. For more information on these specifiers, see LineSpec.
Description	plot(<i>DMObj1</i> their index.) plots the columns of a DataMatrix object DMObj1 versus
		, DMObj2) plots the data from DMObj1 and DMObj2, two bjects, or one DataMatrix object and one MATLAB y.
	number of	and <i>DMObj2</i> are both vectors, they must have the same elements, and plot plots one vector versus the other ating a single line.
		vector and one a scalar, plot plots discrete points vertically sally, at the scalar value.
	vector mus columns in	vector and one a matrix, the number of elements in the at equal either the number of rows or the number of the matrix, and plot plots the vector versus each row in the matrix.

• If both are matrices, they must have the same size (number of rows and columns), and plot plots each column in <i>DMObj1</i> versus the corresponding column in <i>DMObj2</i> .
plot(, <i>LineSpec</i>) plots all lines as defined by <i>LineSpec</i> , a character string specifying a line style, marker symbol, and/or color.

Note For a list of line style, marker, and color specifiers, see LineSpec.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectMATLAB function: plot

plot (phytree)

Purpose	Draw phylogenetic tree		
Syntax	<pre>plot(Tree) plot(Tree, ActiveBranches) plot(, 'Type', TypeValue) plot(,'Orientation', OrientationValue) plot(,'BranchLabels', BranchLabelsValue) plot(,'LeafLabels', LeafLabelsValue) plot(,'TerminalLabels', TerminalLabelsValue)</pre>		

Arguments

Tree	Phylogenetic tree object created with the phytree constructor function.
ActiveBranches	Branches veiwable in the Figure window.
TypeValue	Property to select a method for drawing a phylogenetic tree. Enter 'square', 'angular', or 'radial'. The default value is 'square'.
OrientationValue	Property to orient a phylogram or cladogram tree. Enter 'top', 'bottom', 'left', or 'right'. The default value is 'left'.
BranchLabelsValue	Property to control displaying branch labels. Enter either true or false. The default value is false.
LeafLabelsValue	Property to control displaying leaf labels. Enter either true or false. The default value is false.
TerminalLabels	Property to control displaying terminal labels. Enter either true or false. The default value is false.

Description plot(Tree) draws a phylogenetic tree object into a figure as a phylogram. The significant distances between branches and nodes are

	in the horizontal direction. Vertical distances have no significance and are selected only for display purposes. Handles to graph elements are stored in the figure field UserData so that you can easily modify graphic properties.		
	plot(Tree, ActiveBranches) hides the nonactive branches and all of their descendants. ActiveBranches is a logical array of size numBranches x 1 indicating the active branches.		
	plot(, 'Type', <i>TypeValue</i>) selects a method for drawing a phylogenetic tree.		
	plot(,'Orientation', OrientationValue) orients a phylogenetic tree within a Figure window. The Orientation property is valid only for phylogram and cladogram trees.		
	plot(,'BranchLabels', <i>BranchLabelsValue</i>) hides or displays branch labels placed next to the branch node.		
	plot(,'LeafLabels', <i>LeafLabelsValue</i>) hides or displays leaf labels placed next to the leaf nodes.		
	plot(, 'TerminalLabels', TerminalLabelsValue) hides or displays terminal labels. Terminal labels are placed over the axis tick labels and ignored when Type= 'radial'.		
	H = plot() returns a structure with handles to the graph elements.		
Examples	<pre>tr = phytreeread('pf00002.tree') plot(tr,'Type','radial')</pre>		
	Graph element properties can be modified as follows:		
	h=get(gcf,'UserData') set(h.branchNodeLabels,'FontSize',6,'Color',[.5 .5 .5])		
See Also	Bioinformatics Toolbox functions: phytree (object constructor), phytreeread, phytreetool, seqlinkage		
	Bioinformatics Toolbox method of phytree object: view		

plus (DataMatrix)

Purpose	Add DataMatrix objects	
Syntax	DMObjNew = plus(DMObj1, DMObj2) DMObjNew = DMObj1 + DMObj2 DMObjNew = plus(DMObj1, B) DMObjNew = DMObj1 + B DMObjNew = plus(B, DMObj1) DMObjNew = B + DMObj1	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	DMObjNew	DataMatrix object created by addition.
Description	<pre>DMObjNew = plus(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 + DMObj2 performs an element-by-element addition of the DataMatrix objects DMObj1 and DMObj2 and places the results in DMObjNew, another DataMatrix object. DMObj1 and DMObj2 must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1, unless DMObj1 is a scalar; then they are the same as DMObj2.</pre>	
	<pre>DMObjNew = plus(DMObj1, B) or the equivalent DMObjNew = DMObj1 + B performs an element-by-element addition of DMObj1, a DataMatrix object, and B, a numeric or logical array, and places the results in DMObjNew, another DataMatrix object. DMObj1 and B must have the same size (number of rows and columns), unless B is a scalar. The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1.</pre>	

DMObjNew = plus(B, DMObj1) or the equivalent DMObjNew = B + DMObj1 performs an element-by-element addition of *B*, a numeric or logical array, and DMObj1, a DataMatrix object, and places the results in DMObjNew, another DataMatrix object. DMObj1 and *B* must have the same size (number of rows and columns), unless *B* is a scalar. The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1.

Note Arithmetic operations between a scalar DataMatrix object and a nonscalar array are not supported.

MATLAB calls DMObjNew = plus(X, Y) for the syntax DMObjNew = X + Y when X or Y is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: minus

Purpose	Array power DataMatrix objects	
Syntax	DMObjNew = power(DMObj1, DMObj2) DMObjNew = DMObj1 .^ DMObj2 DMObjNew = power(DMObj1, B) DMObjNew = DMObj1 .^ B DMObjNew = power(B, DMObj1) DMObjNew = B .^ DMObj1	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	DMObjNew	DataMatrix object created by array power.
Description	<pre>DMObjNew = power(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 .^ DMObj2 performs an element-by-element power of the DataMatrix objects DMObj1 and DMObj2 and places the results in DMObjNew, another DataMatrix object. In other words, power raises each element in DMObj1 by the corresponding element in DMObj2. DMObj1 and DMObj2 must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1, unless DMObj1 is a scalar; then they are the same as DMObj2.</pre>	
	DMObjNew = power(DMObj1, B) or the equivalent DMObjNew = DMObj1 ^ B performs an element-by-element power of the DataMatrix object DMObj1 and B, a numeric or logical array, and places the results in DMObjNew, another DataMatrix object. In other words, power raises each element in DMObj1 by the corresponding element in B. DMObj1 and B must have the same size (number of rows and columns), unless B is a scalar. The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1.	

DMObjNew = power(B, DMObj1) or the equivalent DMObjNew = B. DMObj1 performs an element-by-element power of *B*, a numeric or logical array, and the DataMatrix object DMObj1, and places the results in DMObjNew, another DataMatrix object. In other words, power raises each element in *B* by the corresponding element in DMObj1.DMObj1 and *B* must have the same size (number of rows and columns), unless *B* is a scalar. The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1.

Note Arithmetic operations between a scalar DataMatrix object and a nonscalar array are not supported.

MATLAB calls DMObjNew = power(X, Y) for the syntax DMObjNew = X. Y when X or Y is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: times

prune (phytree)

Purpose	Remove branch nodes from phylogenetic tree	
Syntax	T2 = prune(T1, Nod T2 = prune(T1, Nod	es) es, 'Mode','Exclusive')
Arguments	T1 Nodes Mode	Phylogenetic object created with the phytree constructor function. Nodes to remove from tree. Property to control the method of pruning. Enter either 'Inclusive' or 'Exclusive'. The default value is 'Inclusive'.
Description	T2 = prune(T1, Nodes)removes the nodes listed in the vector Nodes from the tree T1. prune removes any branch or leaf node listed in Nodes and all their descendants from the tree T1, and returns the modified tree T2. The parent nodes are connected to the 'brothers' as required. Nodes in the tree are labeled as [1:numLeaves] for the leaves and as [numLeaves+1:numLeaves+numBranches] for the branches. Nodes can also be a logical array of size [numLeaves+numBranches x 1] indicating the nodes to be removed.	
	T2 = prune(T1, Nodes, 'Mode', 'Exclusive')changes the property (Mode) for pruning to 'Exclusive' and removes only the descendants of the nodes listed in the vector Nodes. Nodes that do not have a predecessor become leaves in the list Nodes. In this case, pruning is the process of reducing a tree by turning some branch nodes into leaf nodes, and removing the leaf nodes under the original branch.	
Examples	tr = phytreeread view(tr)	ree created from a protein family d('pf00002.tree'); To :

Remove all the 'mouse' proteins

```
ind = getbyname(tr,'mouse');
tr = prune(tr,ind);
view(tr)
```

Remove potential outliers in the tree

See Also Bioinformatics Toolbox functions: phytree (object constructor), phytreetool

Bioinformatics Toolbox methods of phytree object: select, get

Purpose	Right array divide	e DataMatrix objects
Syntax	DMObjNew = rdiv DMObjNew = DMOb DMObjNew = rdiv DMObjNew = DMOb DMObjNew = rdiv DMObjNew = B ./	ide(DMObj1, B) j1 ./ B ide(B, DMObj1)
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	DMObjNew	DataMatrix object created by right array division.
Description	<pre>DMObjNew = rdivide(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 ./ DMObj2 performs an element-by-element right array division of the DataMatrix objects DMObj1 and DMObj2 and places the results in DMObjNew, another DataMatrix object. In other words, rdivide divides each element in DMObj1 by the corresponding element in DMObj2. DMObj1 and DMObj2 must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1, unless DMObj1 is a scalar; then they are the same as DMObj2.</pre>	

columns), unless *B* is a scalar. The size (number of rows and columns), row names, and column names for *DMObjNew* are the same as *DMObj1*.

DMObjNew = rdivide(B, DMObj1) or the equivalent DMObjNew = B ./ DMObj1 performs an element-by-element right array division of B, a numeric or logical array, and the DataMatrix object DMObj1, and places the results in DMObjNew, another DataMatrix object. In other words, rdivide divides each element in B by the corresponding element in DMObj1.DMObj1 and B must have the same size (number of rows and columns), unless B is a scalar. The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1.

Note Arithmetic operations between a scalar DataMatrix object and a nonscalar array are not supported.

MATLAB calls DMObjNew = rdivide(X, Y) for the syntax $DMObjNew = X \cdot / Y$ when X or Y is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox methods of a DataMatrix object: ldivide, times

reorder (phytree)

Purpose	Reorder leaves of phylogenetic tree	
Syntax	[<i>Tree1Reordered</i> , C 'Approximate',	reorder(Tree1, Order) DptimalOrder] = reorder(Tree1, Order, ApproximateValue) DptimalOrder] = reorder(Tree1, Tree2)
Arguments	Tree1, Tree2 Order	Phytree objects. Vector with position indices for each leaf.
	<i>ApproximateValue</i>	Controls the use of the optimal leaf-ordering calculation to find the closest order possible to the suggested one without dividing the clades or producing crossing branches. Enter true to use the calculation. Default is false.
Return Values	Tree1Reordered OptimalOrder	Phytree object with reordered leaves. Vector of position indices for each leaf in <i>Tree1Reordered</i> , determined by the optimal leaf-ordering calculation.
Description	<i>Tree1Reordered</i> = reorder(<i>Tree1</i> , <i>Order</i>) reorders the leaves of the phylogenetic tree <i>Tree1</i> , without modifying its structure and distances, creating a new phylogenetic tree, <i>Tree1Reordered</i> . <i>Order</i> is a vector of position indices for each leaf. If <i>Order</i> is invalid, that is, if it divides the clades (or produces crossing branches), then reorder returns an error message.	
	[<i>Tree1Reordered</i> , <i>OptimalOrder</i>] = reorder(<i>Tree1</i> , <i>Order</i> , 'Approximate', <i>ApproximateValue</i>) controls the use of the optimal leaf-ordering calculation, which finds the best approximate order closest to the suggested one, without dividing the clades or producing crossing branches. Enter true to use the calculation and return	

Tree1Reordered, the reordered tree, and OptimalOrder, a vector of position indices for each leaf in Tree1Reordered, determined by the optimal leaf-ordering calculation. Default is false.

[Tree1Reordered, OptimalOrder] = reorder(Tree1, Tree2) uses the optimal leaf-ordering calculation to reorder the leaves in Tree1 such that it matches the order of leaves in Tree2 as closely as possible, without dividing the clades or producing crossing branches. Tree1Reordered is the reordered tree, and OptimalOrder is a vector of position indices for each leaf in Tree1Reordered, determined by the optimal leaf-ordering calculation

Examples Reordering Leaves Using a Valid Order

1 Create and view a phylogenetic tree.

```
b = [1 2; 3 4; 5 6; 7 8; 9 10];
tree = phytree(b)
    Phylogenetic tree object with 6 leaves (5 branches)
view(tree)
```

2 Reorder the leaves on the phylogenetic tree, and then view the reordered tree.

```
treeReordered = reorder(tree, [5, 6, 3, 4, 1, 2])
view(treeReordered)
```

Finding Best Approximate Order When Using an Invalid Order

1 Create a phylogenetic tree by reading a Newick-formatted tree file (ASCII text file).

2 Create a row vector of the leaf names in alphabetical order.

[dummy,order] = sort(get(tree, 'LeafNames'));

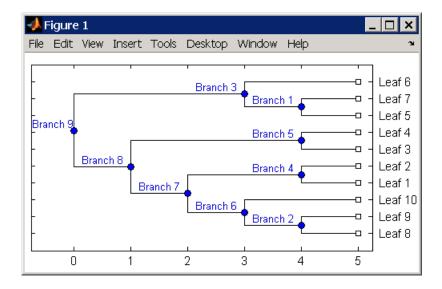
3 Reorder the phylogenetic tree to match as closely as possible the row vector of alphabetically ordered leaf names, without dividing the clades or having crossing branches.

4 View the original and the reordered phylogenetic trees.

```
view(tree)
view(treeReordered)
```

Reordering Leaves to Match Leaf Order in Another Phylogenetic Tree

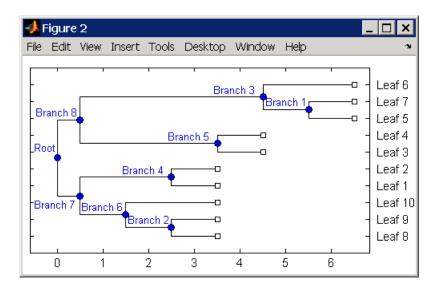
1 Create a phylogenetic tree by reading sequence data from a FASTA file, calculating the pairwise distances between sequences, and then using the neighbor-joining method.


```
seqs = fastaread('pf00002.fa')
seqs =
33x1 struct array with fields:
    Header
    Sequence
dist = seqpdist(seqs,'method','jukes-cantor','indels','pair');
NJtree = seqneighjoin(dist,'equivar',seqs)
    Phylogenetic tree object with 33 leaves (32 branches)
```

2 Create another phylogenetic tree from the same sequence data and pairwise distances between sequences, using the single linkage method.

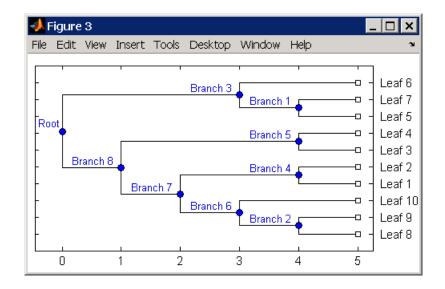
3 Use the optimal leaf-ordering calculation to reorder the leaves in HCtree such that it matches the order of leaves in NJtree as closely as possible, without dividing the clades or having crossing branches.
HCtree_reordered = reorder(HCtree,NJtree) Phylogenetic tree object with 33 leaves (32 branches)
4 View the reordered phylogenetic tree and the tree used to reorder it.
view(HCtree_reordered) view(NJtree)
Bioinformatics Toolbox function: phytree (object constructor)
Bioinformatics Toolbox object: phytree object
Bioinformatics Toolbox methods of a phytree object: get, getbyname, orune

reroot (phytree)


Purpose	Change root of phylogenetic tree	
Syntax	Tree2 = reroot(Tree1) Tree2 = reroot(Tree1, Node) Tree2 = reroot(Tree1, Node, Distance)	
Arguments	Tree1	Phylogenetic tree (phytree object) created with the function phytree.
	Node	Node index returned by the phytree object method getbyname.
	Distance	Distance from the reference branch.
Description	<i>Tree2</i> = reroot(<i>Tree1</i>) changes the root of a phylogenetic tree (<i>Tree1</i>) using a midpoint method. The midpoint is the location where the mean values of the branch lengths, on either side of the tree, are equalized. The original root is deleted from the tree.	
	Tree2 = reroot(Tree1, Node) changes the root of a phylogenetic tree (Tree1) to a branch node using the node index (Node). The new root is placed at half the distance between the branch node and its parent.	
	phylogenetic tree (7) from the reference b	ree1, Node, Distance) changes the root of a ree1) to a new root at a given distance (Distance) oranch node (Node) toward the original root of the v branch representing the root in the new tree Root'.
Examples	I Create an ultram	etric tree.
	tr_1 = phytree([5 7;8 9;6 11; 1 2;3 4;10 12; 14 16; 15 17;13 18]) plot(tr_1,'branchlabels',true)	
	A figure with the phylogenetic tree displays.	

2 Place the root at 'Branch 7'.

```
sel = getbyname(tr_1,'Branch 7');
tr_2 = reroot(tr_1,sel)
plot(tr_2,'branchlabels',true)
```


A figure of a phylogenetic tree displays with the root moved to the center of branch 7.

3 Move the root to a branch that makes the tree as ultrametric as possible.

tr_3 = reroot(tr_2)
plot(tr_3, 'branchlabels', true)

A figure of the new tree displays with the root moved from the center of branch 7 to branch 8.

See Also Bioinformatics Toolbox functions: phytree (object constructor), seqneighjoin

Bioinformatics Toolbox methods of phytree object: get, getbyname, prune, select

Purpose	Retrieve or set row names of DataMatrix object
_	

Syntax ReturnRowNames = rownames(DMObj)
ReturnRowNames = rownames(DMObj, RowIndices)
DMObjNew = rownames(DMObj, RowIndices, RowNames)

Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).
	RowIndices	One or more rows in <i>DMObj</i> , specified by any of the following:
		• Positive integer
		• Vector of positive integers
		• String specifying a row name
		• Cell array of strings
		• Logical vector
	RowNames	Row names specified by any of the following:
		Numeric vector
		• Cell array of strings
		Character array
		• Single string, which is used as a prefix for row names, with row numbers appended to the prefix
		• Logical true or false (default). If true, unique row names are assigned using the format row1, row2, row3, etc. If false, no row names are assigned.
		Note The number of elements in <i>RowNames</i> must

Note The number of elements in *RowNames* must equal the number of elements in *RowIndices*.

Return Values	ReturnRowNames	String or cell array of strings containing row names in <i>DMObj</i> .
	DMObjNew	DataMatrix object created with names specified by <i>RowIndices</i> and <i>RowNames</i> .
Description		<pre>rownames(DMObj) returns ReturnRowNames, a cell ecifying the row names in DMObj, a DataMatrix object.</pre>
	names specified by	<pre>= rownames(DMObj, RowIndices) returns the row r RowIndices. RowIndices can be a positive integer, ntegers, string specifying a row name, cell array of l vector.</pre>
	<i>DMObjNew</i> , a Data set to the names s	ames(DMObj, RowIndices, RowNames) returns Matrix object with rows specified by RowIndices pecified by RowNames. The number of elements in equal the number of elements in RowNames.
See Also	Bioinformatics Too	olbox function: DataMatrix (object constructor)
	Bioinformatics Too	olbox object: DataMatrix object
	Bioinformatics Too	olbox method of a DataMatrix object: colnames

Purpose	Select tree branches a	and leaves in phytree object
Syntax	<pre>select(, 'Refer select(, 'Crite select(, 'Thres select(, 'Exclu</pre>) branches] = select() ence', ReferenceValue,) ria', CriteriaValue,) hold', ThresholdValue,) de', ExcludeValue,) gate', PropagateValue,)
Arguments	Tree	Phylogenetic tree (phytree object) created with the function phytree.
	Ν	Number of closest nodes to the root node.
	ReferenceValue	Property to select a reference point for measuring distance.
	CriteriaValue	Property to select a criteria for measuring distance.
	ThresholdValue	Property to select a distance value. Nodes with distances below this value are selected.
	ExcludeValue	Property to remove (exclude) branch or leaf nodes from the output. Enter 'none', 'branchs', or 'leaves'. The default value is 'none'.
	PropagateValue	Property to select propagating nodes toward the leaves or the root.
Description	S = select(Tree, N) returns a logical vector (S) of size [NumNodes x 1] indicating the N closest nodes to the root node of a phytree object (Tree) where NumNodes = NumLeaves + NumBranches. The first criterion select uses is branch levels, then patristic distance (also known as tree distance). By default, select uses inf as the value of N, and select(Tree) returns a vector with values of true.	

[S, Selleaves, Selbranches] = select(...) returns two additional logical vectors, one for the selected leaves and one for the selected branches.

select(..., 'PropertyName', PropertyValue, ...) calls select
with optional properties that use property name/property value
pairs. You can specify one or more properties in any order. Each
PropertyName must be enclosed in single quotation marks and is case
insensitive. These property name/property value pairs are as follows:

select(..., 'Reference', ReferenceValue, ...) changes the reference point(s) to measure the closeness. Reference can be the root (default) or leaves. When using leaves, a node can have multiple distances to its descendant leaves (nonultrametric tree). If this the case, select considers the minimum distance to any descendant leaf.

select(..., 'Criteria', CriteriaValue, ...) changes the criteria select uses to measure closeness. If C = 'levels' (default), the first criterion is branch levels and then patristic distance. If C = 'distance', the first criterion is patristic distance and then branch levels.

select(..., 'Threshold', ThresholdValue, ...) selects all the nodes where closeness is less than or equal to the threshold value (ThresholdValue). Notice, you can also use either of the properties 'criteria' or 'reference', if N is not specified, then N = infF; otherwise you can limit the number of selected nodes by N.

select(..., 'Exclude', ExcludeValue, ...) when ExcludeValue
= 'branches', sets a postfilter that excludes all the branch nodes from
S, or when ExcludeValue = 'leaves', all the leaf nodes. The default is
'none'.

select(..., 'Propagate', PropagateValue, ...) activates a
postfunctionality that propagates the selected nodes to the leaves when
P=='toleaves' or toward the root finding a common ancestor when P
== 'toroot'. The default value is 'none'. P may also be 'both'. The
'Propagate' property acts after the 'Exclude' property.

```
Examples
                    % Load a phylogenetic tree created from a protein family:
                    tr = phytreeread('pf00002.tree');
                    % To find close products for a given protein (e.g. vipr2 human):
                     ind = getbyname(tr, 'vipr2_human');
                     [sel,sel_leaves] = select(tr,'criteria','distance',...
                                                'threshold',0.6,'reference',ind);
                    view(tr,sel leaves)
                    % To find potential outliers in the tree, use
                     [sel,sel leaves] = select(tr,'criteria','distance',...
                                                   'threshold',.3,...
                                                   'reference','leaves',...
                                                   'exclude','leaves',...
                                                   'propagate', 'toleaves');
                    view(tr,~sel leaves)
See Also
                  Bioinformatics Toolbox functions: phytree (object constructor),
                  phytreetool
                  Bioinformatics Toolbox methods of phytree object: get, pdist, prune
```

set (biograph)

Purpose	Set property of biograph object	
Syntax	<pre>set(BGobj) set(BGobj, 'PropertyName') set(BGobj, 'PropertyName', PropertyValue) set(BGobj, 'Property1Name', Property1Value, 'Property2Name',</pre>	
Arguments	BGobjBiograph object created with the function biograph.PropertyNameProperty name for a biograph object.PropertyValueValue of the property specified by PropertyName.	
Description	<pre>set(BGobj) displays possible values for all properties that have a fixed set of property values in BGobj, a biograph object. set(BGobj, 'PropertyName') displays possible values for a specific property that has a fixed set of property values in BGobj, a biograph object. set(BGobj, 'PropertyName', PropertyValue) sets the specified property of BGobj, a biograph object. set(BGobj, 'Property1Name', Property1Value, 'Property2Name', Property2Value,) sets the specified properties of BGobj, a biograph object.</pre>	

Properties of a Biograph Object

Property	Description
ID	String to identify the biograph object. Default is ''.
Label	String to label the biograph object. Default is

Property	Description
Description	String that describes the biograph object. Default is ''.
LayoutType	String that specifies the algorithm for the layout engine. Choices are:
	• 'hierarchical' (default) — Uses a topological order of the graph to assign levels, and then arranges the nodes from top to bottom, while minimizing crossing edges.
	• 'radial' — Uses a topological order of the graph to assign levels, and then arranges the nodes from inside to outside of the circle, while minimizing crossing edges.
	 'equilibrium' — Calculates layout by minimizing the energy in a dynamic spring system.
EdgeType	String that specifies how edges display. Choices are:
	• 'straight'
	• 'curved' (default)
	• 'segmented'
	Note Curved or segmented edges occur only when necessary to avoid obstruction by nodes. Biograph objects with LayoutType equal to 'equilibrium' or 'radial' cannot produce curved or segmented edges.

Properties of a Biograph Object (Continued)

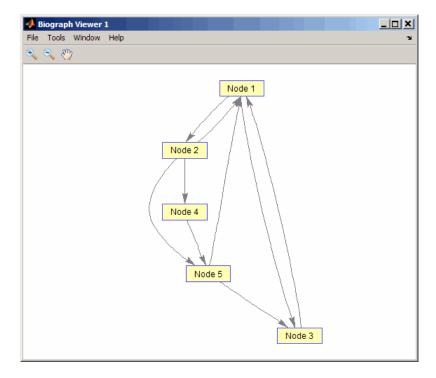
Properties of c	Biograph	Object	(Continued)
------------------------	----------	--------	-------------

Property	Description	
Scale	Positive number that post-scales the node coordinates. Default is 1.	
LayoutScale	Positive number that scales the size of the nodes before calling the layout engine. Default is 1.	
EdgeTextColor	Three-element numeric vector of RGB values. Default is [0, 0, 0], which defines black.	
EdgeFontSize	Positive number that sets the size of the edge font in points. Default is 8.	
ShowArrows	Controls the display of arrows with the edges. Choices are 'on' (default) or 'off'.	
ArrowSize	Positive number that sets the size of the arrows in points. Default is 8.	
ShowWeights	Controls the display of text indicating the weight of the edges. Choices are 'on' (default) or 'off'.	
ShowTextInNodes	String that specifies the node property used to label nodes when you display a biograph object using the view method. Choices are:	
	• 'Label' — Uses the Label property of the node object (default).	
	 'ID' — Uses the ID property of the node object. 	
	• 'None'	
NodeAutoSize	Controls precalculating the node size before calling the layout engine. Choices are 'on' (default) or 'off'.	

Property	Description
NodeCallback	User-defined callback for all nodes. Enter the name of a function, a function handle, or a cell array with multiple function handles. After using the view function to display the biograph object in the Biograph Viewer, you can double-click a node to activate the first callback, or right-click and select a callback to activate. Default is the anonymous function, @(node) inspect(node), which displays the Property Inspector dialog box.
EdgeCallback	User-defined callback for all edges. Enter the name of a function, a function handle, or a cell array with multiple function handles. After using the view function to display the biograph object in the Biograph Viewer, you can double-click an edge to activate the first callback, or right-click and select a callback to activate. Default is the anonymous function, @(edge) inspect(edge), which displays the Property Inspector dialog box.
CustomNodeDrawFcn	Function handle to a customized function to draw nodes. Default is [].

Properties of a Biograph Object (Continued)

Property	Description
Nodes	Read-only column vector with handles to node objects of a biograph object. The size of the vector is the number of nodes. For properties of node objects, see Properties of a Node Object on page 5-7.
Edges	Read-only column vector with handles to edge objects of a biograph object. The size of the vector is the number of edges. For properties of edge objects, see Properties of an Edge Object on page 5-9.

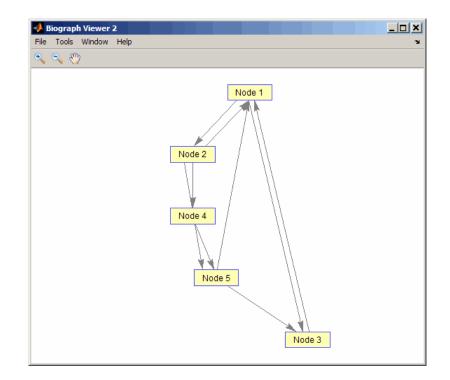

Properties of a Biograph Object (Continued)

Examples 1 Create a biograph object with default node IDs.

 $cm = [0 \ 1 \ 1 \ 0 \ 0; 1 \ 0 \ 0 \ 1 \ 1; 1 \ 0 \ 0 \ 0; 0 \ 0 \ 0 \ 0 \ 1; 1 \ 0 \ 1 \ 0 \ 0];$ bg = biograph(cm)Biograph object with 5 nodes and 9 edges.

2 Use the view method to display the biograph object.

view(bg)



3 Use the **set** method to change the edge lines from curved to straight.

set(bg, 'EdgeType', 'straight')

4 Display the biograph object again.

view(bg)

See AlsoBioinformatics Toolbox function: biograph (object constructor)Bioinformatics Toolbox object: biograph objectBioinformatics Toolbox method of a biograph object: get

Purpose	Set property of c	elustergram object
Syntax	<pre>set(CGobj) set(CGobj, 'PropertyName') set(CGobj, 'PropertyName', PropertyValue) set(CGobj, 'Property1Name', Property1Value, 'Property2Name',</pre>	
Arguments	CGobj	Clustergram object created with the function clustergram.
	PropertyName	Property name for a clustergram object.

Description

Note You cannot set the properties of a clustergram object if you created it using the **Export Group to Workspace** command in the Clustergram window.

set(CGobj) displays possible values for all properties that have a fixed set of property values in CGobj, a clustergram object.

set(CGobj, 'PropertyName') displays possible values for a specific
property that has a fixed set of property values in CGobj, a clustergram
object.

set(CGobj, 'PropertyName', PropertyValue) sets the specified
property of CGobj, a clustergram object.

set(CGobj, 'Property1Name', Property1Value, 'Property2Name', Property2Value, ...) sets the specified properties of CGobj, a clustergram object.

Description	
Vector of numbers or cell array of text strings to label the rows in the dendrogram and heat map. Default is a vector of values 1 through <i>M</i> , where <i>M</i> is the number of rows in <i>Data</i> , the matrix of data used by the clustergram function to create the clustergram object.	
Vector of numbers or cell array of text strings to label the columns in the dendrogram and heat map. Default is a vector of values 1 through <i>N</i> , where <i>N</i> is the number of columns in <i>Data</i> , the matrix of data used by the clustergram function to create the clustergram object.	
 function to create the clustergram object. Numeric value that specifies the dimension for standardizing the values in <i>Data</i>, the matrix of data used to create the clustergram object. The standardized values are transformed so that the mean is 0 and the standard deviation is 1 in the specified dimension. Choices are: 1 — Standardize along the columns of data. 2 — Standardize along the rows of data. 3 — Do not perform standardization. 	

Properties of a Clustergram Object

Property	Description
Cluster	Numeric value that specifies the dimension for clustering the values in <i>Data</i> , the matrix of data used to create the clustergram object. Choices are:
	• 1 — Cluster rows of data only.
	• 2 — Cluster columns of data only.
	• 3 — Cluster rows of data, then cluster columns of row-clustered data.
RowPdist	String that specifies the distance metric to pass to the pdist function (Statistics Toolbox software) to use to calculate the pairwise distances between rows. For information on choices, see the pdist function.
	Note If the distance metric requires extra arguments, then <i>RowPdistValue</i> is a cell array. For example, to use the Minkowski distance with exponent P, you would use {'minkowski', P}.

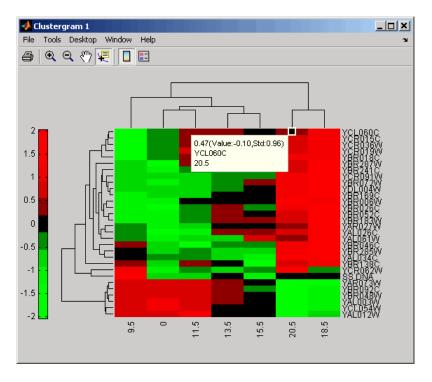
Property	Description
ColumnPdist	String that specifies the distance metric to pass to the pdist function (Statistics Toolbox software) to use to calculate the pairwise distances between columns. For information on choices, see the pdist function.
	Note If the distance metric requires extra arguments, then <i>ColumnPdistValue</i> is a cell array. For example, to use the Minkowski distance with exponent P, you would use {'minkowski', P}.
Linkage	String or two-element cell array of strings that specifies the linkage method to pass to the linkage function (Statistics Toolbox software) to use to create the hierarchical cluster tree for rows and columns. If a two-element cell array of strings, the first element is used for linkage between rows, and the second element is used for linkage between columns. For information on choices, see the linkage function.
Dendrogram	Scalar or two-element numeric vector or cell array that specifies the 'colorthreshold' property to pass to the dendrogram function (Statistics Toolbox software) to create the dendrogram plot. If a two-element numeric vector or cell array, the first element is for the rows, and the second element is for the columns. For more information, see the dendrogram function.

Property	Description
OptimalLeafOrder	Property to enable or disable the optimal leaf ordering calculation, which determines the leaf order that maximizes the similarity between neighboring leaves. Choices are true (enable) or false (disable).
	Tip Disabling the optimal leaf ordering calculation can be useful when working with large data sets because this calculation uses a large amount of memory and can be very time consuming.
LogTrans	Controls the \log_2 transform of <i>Data</i> , the matrix of data used to create the clustergram object, from natural scale. Choices are true or false.
ColorMap	Either of the following:
	• <i>M</i> -by-3 matrix of RGB values
	 Name or function handle of a function that returns a colormap, such as redgreencmap or redbluecmap
DisplayRange	Positive scalar that specifies the display range of standardized values.
	For example, if you specify redgreencmap for the 'ColorMap' property, pure red represents values \geq DisplayRange, and pure green represents values \leq -DisplayRange.

Property	Description
SymmetricRange	Property to force the color scale of the heat map to be symmetric around zero. Choices are true or false.
Ratio	Either of the following: Scalar
	• Two-element vector
	It specifies the ratio of space that the row and column dendrograms occupy relative to the heat map. If Ratio is a scalar, it is used as the ratio for both dendrograms. If Ratio is a two-element vector, the first element is used for the ratio of the row dendrogram width to the heat map width, and the second element is used for the ratio of the column dendrogram height to the heat map height. The second element is ignored for one-dimensional clustergrams.
Impute	Any of the following:
	• Name of a function that imputes missing data.
	• Handle to a function that imputes missing data.
	• Cell array where the first element is the name of or handle to a function that imputes missing data and the remaining elements are property name/property value pairs used as inputs to the function.

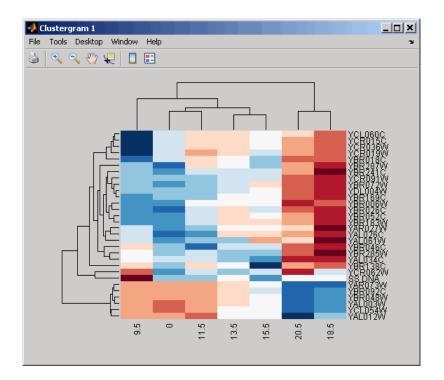
Property	Description
RowMarkers	Optional structure array for annotating the groups (clusters) of rows determined by the clustergram function. Each structure in the array represents a group of rows and contains the following fields:
	• GroupNumber — Number to annotate the row group.
	• Annotation — String specifying text to annotate the row group.
	• Color — String or three-element vector of RGB values specifying a color, which is used to label the row group. For more information on specifying colors, see colorspec. If this field is empty, default is 'blue'.
ColumnMarkers	Optional structure array for annotating groups (clusters) of columns determined by the clustergram function. Each structure in the array represents a group of rows and contains the following fields:
	• GroupNumber — Number to annotate the column group.
	• Annotation — String specifying text to annotate the column group.
	• Color — String or three-element vector of RGB values specifying a color, which is used to label the column group. For more information on specifying colors, see colorspec. If this field is empty, default is 'blue'.

Examples
 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains filtered yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene expression data, genes, a cell array of GenBank accession numbers for labeling the rows in yeastvalues, and times, a vector of time values for labeling the columns in yeastvalues.


load filteredyeastdata

2 Create a clustergram object and display the dendrograms and heat map from the gene expression data in the first 30 rows of the yeastvalues matrix.

```
cgo = clustergram(yeastvalues(1:30,:))
Clustergram object with 30 rows of nodes and 7 column of nodes.
```



3 Use the set method and the genes and times vectors to add meaningful row and column labels to the clustergram.

set(cgo,'RowLabels',genes(1:30),'ColumnLabels',times)

4 Reset the colormap of the heat map to redbluecmap.

set(cgo,'Colormap',redbluecmap);

See AlsoBioinformatics Toolbox function: clustergram (object constructor)Bioinformatics Toolbox object: clustergram objectBioinformatics Toolbox methods of a clustergram object: get, plot, view

Purpose	Set property of I	DataMatrix object
Syntax	DMObj = set(DM)	ropertyName') 10bj, 'PropertyName', PropertyValue) 10bj, 'Property1Name', Property1Value, 1ame', Property2Value,)
Arguments	DMOb j	DataMatrix object, such as created by DataMatrix (object constructor).
	PropertyName	Property name of a DataMatrix object.
	PropertyValue	Value of the property specified by <i>PropertyName</i> .
Description		plays possible values for all properties that have a fixed alues in <i>DMObj</i> , a DataMatrix object.
		<i>copertyName</i> ') displays possible values for a specific s a fixed set of property values in <i>DMObj</i> , a DataMatrix
	-	Obj, 'PropertyName', PropertyValue) sets the y of DMObj, a DataMatrix object.
	'Property2Name	<pre>10bj, 'Property1Name', Property1Value, ', Property2Value,) sets the specified 0bj, a DataMatrix object.</pre>
	Dueneuties of a	Desta Matrice Object

Properties of a DataMatrix Object

Property	Description	
Name	String that describes the DataMatrix object. Default is ''.	

Property	Description
RowNames	Empty array or cell array of strings that specifies the names for the rows, typically gene names or probe identifiers. The number of elements in the cell array must equal the number of rows in the matrix. Default is an empty array.
ColNames	Empty array or cell array of strings that specifies the names for the columns, typically sample identifiers. The number of elements in the cell array must equal the number of columns in the matrix.
NRows	Positive number that specifies the number of rows in the matrix.
	Note You cannot modify this property directly. You can access it using the get method.
NCols	Positive number that specifies the number of columns in the matrix.
	Note You cannot modify this property directly. You can access it using the get method.

Properties of a DataMatrix Object (Continued)

Property	Description
NDims	Positive number that specifies the number of dimensions in the matrix.
	Note You cannot modify this property directly. You can access it using the get method.
ElementClass	String that specifies the class type, such as single or double.
	Note You cannot modify this property directly. You can access it using the get method.

Properties of a DataMatrix Object (Continued)

Examples
 1 Load the MAT-file, provided with the Bioinformatics Toolbox software, that contains yeast data. This MAT-file includes three variables: yeastvalues, a matrix of gene expression data, genes, a cell array of GenBank accession numbers for labeling the rows in yeastvalues, and times, a vector of time values for labeling the columns in yeastvalues.

load filteredyeastdata

2 Import the microarray object package so that the DataMatrix constructor function will be available.

import bioma.data.*

3 Create a DataMatrix object from the gene expression data in the first 30 rows of the yeastvalues matrix.

dmo = DataMatrix(yeastvalues(1:30,:));

4 Use the get method to display the properties of the DataMatrix object, dmo.

```
get(dmo)
                                    Name: ''
                                RowNames: []
                                ColNames: []
                                    NRows: 30
                                    NCols: 7
                                    NDims: 2
                            ElementClass: 'double'
                     Notice that the RowNames and ColNames fields are empty.
                   5 Use the set method and the genes and times variables to specify row
                     names and column names for the DataMatrix object, dmo.
                       dmo = set(dmo, 'RowNames',genes(1:30), 'ColNames',times)
                   6 Use the get method to display the properties of the DataMatrix
                     object, dmo.
                       get(dmo)
                                    Name: ''
                                RowNames: {30x1 cell}
                                ColNames: { ' 0' ' 9.5' '11.5' '13.5' '15.5' '18.5' '
                                    NRows: 30
                                    NCols: 7
                                    NDims: 2
                            ElementClass: 'double'
See Also
                  Bioinformatics Toolbox function: DataMatrix (object constructor)
                   Bioinformatics Toolbox object: DataMatrix object
```

Purpose	Solve shortest path problem in biograph object	
Syntax	<pre>[dist, path, pred] = shortestpath(BGObj, S) [dist, path, pred] = shortestpath(BGObj, S, T) [] = shortestpath(, 'Directed', DirectedValue,) [] = shortestpath(, 'Method', MethodValue,) [] = shortestpath(, 'Weights', WeightsValue,)</pre>	
Arguments	BGOb j	Biograph object created by biograph (object constructor).
	S	Node in graph represented by an N-by-N adjacency matrix extracted from a biograph object, <i>BGObj</i> .
	Т	Node in graph represented by an N-by-N adjacency matrix extracted from a biograph object, <i>BGObj</i> .
	DirectedValue	Property that indicates whether the graph represented by the N-by-N adjacency matrix extracted from a biograph object, <i>BGObj</i> , is directed or undirected. Enter false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.

MethodValue String that specifies the algorithm used to find the shortest path. Choices are:

- 'Bellman-Ford' Assumes weights of the edges to be nonzero entries in the N-by-N adjacency matrix. Time complexity is O(N*E), where N and E are the number of nodes and edges respectively.
- 'BFS' Breadth-first search. Assumes all weights to be equal, and nonzero entries in the N-by-N adjacency matrix to represent edges. Time complexity is O(N+E), where N and E are the number of nodes and edges respectively.
- 'Acyclic' Assumes the graph represented by the N-by-N adjacency matrix extracted from a biograph object, *BGObj*, to be a directed acyclic graph and that weights of the edges are nonzero entries in the N-by-N adjacency matrix. Time complexity is O(N+E), where N and E are the number of nodes and edges respectively.
- 'Dijkstra' Default algorithm. Assumes weights of the edges to be positive values in the N-by-N adjacency matrix. Time complexity is O(log(N)*E), where N and E are the number of nodes and edges respectively.
- WeightsValue Column vector that specifies custom weights for the edges in the N-by-N adjacency matrix extracted from a biograph object, BGObj. It must have one entry for every nonzero value (edge) in the N-by-N adjacency matrix. The order of the custom weights in the vector must match the order of the nonzero values in the N-by-N adjacency matrix when it is traversed column-wise. This property lets you use zero-valued weights. By default, shortestpaths gets weight information from the nonzero entries in the N-by-N adjacency matrix.

Description

Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the *Bioinformatics Toolbox User's Guide*.

[dist, path, pred] = shortestpath(BGObj, S) determines the single-source shortest paths from node S to all other nodes in the graph represented by an N-by-N adjacency matrix extracted from a biograph object, BGObj. Weights of the edges are all nonzero entries in the N-by-N adjacency matrix. dist are the N distances from the source to every node (using Infs for nonreachable nodes and 0 for the source node). path contains the winning paths to every node. pred contains the predecessor nodes of the winning paths.

[dist, path, pred] = shortestpath(BGObj, S, T) determines the single source-single destination shortest path from node S to node T.

[...] = shortestpath(..., '*PropertyName*', *PropertyValue*, ...) calls shortestpath with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

[...] = shortestpath(..., 'Directed', *DirectedValue*, ...) indicates whether the graph represented by the N-by-N adjacency matrix extracted from a biograph object, *BGObj*, is directed or undirected. Set *DirectedValue* to false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.

[...] = shortestpath(..., 'Method', *MethodValue*, ...) lets you specify the algorithm used to find the shortest path. Choices are:

• 'Bellman-Ford' — Assumes weights of the edges to be nonzero entries in the N-by-N adjacency matrix. Time complexity is O(N*E), where N and E are the number of nodes and edges respectively.

•	'BFS' — Breadth-first search. Assumes all weights to be equal, and
	nonzero entries in the N-by-N adjacency matrix to represent edges.
	Time complexity is $O(N+E)$, where N and E are the number of nodes
	and edges respectively.

- 'Acyclic' Assumes the graph represented by the N-by-N adjacency matrix extracted from a biograph object, *BGObj*, to be a directed acyclic graph and that weights of the edges are nonzero entries in the N-by-N adjacency matrix. Time complexity is O(N+E), where N and E are the number of nodes and edges respectively.
- 'Dijkstra' Default algorithm. Assumes weights of the edges to be positive values in the N-by-N adjacency matrix. Time complexity is O(log(N)*E), where N and E are the number of nodes and edges respectively.

[...] = shortestpath(..., 'Weights', WeightsValue, ...) lets you specify custom weights for the edges. WeightsValue is a column vector having one entry for every nonzero value (edge) in the N-by-N adjacency matrix extracted from a biograph object, BGObj. The order of the custom weights in the vector must match the order of the nonzero values in the N-by-N adjacency matrix when it is traversed column-wise. This property lets you use zero-valued weights. By default, shortestpath gets weight information from the nonzero entries in the N-by-N adjacency matrix.

References [1] Dijkstra, E.W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik *1*, 269–271.

[2] Bellman, R. (1958). On a Routing Problem. Quarterly of Applied Mathematics 16(1), 87–90.

[3] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).

See Also Bioinformatics Toolbox functions: biograph (object constructor), graphshortestpath

Bioinformatics Toolbox object: biograph object

Bioinformatics Toolbox methods of a biograph object: allshortestpaths, conncomp, isdag, isomorphism, isspantree, maxflow, minspantree, topoorder, traverse

single (DataMatrix)

Purpose	Convert DataMatrix object to single-precision array		
Syntax	<pre>B = single(DMObj) B = single(DMObj, Rows) B = single(DMObj, Rows, Cols)</pre>		
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).	
	Rows, Cols	Row(s) or column(s) in <i>DMObj</i> , specified by one of the following:	
		• Scalar	
		• Vector of positive integers	
		• String specifying a row or column name	
		• Cell array of row or column names	
		• Logical vector	
Return Values	В	MATLAB numeric array.	
Description	B = single(DMObj) converts $DMObj$, a DataMatrix object, to a single-precision array, which it returns in B .		
	object, specified by in <i>B. Rows</i> can be a	B = single(DMObj, Rows) converts a subset of DMObj, a DataMatrix object, specified by Rows, to a single-precision array, which it returns in B. Rows can be a positive integer, vector of positive integers, string specifying a row name, cell array of row names, or a logical vector.	
	B = single(DMObj, Rows, Cols) converts a subset of DMObj, a DataMatrix object, specified by Rows and Cols, to a single-precision array, which it returns inB. Cols can be a positive integer, vector of		

positive integers, string specifying a column name, cell array of column names, or a logical vector.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox method of a DataMatrix object: double

sortcols (DataMatrix)

Purpose	Sort columns of DataMatrix object in ascending or descending order		
Syntax	DMObjNew = sortcols(DMObj1) DMObjNew = sortcols(DMObj1, Row) DMObjNew = sortcols(DMObj1, 'ColName') DMObjNew = sortcols(DMObj1,, Mode) [DMObjNew, Indices] = sortcols(DMObj1,)		
Arguments	DMObj1	DataMatrix object, such as created by DataMatrix (object constructor).	
	Row	One or more rows in <i>DMObj1</i> by which to sort the columns. Choices are:	
		• Positive integer	
		• Vector of positive integers	
		• String specifying a row name	
		• Cell array of strings specifying multiple row names	
		• Logical vector	
	'ColName'	String that specifies to sort the columns by the column names.	
	Mode	String specifying the order by which to sort the columns. Choices are 'ascend' (default) or 'descend'.	
Return Values	DMObjNew	DataMatrix object created from sorting the columns of another DataMatrix object.	
	Indices	<pre>Index vector that links DMObj1 to DMObjNew. In other words, DMObjNew = DMObj1(:,idx).</pre>	
Description	DMObjNew = sortcols(DMObj1) sorts the columns in DMObj1 in ascending order based on the elements in the first row. For any		

	<pre>columns that have equal elements in a row, sorting is based on the row immediately below. DMObjNew = sortcols(DMObj1, Row) sorts the columns in DMObj1 in ascending order based on the elements in the specified row. Any columns that have equal elements in the specified row are sorted based on the elements in the next specified row.</pre>		
	DMObjNew = sortcols(DMObj1, 'ColName') sorts the columns in DMObj1 in ascending order according to the column names.		
	<i>DMObjNew</i> = sortcols(<i>DMObj1</i> ,, <i>Mode</i>) specifies the order of the sort. <i>Mode</i> can be 'ascend' (default) or 'descend'.		
	<pre>[DMObjNew, Indices] = sortcols(DMObj1,) returns Indices, an index vector that links DMObj1 to DMObjNew. In other words, DMObjNew = DMObj1(:,idx).</pre>		
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor)		
	Bioinformatics Toolbox object: DataMatrix object		
	Bioinformatics Toolbox method of a DataMatrix object: sortrows		

Purpose	Sort rows of DataMatrix object in ascending or descending order		
Syntax	DMObjNew = DMObjNew = DMObjNew =	<pre>sortrows(DMObj1) sortrows(DMObj1, Column) sortrows(DMObj1, 'RowName') sortrows(DMObj1,, Mode) Indices] = sortrows(DMObj1,)</pre>	
		DataMatrix object, such as created by DataMatrix (object constructor).	
	Column	One or more columns in <i>DMObj1</i> by which to sort the rows. Choices are:	
		Positive integer	
		• Vector of positive integers	
		• String specifying a column name	
		• Cell array of strings specifying multiple column names	
		• Logical vector	
		String that specifies to sort the rows by the row names.	
	Mode	String specifying the order by which to sort the rows. Choices are 'ascend' (default) or 'descend'.	
Return Values	DMObjNew	DataMatrix object created from sorting the rows of another DataMatrix object.	
	Indices	<pre>Index vector that links DMObj1 to DMObjNew. In other words, DMObjNew = DMObj1(idx,:).</pre>	
Description	<pre>DMObjNew = sortrows(DMObj1) sorts the rows in DMObj1 in ascending order based on the elements in the first column. For any rows that have</pre>		

	equal elements in a column, sorting is based on the column immediately to the right.		
	<pre>DMObjNew = sortrows(DMObj1, Column) sorts the rows in DMObj1 in ascending order based on the elements in the specified column. Any rows that have equal elements in the specified column are sorted based on the elements in the next specified column.</pre>		
	<i>DMObjNew</i> = sortrows(<i>DMObj1</i> , 'RowName') sorts the rows in <i>DMObj1</i> in ascending order according to the row names.		
	<pre>DMObjNew = sortrows(DMObj1,, Mode) specifies the order of the sort. Mode can be 'ascend' (default) or 'descend'.</pre>		
	<pre>[DMObjNew, Indices] = sortrows(DMObj1,) returns Indices, an index vector that links DMObj1 to DMObjNew. In other words, DMObjNew = DMObj1(idx,:).</pre>		
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor)		
	Bioinformatics Toolbox object: DataMatrix object		
	Bioinformatics Toolbox method of a DataMatrix object: sortcols		

std (DataMatrix)

Purpose	Return standard deviation values in DataMatrix object	
Syntax	<pre>S = std(DMObj) S = std(DMObj, S = std(DMObj, S = std(DMObj, S = std(DMObj,</pre>	
Arguments	DMOb j	DataMatrix object, such as created by DataMatrix (object constructor).
	Flag	Scalar specifying how to normalize the data. Choices are:
		 0 — Default. Normalizes using a sample size of N-1, unless N = 1, in which case, normalizes using a sample size of 1.
		• 1 — Normalizes using a sample size of <i>N</i> .
		N = the number of elements in each column or row, as specified by <i>Dim</i> . For more information on the normalization equations, see the MATLAB function std.
	Dim	Scalar specifying the dimension of <i>DMObj</i> to calculate the standard deviations. Choices are:
		• 1 — Default. Returns standard deviation values for elements in each column.
		• 2 — Returns standard deviation values for elements in each row.
	IgnoreNaN	Specifies if NaNs should be ignored. Choices are true (default) or false.

Return Values	S	Either of the following:
		 Row vector containing the standard deviation values from elements in each column in <i>DMObj</i> (when <i>Dim</i> = 1)
		 Column vector containing the standard deviation values from elements in each row in DMObj (when Dim = 2)
Description	in the columns of a The data is norma number of elemen	eturns the standard deviation values of the elements a DataMatrix object, treating NaNs as missing values. lized using a sample size of $N - 1$, where $N =$ the ts in each column. S is a row vector containing the a values for elements in each column in <i>DMObj</i> .
	= 0, normalizes us using a sample siz or row, as specified	Flag) specifies how to normalize the data. If Flag ing a sample size of $N-1$. If Flag = 1, normalizes the of N . N = the number of elements in each column d by Dim. For more information on the normalization MATLAB function std. Default Flag = 0.
	the elements in th by <i>Dim</i> . If <i>Dim</i> = 1 deviation values for returns <i>S</i> , a colum	Flag, Dim) returns the standard deviation values of e columns or rows of a DataMatrix object, as specified , returns S, a row vector containing the standard or elements in each column in DMObj. If $Dim = 2$, n vector containing the standard deviation values for row in DMObj. Default $Dim = 1$.
		Flag, Dim, IgnoreNaN) specifies if NaNs should be N can be true (default) or false.
See Also	Bioinformatics Too	olbox function: DataMatrix (object constructor)
	Bioinformatics Too	olbox object: DataMatrix object
	Bioinformatics Too var	olbox methods of a DataMatrix object: mean, median,

subtree (phytree)

Purpose	Extract phylogenetic subtree		
Syntax	<pre>Tree2 = subtree(Tree1, Nodes)</pre>		
Description	<i>Tree2</i> = subtree(<i>Tree1</i> , <i>Nodes</i>) extracts a new subtree (<i>Tree2</i>) where the new root is the first common ancestor of the <i>Nodes</i> vector from <i>Tree1</i> . Nodes in the tree are indexed as [1:NUMLEAVES] for the leaves and as [NUMLEAVES+1:NUMLEAVES+NUMBRANCHES] for the branches. Nodes can also be a logical array of following sizes [NUMLEAVES+NUMBRANCHES x 1], [NUMLEAVES x 1] or [NUMBRANCHES x 1].		
Examples	<pre>1 Load a phylogenetic tree created from a protein family.</pre>		
See Also	Bioinformatics Toolbox functions: phytree (object constructor) Bioinformatics Toolbox methods of phytree object: get, getbyname, prune, select		

Purpose	Return sum of elements in DataMatrix object	
Syntax	S = sum(DMObj) S = sum(DMObj, H S = sum(DMObj, H	
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).
	Dim	Scalar specifying the dimension of <i>DMObj</i> to calculate the sums. Choices are:
		• 1 — Default. Returns sum of elements in each column.
		• 2 — Returns sum of elements in each row.
	IgnoreNaN	Specifies if NaNs should be ignored. Choices are true (default) or false.
Return Values	S	Either of the following:
		• Row vector containing the sums of the elements in each column in <i>DMObj</i> (when <i>Dim</i> = 1)
		• Column vector containing the sums of the elements in each row in <i>DMObj</i> (when <i>Dim</i> = 2)
Description	<pre>S = sum(DMObj) returns the sum of the elements in the columns of a DataMatrix object, treating NaNs as missing values. S is a row vector containing the sums of the elements in each column in DMObj. If the values in DMObj are singles, then S is a single; otherwise, S is a double. S = sum(DMObj, Dim) returns the sum of the elements in the columns or rows of a DataMatrix object, as specified by Dim. If Dim = 1, returns</pre>	

S, a row vector containing the sums of the elements in each column in DMObj. If Dim = 2, returns S, a column vector containing the sums of the elements in each row in DMObj. Default Dim = 1.

S = sum(DMObj, Dim, IgnoreNaN) specifies if NaNs should be ignored. IgnoreNaN can be true (default) or false.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox methods of a DataMatrix object: max, min

Purpose	Multiply DataMatrix objects	
Syntax	DMObjNew = times(DMObj1, DMObj2) DMObjNew = DMObj1 .* DMObj2 DMObjNew = times(DMObj1, B) DMObjNew = DMObj1 .* B DMObjNew = times(B, DMObj1) DMObjNew = B .* DMObj1	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	DMObjNew	DataMatrix object created by multiplication.
Description	<pre>DMObjNew = times(DMObj1, DMObj2) or the equivalent DMObjNew = DMObj1 .* DMObj2 performs an element-by-element multiplication of the DataMatrix objects DMObj1 and DMObj2 and places the results in DMObjNew, another DataMatrix object. DMObj1 and DMObj2 must have the same size (number of rows and columns), unless one is a scalar (1-by-1 DataMatrix object). The size (number of rows and columns), row names, and column names for DMObjNew are the same as DMObj1, unless DMObj1 is a scalar; then they are the same as DMObj2.</pre>	
	DMObjNew = times(DMObj1, B) or the equivalent $DMObjNew = DMObj1.* B performs an element-by-element multiplication of the DataMatrixobject DMObj1 and B, a numeric or logical array, and places the resultsin DMObjNew, another DataMatrix object. DMObj1 and B must have thesame size (number of rows and columns), unless B is a scalar. The size(number of rows and columns), row names, and column names forDMObjNew$ are the same as $DMObj1$.	

	DMObjNew = times(B, DMObj1) or the equivalent $DMObjNew = B$.* DMObj1 performs an element-by-element multiplication of B, a numeri or logical array, and the DataMatrix object $DMObj1$, and places the results in $DMObjNew$, another DataMatrix object. $DMObj1$ and B must have the same size (number of rows and columns), unless B is a scalar The size (number of rows and columns), row names, and column name for $DMObjNew$ are the same as $DMObj1$.		
	Note Arithmetic operations between a scalar DataMatrix object and a nonscalar array are not supported.		
	MATLAB calls $DMObjNew = times(X, Y)$ for the syntax $DMObjNew = X$.* Y when X or Y is a DataMatrix object.		
See Also	Bioinformatics Toolbox function: DataMatrix (object constructor)		
	Bioinformatics Toolbox object: DataMatrix object		
	Bioinformatics Toolbox methods of a DataMatrix object: minus, plus		
	MATLAB functions: Arithmetic Operators + - * / \ ^ '		

Purpose	Perform topological sort of directed acyclic graph extracted from biograph object		
Syntax	order = topoorder(BGObj)		
Arguments	BGOb j Biograph object created by biograph (object constructor).		
Description	Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the <i>Bioinformatics Toolbox User's Guide</i> .		
	<pre>order = topoorder(BGObj) returns an index vector with the order of the nodes sorted topologically. In topological order, an edge can exist between a source node u and a destination node v, if and only if u appears before v in the vector order. BGObj is a biograph object from which an N-by-N adjacency matrix is extracted and represents a directed acyclic graph (DAG). In the N-by-N sparse matrix, all nonzero entries indicate the presence of an edge.</pre>		
References	[1] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).		
See Also	Bioinformatics Toolbox functions: biograph (object constructor), graphtopoorder		
	Bioinformatics Toolbox object: biograph object		
	Bioinformatics Toolbox methods of a biograph object: allshortestpaths, conncomp, isdag, isomorphism, isspantree, maxflow, minspantree, shortestpath, traverse		

traverse (biograph)

Purpose	Traverse biograph object by following adjacent nodes		
Syntax	<pre>[disc, pred, closed] = traverse(BGObj, S) [] = traverse(BGObj, S,'Depth', DepthValue,) [] = traverse(BGObj, S,'Directed', DirectedValue,) [] = traverse(BGObj, S,'Method', MethodValue,)</pre>		
Arguments	BGOb <i>j</i> Biograph object created by biograph (object constructor).		
	S	Integer that indicates the source node in <i>BGObj</i> .	
	DepthValue Integer that indicates a node in BGOb <i>j</i> that specifie the depth of the search. Default is Inf (infinity).		
	DirectedValue	Property that indicates whether graph represented by an N-by-N adjacency matrix extracted from a biograph object, <i>BGObj</i> is directed or undirected. Enter false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.	
	MethodValue	 String that specifies the algorithm used to traverse the graph. Choices are: 'BFS' — Breadth-first search. Time complexity is O(N+E), where N and E are number of nodes and edges respectively. 	
		• 'DFS' — Default algorithm. Depth-first search. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.	
Description			

Description

Tip For introductory information on graph theory functions, see "Graph Theory Functions" in the *Bioinformatics Toolbox User's Guide*.

[disc, pred, closed] = traverse(BGObj, S) traverses the directed graph represented by an N-by-N adjacency matrix extracted from a biograph object, BGObj, starting from the node indicated by integer S. In the N-by-N sparse matrix, all nonzero entries indicate the presence of an edge. disc is a vector of node indices in the order in which they are discovered. pred is a vector of predecessor node indices (listed in the order of the node indices) of the resulting spanning tree. closed is a vector of node indices in the order in which they are closed.

[...] = traverse(*BGObj*, *S*, ...'*PropertyName*', *PropertyValue*, ...) calls traverse with optional properties that use property name/property value pairs. You can specify one or more properties in any order. Each *PropertyName* must be enclosed in single quotes and is case insensitive. These property name/property value pairs are as follows:

[...] = traverse(*BGObj*, S, ...'Depth', *DepthValue*, ...) specifies the depth of the search. *DepthValue* is an integer indicating a node in the graph represented by the N-by-N adjacency matrix extracted from a biograph object, *BGObj*. Default is Inf (infinity).

[...] = traverse(*BGObj*, *S*, ...'Directed', *DirectedValue*, ...) indicates whether the graph represented by the N-by-N adjacency matrix extracted from a biograph object, *BGObj* is directed or undirected. Set *DirectedValue* to false for an undirected graph. This results in the upper triangle of the sparse matrix being ignored. Default is true.

[...] = traverse(*BGObj*, *S*, ...'Method', *MethodValue*, ...) lets you specify the algorithm used to traverse the graph represented by the N-by-N adjacency matrix extracted from a biograph object, *BGObj*. Choices are:

- 'BFS' Breadth-first search. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.
- 'DFS' Default algorithm. Depth-first search. Time complexity is O(N+E), where N and E are number of nodes and edges respectively.

References	[1] Sedgewick, R., (2002). Algorithms in C++, Part 5 Graph Algorithms (Addison-Wesley).
	[2] Siek, J.G., Lee, L-Q, and Lumsdaine, A. (2002). The Boost Graph Library User Guide and Reference Manual, (Upper Saddle River, NJ:Pearson Education).
See Also	Bioinformatics Toolbox functions: biograph (object constructor), graphtraverse
	Bioinformatics Toolbox object: biograph object
	Bioinformatics Toolbox methods of a biograph object: allshortestpaths, conncomp, isdag, isomorphism, isspantree, maxflow, minspantree, shortestpath, topoorder

Purpose	Return variance values in DataMatrix object	
Syntax	<pre>V = var(DMObj) V = var(DMObj, Flag) V = var(DMObj, Wgt) V = var(, Dim) V = var(, Dim, IgnoreNaN)</pre>	
Arguments	DMObj	DataMatrix object, such as created by DataMatrix (object constructor).
		Scalar specifying how to normalize the data. Choices are:
		 0 — Default. Normalizes using a sample size of N-1, unless N = 1, in which case, normalizes using a sample size of 1.
• 1 — Normalizes using a sample		• 1 — Normalizes using a sample size of <i>N</i> .
		N = the number of elements in each column or row, as specified by <i>Dim</i> . For more information on the normalization equations, see the MATLAB function std.
	Wgt	Weight vector equal in length to the dimension over which var operates (specified by <i>Dim</i> . It is used to compute the variance.

	Dim	Scalar specifying the dimension of <i>DMObj</i> to calculate the variances. Choices are:
		• 1 — Default. Returns variance values for elements in each column.
		• 2 — Returns variance values for elements in each row.
	IgnoreNaN	Specifies if NaNs should be ignored. Choices are true (default) or false.
Return Values	V	An unbiased estimator of the variance within the columns or rows of a DataMatrix object. It can be either of the following:
		• Row vector containing the variance values from elements in each column in <i>DMObj</i> (when <i>Dim</i> = 1)
		 Column vector containing the variance values from elements in each row in DMObj (when Dim = 2)
Description	columns of a Dat data is normalize of elements in ea	returns the variance values of the elements in the saMatrix object, treating NaNs as missing values. The ed using a sample size of $N - 1$, where $N =$ the number ach column. <i>V</i> is a row vector containing the variance ints in each column in <i>DMOb j</i> . The variance is the square deviation.
	= 0, normalizes u using a sample s or row, as specifi	Flag) specifies how to normalize the data. If Flag using a sample size of $N-1$. If Flag = 1, normalizes ize of N . $N =$ the number of elements in each column ed by Dim. For more information on the normalization we MATLAB function std. Default Flag = 0.

V = var(DMObj, Wgt) computes the variance using Wgt, a weight vector whose length must equal the length of the dimension over which var operates (specified by *Dim*). All elements in *Wgt* must be nonnegative. The var function normalizes *Wgt* to sum of 1.

V = var(..., Dim) returns the variance values of the elements in the columns or rows of a DataMatrix object, as specified by Dim. If Dim = 1, returns V, a row vector containing the variance values for elements in each column in DMObj. If Dim = 2, returns V, a column vector containing the variance values for elements in each row in DMObj. Default Dim = 1.

V = var(..., Dim, IgnoreNaN) specifies if NaNs should be ignored. IgnoreNaN can be true (default) or false.

See Also Bioinformatics Toolbox function: DataMatrix (object constructor)

Bioinformatics Toolbox object: DataMatrix object

 $\operatorname{Bioinformatics}$ Toolbox methods of a DataMatrix object: mean, median, std

Purpose	Concatenate DataMatrix objects vertically	
Syntax	DMObjNew = vertcat(DMObj1, DMObj2,) DMObjNew = (DMObj1; DMObj2;) DMObjNew = vertcat(DMObj1, B,) DMObjNew = (DMObj1, B,)	
Arguments	DMObj1,DMObj2	DataMatrix objects, such as created by DataMatrix (object constructor).
	В	MATLAB numeric or logical array.
Return Values	DMObjNew	DataMatrix object created by vertical concatenation.
Description	<pre>DMObjNew = vertcat(DMObj1, DMObj2,) or the equivalent DMObjNew = (DMObj1; DMObj2;) vertically concatenates the DataMatrix objects DMObj1 and DMObj2 into DMObjNew, another DataMatrix object. DMObj1 and DMObj2 must have the same number of columns. The column names and the order of columns for DMObjNew are the same as DMObj1. The column names of DMObj2 and any other DataMatrix object input arguments are not preserved. The row names for DMObjNew are the row names of DMObj1, DMObj2, and other DataMatrix object input arguments.</pre>	
	<pre>DMObjNew = vertcat(DMObj1, B,) or the equivalent DMObjNew = (DMObj1, B,) vertically concatenates the DataMatrix object DMObj1 and a numeric or logical array B into DMObjNew, another DataMatrix object. DMObj1 and B must have the same number of columns. The column names for DMObjNew are the same as DMObj1. The column names of DMObj2 and any other DataMatrix object input arguments are not preserved. The row names for DMObjNew are the row names of DMObj1 and empty for the rows from B.</pre>	

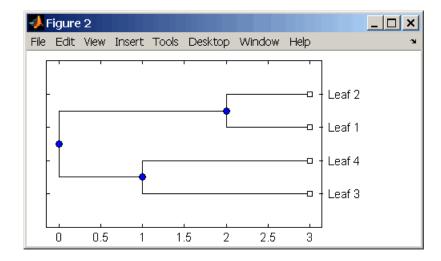
MATLAB calls DMObjNew = vertcat(X1, X2, X3, ...) for the syntax DMObjNew = [X1; X2; X3; ...] when any one of X1, X2, X3, etc. is a DataMatrix object.

See AlsoBioinformatics Toolbox function: DataMatrix (object constructor)Bioinformatics Toolbox object: DataMatrix objectBioinformatics Toolbox methods of a DataMatrix object: horzcat

view (biograph)

Purpose	Draw figure from biograph object		
Syntax	view(BGobj) BGobjHandle = view(BGobj)		
Arguments	BGobj Biograph object created with the function biograph.		
Description	<pre>view(BGobj) opens a Figure window and draws a graph represented by a biograph object (BGobj). When the biograph object is already drawn in the Figure window, this function only updates the graph properties.</pre>		
	<pre>BGobjHandle = view(BGobj) returns a handle to a deep copy of the biograph object (BGobj) in the Figure window. When updating an existing figure, you can use the returned handle to change object properties programmatically or from the command line. When you close the Figure window, the handle is no longer valid. The original biograph object (BGobj) is left unchanged.</pre>		
Examples	1 Create a biograph object.		
	cm = [0 1 1 0 0;1 0 0 1 1;1 0 0 0 0;0 0 0 0 1;1 0 1 0		
	2 Render the biograph object into a Handles Graphic figure and get back a handle.		
	h = view(bg)3 Change the color of all nodes and edges.		
	<pre>set(h.Nodes,'Color',[.5 .7 1]) set(h.Edges,'LineColor',[0 0 0])</pre>		
See Also	Bioinformatics Toolbox function: biograph (object constructor)		
	Bioinformatics Toolbox object: biograph object		

Bioinformatics Toolbox methods of a biograph object: dolayout, get, getancestors, getdescendants, getedgesbynodeid, getnodesbyid, getrelatives, set, view


view (clustergram)

Purpose	View clustergram heat map and dendrograms for clustergram object		
Syntax	<pre>view(CGobj)</pre>		
Arguments	CGobj	Clustergram object created with the function clustergram.	
Description	view(<i>CGobj</i>) opens a Clustergram window and draws a clustergram representing a clustergram object, <i>CGobj</i> . The clustergram shows hierarchical clustering using a heat map and dendrograms.		
	Note You can further explore the heat map and dendrograms using the mouse, toolbar buttons, and menu items in the Clustergram window. For more information, see the Examples section of the clustergram function.		
Examples	View the clustergram object created in the Examples section of the clustergram function. view(cgo)		
See Also	Bioinformatic	s Toolbox function: clustergram (object constructor) s Toolbox object: clustergram object s Toolbox methods of a clustergram object: get, plot, set	

Purpose	View phylogenetic tree		
Syntax	view(Tree) view(Tree, IntNodes)		
Arguments	Tree IntNodes	Phylogenetic tree (phytree object) created with the function phytree. Nodes from the phytree object to initially display in the <i>Tree</i> .	
Description	<pre>view(Tree) opens the Phylogenetic Tree Tool window and draws a tree from data in a phytree object (Tree). The significant distances between branches and nodes are in the horizontal direction. Vertical distances have no significance and are selected only for display purposes. You can access tools to edit and analyze the tree from the Phylogenetic Tree Tool menu bar or by using the left and right mouse buttons.</pre>		
	<pre>view(Tree, IntNodes) opens the Phylogenetic Tree Tool window with an initial selection of nodes specified by IntNodes. IntNodes can be a logical array of any of the following sizes: NumLeaves + NumBranches x 1, NumLeaves x 1, or NumBranches x 1. IntNodes can also be a list of indices.</pre>		
Example	<pre>tree = phytreeread('pf00002.tree') view(tree)</pre>		
See Also	phytreeread, Bioinformatics	s Toolbox functions: phytree (object constructor), phytreetool, seqlinkage, seqneighjoin s Toolbox object: phytree object s Toolbox method of phytree object: plot	

weights (phytree)

Purpose	Calculate weights for phylogenetic tree		
Syntax	<pre>W = weights(Tree)</pre>		
Arguments	Tree	Phylogenetic tree (phytree object) created with the function phytree.	
Description	W = weights(Tree) calculates branch proportional weights for every leaf in a tree (Tree) using the Thompson-Higgins-Gibson method. The distance of every segment of the tree is adjusted by dividing it by the number of leaves it contains. The sequence weights are the result of normalizing to unity the new patristic distances between every leaf and the root.		
Examples	<pre>and the root. 1 Create an ultrametric tree with specified branch distances. bd = [1 2 3]'; tr_1 = phytree([1 2;3 4;5 6],bd) 2 View the tree. view(tr_1)</pre>		

3 Display the calculated weights.

```
weights(tr_1)
ans =
    1.0000
    1.0000
    0.8000
```

0.8000

References [1] Thompson JD, Higgins DG, Gibson TJ (1994), "CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice," Nucleic Acids Research, 22(22):4673-4680.

[2] Henikoff S, Henikoff JG (1994), "Position-based sequence weights," Journal Molecular Biology, 243(4):574-578.

See Also Bioinformatics Toolbox functions: multialign, phytree (object constructor), profalign, seqlinkage

weights (phytree)

5

Object Reference

biograph object

Purpose	Data structure containing generic interconnected data used to implement directed graph			
Description	A biograph object is a data structure containing generic interconnected data used to implement a directed graph. Nodes represent proteins, genes, or any other biological entity, and edges represent interactions, dependences, or any other relationship between the nodes. A biograph object also stores information, such as color properties and text label characteristics, used to create a 2-D visualization of the graph.			
	You create a biograph object using the object constructor function biograph. You can view a graphical representation of a biograph object using the view method.			
Method	Following are methods of a biograph object:			
Summary	allshortestpaths (biograph)	Find all shortest paths in biograph object		
	conncomp (biograph)	Find strongly or weakly connected components in biograph object		
	dolayout (biograph)	Calculate node positions and edge trajectories		
	get (biograph)	Retrieve information about biograph object		
	getancestors (biograph)	Find ancestors in biograph object		
	getdescendants (biograph)	Find descendants in biograph object		
	getedgesbynodeid (biograph)	Get handles to edges in biograph object		
	getmatrix (biograph)	Get connection matrix from biograph object		
	getnodesbyid (biograph)	Get handles to nodes		
	getrelatives (biograph)	Find relatives in biograph object		

	isdag (biograph)	Test for cycles in biograph object
	isomorphism (biograph)	Find isomorphism between two biograph objects
	isspantree (biograph)	Determine if tree created from biograph object is spanning tree
	maxflow (biograph)	Calculate maximum flow in biograph object
	minspantree (biograph)	Find minimal spanning tree in biograph object
	set (biograph)	Set property of biograph object
	shortestpath (biograph)	Solve shortest path problem in biograph object
	topoorder (biograph)	Perform topological sort of directed acyclic graph extracted from biograph object
	traverse (biograph)	Traverse biograph object by following adjacent nodes
	view (biograph)	Draw figure from biograph object
	Following are methods of a node ob	ject:
	getancestors (biograph)	Find ancestors in biograph object
	getdescendants (biograph)	Find descendants in biograph object
	getrelatives (biograph)	Find relatives in biograph object
Property Summary	A biograph object contains two kind objects, that have their own proper node objects and edge objects, see th	ties. For a list of the properties of

Properties of a Biograph Object	Properties of	of a	Biograph	Object
---------------------------------	----------------------	------	----------	--------

Property	Description	
ID	String to identify the biograph object. Default is ''.	
Label	String to label the biograph object. Default is	
Description	String that describes the biograph object. Default is ''.	
LayoutType		

Property	Description
EdgeType	String that specifies how edges display. Choices are:
	• 'straight'
	• 'curved' (default)
	• 'segmented'
	Note Curved or segmented edges occur only when necessary to avoid obstruction by nodes. Biograph objects with LayoutType equal to 'equilibrium' or 'radial' cannot produce curved or segmented edges.
Scale	Positive number that post-scales the node coordinates. Default is 1.
LayoutScale	Positive number that scales the size of the nodes before calling the layout engine. Default is 1.
EdgeTextColor	Three-element numeric vector of RGB values. Default is [0, 0, 0], which defines black.
EdgeFontSize	Positive number that sets the size of the edge font in points. Default is 8.
ShowArrows	Controls the display of arrows with the edges. Choices are 'on' (default) or 'off'.
ArrowSize	Positive number that sets the size of the arrows in points. Default is 8.
ShowWeights	Controls the display of text indicating the weight of the edges. Choices are 'on' (default) or 'off'.

Properties of a Biograph Object (Continued)

Property	Description
ShowTextInNodes	String that specifies the node property used to label nodes when you display a biograph object using the view method. Choices are:
	• 'Label' — Uses the Label property of the node object (default).
	 'ID' — Uses the ID property of the node object.
	• 'None'
NodeAutoSize	Controls precalculating the node size before calling the layout engine. Choices are 'on' (default) or 'off'.
NodeCallback	User-defined callback for all nodes. Enter the name of a function, a function handle, or a cell array with multiple function handles. After using the view function to display the biograph object in the Biograph Viewer, you can double-click a node to activate the first callback, or right-click and select a callback to activate. Default is the anonymous function, @(node) inspect(node), which displays the Property Inspector dialog box.

Properties of a Biograph Object (Continued)

Property	Description
EdgeCallback	User-defined callback for all edges. Enter the name of a function, a function handle, or a cell array with multiple function handles. After using the view function to display the biograph object in the Biograph Viewer, you can double-click an edge to activate the first callback, or right-click and select a callback to activate. Default is the anonymous function, @(edge) inspect(edge), which displays the Property Inspector dialog box.
CustomNodeDrawFcn	Function handle to a customized function to draw nodes. Default is [].
Nodes	Read-only column vector with handles to node objects of a biograph object. The size of the vector is the number of nodes. For properties of node objects, see Properties of a Node Object on page 5-7.
Edges	Read-only column vector with handles to edge objects of a biograph object. The size of the vector is the number of edges. For properties of edge objects, see Properties of an Edge Object on page 5-9.

Properties of a Biograph Object (Continued)

Properties of a Node Object

Property	Description
ID	Character string defined when the biograph object is created, either by the <i>NodeIDs</i> input argument or internally by the biograph constructor function. You can modify this property using the set method, but each node object's ID must be unique.

Properties of a Node Object (Continued)

Property	Description
Label	String for labeling a node when you display a biograph object using the view method. Default is ''.
Description	String that describes the node. Default is ''.
Position	Two-element numeric vector of x- and y-coordinates, for example, [150, 150]. If you do not specify this property, default is initially [], then when the layout algorithms are executed, it becomes a two-element numeric vector of x- and y-coordinates computed by the layout engine.
Shape	<pre>String that specifies the shape of the nodes. Choices are: 'box'(default) 'ellipse' 'circle' 'rectangle' 'diamond' 'trapezium' 'invtrapezium' 'house' 'inverse' 'parallelogram'</pre>

Properties of a Node Object (Continued)

Property	Description
Size	Two-element numeric vector calculated before calling the layout engine using the actual font size and shape of the node. Default is [10, 10].
Color	Three-element numeric vector of RGB values that specifies the fill color of the node. Default is [1, 1, 0.7], which defines yellow.
LineWidth	Positive number. Default is 1.
LineColor	Three-element numeric vector of RGB values that specifies the outline color of the node. Default is [0.3, 0.3, 1], which defines blue.
FontSize	Positive number that sets the size of the node font in points. Default is 8.
TextColor	Three-element numeric vector of RGB values that specifies the color of the node labels. Default is [0, 0, 0], which defines black.
UserData	Miscellaneous, user-defined data that you want to associate with the node. The node does not use this property, but you can access and specify it using the get and set functions. Default is [].

Properties of an Edge Object

Property	Description
ID	Character string automatically generated from the node IDs when the biograph object is created by the biograph constructor function. You can modify this property using the set method, but each edge object's ID must be unique.

Properties of an Edge Object (Continued)

Property	Description
Label	String for labeling an edge when you display a biograph object using the view method. Default is ''.
Description	String that describes the edge. Default is ''.
Weight	Value that represents the weight (cost, distance, length, or capacity) associated with the edge. Default is 1.
LineWidth	Positive number. Default is 1.
LineColor	Three-element numeric vector of RGB values that specifies the color of the edge. Default is [0.5, 0.5, 0.5], which defines gray.
UserData	Miscellaneous, user-defined data that you want to associate with the edge. The edge does not use this property, but you can access and specify it using the get and set functions. Default is [].

Examples Determining Properties and Property Values of a Biograph Object

You can display all properties and their current values of a biograph object, *BGobj*, by using the following syntax:

get(BGobj)

You can return all properties and their current values of *BGobj*, a biograph object, to *BGstruct*, a scalar structure in which each field name is a property of a biograph object, and each field contains the value of that property, by using the following syntax:

```
BGstruct = get(BGobj)
```

You can return the value of a specific property of a biograph object, *BGobj*, by using either of the following syntaxes:

PropertyValue = get(BGobj, 'PropertyName')

PropertyValue = BGobj.PropertyName

You can return the value of specific properties of a biograph object, *BGobj*, by using the following syntax:

```
[Property1Value, Property2Value, ...] = get(BGobj,
'Property1Name', 'Property2Name', ...)
```

Determining Possible Values of Biograph Object Properties

You can display possible values for all properties that have a fixed set of property values in a biograph object, *BGobj*, by using the following syntax:

set(BGobj)

You can display possible values for a specific property that has a fixed set of property values in a biograph object, *BGobj*, by using the following syntax:

You can access allowed values for any property that has a finite set of choices by using the following syntax:

set(BGobj, 'PropertyName')

Specifying Properties of a Biograph Object

You can set a specific property of a biograph object, *BGobj*, by using either of the following syntaxes:

set(BGobj, 'PropertyName', PropertyValue)

BGobj.PropertyName = PropertyValue

You can set multiple properties of a biograph object, *BGobj*, by using the following syntax:

```
set(BGobj, 'PropertyName1', PropertyValue1,
'PropertyName2', PropertyValue2, ...)
```

See Also Bioinformatics Toolbox function: biograph (object constructor)

Bioinformatics Toolbox methods of a biograph object: allshortestpaths, conncomp, dolayout, get, getancestors, getdescendants, getedgesbynodeid, getmatrix, getnodesbyid, getrelatives, isdag, isomorphism, isspantree, maxflow, minspantree, set, shortestpath, topoorder, traverse, view

Purpose	Object containing hierarchical clustering analysis data		
Description	A clustergram object contains hierarchical clustering analysis data that you can view in a heat map and dendrograms.		
	You create a clustergram object using the object constructor function clustergram. You can view a graphical representation of the clustergram object in a heat map and dendrograms using the view method.		
Method Summary	Following are methods of a clustergram object:		
Johnnary	get (clustergram)	Retrieve information about clustergram object	
	plot (clustergram)	Render clustergram heat map and dendrograms for clustergram object	
	set (clustergram)	Set property of clustergram object	
	view (clustergram)	View clustergram heat map and dendrograms for clustergram object	

Property Summary

Properties of a Clustergram Object

Property	Description
RowLabels	Vector of numbers or cell array of text strings to label the rows in the dendrogram and heat map. Default is a vector of values 1 through <i>M</i> , where <i>M</i> is the number of rows in <i>Data</i> , the matrix of data used by the clustergram function to create the clustergram object.

Property	Description
ColumnLabels	Vector of numbers or cell array of text strings to label the columns in the dendrogram and heat map. Default is a vector of values 1 through M, where M is the number of columns in Data, the matrix of data used by the clustergram function to create the clustergram object.
RowGroupNames	A cell array of text strings containing the names of the row groups exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window.
RowNodeNames	A cell array of text strings containing the names of the row nodes exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window.
ColumnGroupNames	A cell array of text strings containing the names of the column groups exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window.
ColumnNodeNames	A cell array of text strings containing the names of the column nodes exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window.

Property	Description
ExprValues	An <i>M</i> by <i>N</i> matrix of data, where <i>M</i> and <i>N</i> are the number of row nodes and of column nodes respectively, exported to a clustergram object created using the Export Group to Workspace command in the Clustergram window. If the matrix contains gene expression data, typically each row corresponds to a gene and each column corresponds to sample.
Standardize	 Numeric value that specifies the dimension for standardizing the values in the data. The standardized values are transformed so that the mean is 0 and the standard deviation is 1 in the specified dimension. Choices are: 1 — Standardize along the columns of data. 2 (default) — Standardize along the rows of data. 3 — Do not perform standardization.
Cluster	 Numeric value that specifies the dimension for clustering the values in the data. Choices are: 1 — Cluster along the columns of data only, which results in clustered rows. 2 — Cluster along the rows of data only, which results in clustered columns. 3 (default) — Cluster along the columns of data, then cluster along the rows of row-clustered data.

Property	Description
RowPdist	String that specifies the distance metric to pass to the pdist function (Statistics Toolbox software) to use to calculate the pairwise distances between rows. For information on choices, see the pdist function. Default is 'euclidean'.
	Note If the distance metric requires extra arguments, then <i>RowPdistValue</i> is a cell array. For example, to use the Minkowski distance with exponent P, you would use {'minkowski', P}.
ColumnPdist	String that specifies the distance metric to pass to the pdist function (Statistics Toolbox software) to use to calculate the pairwise distances between columns. For information on choices, see the pdist function. Default is 'euclidean'.
	Note If the distance metric requires extra arguments, then <i>ColumnPdistValue</i> is a cell array. For example, to use the Minkowski distance with exponent P, you would use {'minkowski', P}.

Property	Description
Linkage	String or two-element cell array of strings that specifies the linkage method to pass to the linkage function (Statistics Toolbox software) to use to create the hierarchical cluster tree for rows and columns. If a two-element cell array of strings, the first element is used for linkage between rows, and the second element is used for linkage between columns. For information on choices, see the linkage function. Default is 'average'.
Dendrogram	Scalar or two-element numeric vector or cell array of stringsthat specifies the 'colorthreshold' property to pass to the dendrogram function (Statistics Toolbox software) to create the dendrogram plot. If a two-element numeric vector or cell array, the first element is for the rows, and the second element is for the columns. For more information, see the dendrogram function.

Property	Description
OptimalLeafOrder	Property to enable or disable the optimal leaf ordering calculation, which determines the leaf order that maximizes the similarity between neighboring leaves. Choices are true (enable) or false (disable). Default depends on the size of <i>Data</i> , the matrix of data used to create the clustergram object. If the number of rows or columns in <i>Data</i> is greater than 1000, default is false; otherwise, default is true. Note Disabling the optimal leaf ordering calculation can be useful when working with large data sets because this calculation uses a large amount of memory and can be very time consuming.
ColorMap	Either of the following:
	• M-by-3 matrix of RGB values
	• Name or function handle of a function that returns a colormap, such as redgreencmap or redbluecmap
	Default is redgreencmap.

Property	Description
DisplayRange	Positive scalar that specifies the display range of standardized values. Default is 3, which means there is a color variation for values between -3 and 3, but values >3 will be the same color as 3, and values < -3 will be the same color as -3.
	For example, if you specify redgreencmap for the 'ColorMap' property, pure red represents values \geq <i>DisplayRangeValue</i> , and pure green represents values \leq - <i>DisplayRangeValue</i> .
SymmetricRange	Property to force the color scale of the heat map to be symmetric around zero. Choices are true (default) or false.
LogTrans	Controls the \log_2 transform of the data from natural scale. Choices are true or false (default).

Property	Description
Ratio	Either of the following:
	• Scalar
	• Two-element vector
	It specifies the ratio of space that the row and column dendrograms occupy relative to the heat map. If <i>RatioValue</i> is a scalar, it is used as the ratio for both dendrograms. If <i>RatioValue</i> is a two-element vector, the first element is used for the ratio of the row dendrogram width to the heat map width, and the second element is used for the ratio of the column dendrogram height to the heat map height. The second element is ignored for one-dimensional clustergrams. Default is 1/5.
Impute	Any of the following:
	• Name of a function that imputes missing data.
	• Handle to a function that imputes missing data.
	• Cell array where the first element is the name of or handle to a function that imputes missing data and the remaining elements are property name/property value pairs used as inputs to the function.

Property	Description
RowMarker	Optional structure array for annotating the groups (clusters) of rows determined by the clustergram function. Each structure in the array represents a group of rows and contains the following fields:
	• GroupNumber — The row group number to annotate.
	• Annotation — String specifying text to annotate the row group.
	• Color — String or three-element vector of RGB values specifying a color, which is used to label the row group. For more information on specifying colors, see colorspec. If this field is empty, default is 'blue'.
ColumnMarker	Optional structure array for annotating groups (clusters) of columns determined by the clustergram function. Each structure in the array represents a group of columns and contains the following fields:
	• GroupNumber — The column group number to annotate.
	• Annotation — String specifying text to annotate the column group.
	• Color — String or three-element vector of RGB values specifying a color, which is used to label the column group. For more information on specifying colors, see colorspec. If this field is empty, default is 'blue'.

Properties of a Clustergram Object (Continued)

Examples Determining Properties and Property Values of a Clustergram Object

You can display all properties and their current values of a clustergram object, *CGobj*, by using the following syntax:

get(CGobj)

You can return all properties and their current values of *CGobj*, a clustergram object, to *CGstruct*, a scalar structure in which each field name is a property of a clustergram object, and each field contains the value of that property, by using the following syntax:

```
CGstruct = get(CGobj)
```

You can return the value of a specific property of a clustergram object, *CGobj*, by using either of the following syntaxes:

PropertyValue = get(CGobj, 'PropertyName')

PropertyValue = CGobj.PropertyName

You can return the value of specific properties of a clustergram object, *CGobj*, by using the following syntax:

```
[Property1Value, Property2Value, ...] = get(CGobj,
'Property1Name', 'Property2Name', ...)
```

Determining Possible Values of Clustergram Object Properties

You can display possible values for all properties that have a fixed set of property values in a clustergram object, *CGobj*, by using the following syntax:

```
set(CGobj)
```

You can display possible values for a specific property that has a fixed set of property values in a clustergram object, *CGobj*, by using the following syntax:

```
set(CGobj, 'PropertyName')
```

Specifying Properties of a Clustergram Object

You can set a specific property of a clustergram object, *CGobj*, by using either of the following syntaxes:

set(CGobj, 'PropertyName', PropertyValue)

CGobj.PropertyName = PropertyValue

You can set multiple properties of a clustergram object, *CGobj*, by using the following syntax:

set(CGobj, 'PropertyName1', PropertyValue1, 'PropertyName2', PropertyValue2, ...)

See Also Bioinformatics Toolbox function: clustergram (object constructor)

Bioinformatics Toolbox methods of a clustergram object: get, plot, set, view

MATLAB function: display

Purpose Data structure encapsulating data and metadata from microarray experiment so that it can be indexed by gene or probe identifiers and by sample identifiers

Description A DataMatrix object is a data structure encapsulating measurement data and feature metadata from a microarray experiment so that it can be indexed by gene or probe identifiers and by sample identifiers. A DataMatrix object stores experimental data in a matrix, with rows typically corresponding to gene names or probe identifiers, and columns typically corresponding to sample identifiers. A DataMatrix object also stores metadata, such as the gene names or probe identifiers and sample identifiers, in row names and column names.

You create a DataMatrix object using the object constructor function DataMatrix.

Property Summary

Properties of a DataMatrix Object

Property	Description
Name	String that describes the DataMatrix object. Default is ''.
RowNames	Empty array or cell array of strings that specifies the names for the rows, typically gene names or probe identifiers. The number of elements in the cell array must equal the number of rows in the matrix. Default is an empty array.
ColNames	Empty array or cell array of strings that specifies the names for the columns, typically sample identifiers. The number of elements in the cell array must equal the number of columns in the matrix.

Property	Description
NRows	Read-only. Positive number that specifies the number of rows in the matrix.
	Note You cannot modify this property directly. You can access it using the get method.
NCols	Read-only. Positive number that specifies the number of columns in the matrix.
	Note You cannot modify this property directly. You can access it using the get method.
NDims	Read-only. Positive number that specifies the number of dimensions in the matrix.
	Note You cannot modify this property directly. You can access it using the get method.
ElementClass	Read-only. String that specifies the class type of the elements in the DataMatrix object, such as single or double.
	Note You cannot modify this property directly. You can access it using the get method.

Properties of a DataMatrix Object (Continued)

DataMatrix object

Method Summary

General Methods of a DataMatrix Object

Method	Description
colnames	Retrieve or set column names of DataMatrix object.
disp	Display DataMatrix object.
display	Display DataMatrix object, printing DataMatrix object name. To invoke this method, enter the name of a DataMatrix object at the command prompt.
double	Convert DataMatrix object to double-precision array.
get	Retrieve information about DataMatrix object.
isempty	Determine if DataMatrix object is empty.
isfinite	Determine if DataMatrix object elements are finite.
isinf	Determine if DataMatrix object elements are infinite.
isnan	Determine if DataMatrix object elements are NaN.
isscalar	Determine if DataMatrix object is scalar.
isequal	Test DataMatrix objects for equality.
isequalwithequalnans	Test DataMatrix objects for equality, treating NaNs as equal.
isvector	Determine if DataMatrix object is vector.
length	Return length of DataMatrix object.
ndims	Return number of dimensions in DataMatrix object.

Method	Description
numel	Return number of elements in DataMatrix object.
plot	Draw 2-D line plot of DataMatrix object.
rownames	Retrieve or set row names of DataMatrix object.
set	Set property of DataMatrix object.
single	Convert DataMatrix object to single-precision array.
size	Return size of DataMatrix object.

General Methods of a DataMatrix Object (Continued)

Methods for Manipulating the Data in a DataMatrix Object

Method	Description
cat	Concatenate DataMatrix objects. The horzcat and vertcat methods implement special cases.
horzcat	Concatenate DataMatrix objects horizontally.
sortcols	Sort columns of DataMatrix object in ascending or descending order.
sortrows	Sort rows of DataMatrix object in ascending or descending order.
subsasgn	Subscripted assignment for DataMatrix object. To invoke this method, use parentheses or dot indexing described in "Accessing DataMatrix Objects" in the Bioinformatics Toolbox User's Guide.

Methods for Manipulating the Data in a DataMatrix Object (Continued)

Method	Description
subsref	Subscripted reference for DataMatrix object. To invoke this method, use parentheses or dot indexing described in "Accessing DataMatrix Objects" in the Bioinformatics Toolbox User's Guide.
transpose	Transpose DataMatrix object.
vertcat	Concatenate DataMatrix objects vertically.

Descriptive Statistics and Statistical Learning Methods

Method	Description
kmeans	K-means clustering.
max	Return maximum values in DataMatrix object.
mean	Return average or mean values in DataMatrix object.
median	Return median values in DataMatrix object.
min	Return minimum values in DataMatrix object.
nanmax	Return maximum values in DataMatrix object ignoring NaN values.
nanmean	Return average or mean values in DataMatrix object ignoring NaN values.
nanmedian	Return median values in DataMatrix object ignoring NaN values.
nanmin	Return minimum values in DataMatrix object ignoring NaN values.

Method	Description
nanstd	Return standard deviation values in DataMatrix object ignoring NaN values.
nansum	Return sum of elements in DataMatrix object ignoring NaN values.
nanvar	Return variance values in DataMatrix object ignoring NaN values.
pdist	Pairwise distance.
princomp	Principal component analysis on data.
std	Return standard deviation values in DataMatrix object.
sum	Return sum of elements in DataMatrix object.
var	Return variance values in DataMatrix object.

Descriptive Statistics and Statistical Learning Methods (Continued)

Unary Methods – Exponential

Method	Description
exp	Exponential.
log	Natural logarithm.
log10	Common (base 10) logarithm.
log2	Base 2 logarithm and dissect floating-point numbers into exponent and mantissa.
pow2	Base 2 power and scale floating-point numbers.
sqrt	Square root.

Unary Methods – Integer

Method	Description
ceil	Round DataMatrix object toward infinity.
fix	Round DataMatrix object toward zero.
floor	Round DataMatrix object toward minus infinity.
round	Round DataMatrix object to nearest integer.

Unary Methods – Custom

Method	Description
dmarrayfun	Apply function to each element in DataMatrix object.

Binary Methods – Arithmetic Operator

Operator	Method	Description
+	plus	Add DataMatrix objects
-	minus	Subtract DataMatrix objects.
•*	times	Multiply DataMatrix objects.
./	rdivide	Right array divide DataMatrix objects.
.\	ldivide	Left array divide DataMatrix objects.
.^	power	Array power DataMatrix objects.

Binary Methods – Relational Operator

Operator	Method	Description
<	lt	Test DataMatrix objects for less than.

Operator	Method	Description
<=	le	Test DataMatrix objects for less than or equal to.
>	gt	Test DataMatrix objects for greater than.
>=	ge	Test DataMatrix objects for greater than or equal to.
==	eq	Test DataMatrix objects for equality.
~=	ne	Test DataMatrix objects for inequality.

Binary Methods – Relational Operator (Continued)

Binary Methods – Custom

Method	Description
dmbsxfun	Apply element-by-element binary operation to two DataMatrix objects with singleton expansion enabled.

Examples Determining Properties and Property Values of a DataMatrix Object

You can display all properties and their current values of a DataMatrix object, *DMobj*, by using the following syntax:

get(DMobj)

You can return all properties and their current values of *DMobj*, a DataMatrix object, to *DMstruct*, a scalar structure in which each field name is a property of a DataMatrix object, and each field contains the value of that property, by using the following syntax:

DMstruct = get(DMobj)

You can return the value of a specific property of a DataMatrix object, *DMobj*, by using either of the following syntaxes:

```
PropertyValue = get(DMObj, 'PropertyName')
PropertyValue = DMObj.PropertyName
```

You can return the value of specific properties of a DataMatrix object, *DMobj*, by using the following syntax:

```
[Property1Value, Property2Value, ...] = get(DMobj,
'Property1Name', 'Property2Name', ...)
```

Determining Possible Values of DataMatrix Object Properties

You can display possible values for all properties that have a fixed set of property values in a DataMatrix object, *DMobj*, by using the following syntax:

set(DMobj)

You can display possible values for a specific property that has a fixed set of property values in a DataMatrix object, *DMobj*, by using the following syntax:

```
set(DMObj, 'PropertyName')
```

Specifying Properties of a DataMatrix Object

You can set a specific property of a DataMatrix object, *DMObj*, by using either of the following syntaxes:

```
DMObj = set(DMObj, 'PropertyName', PropertyValue)
DMObj.PropertyName = PropertyValue
```

You can set multiple properties of a DataMatrix object, *DMobj*, by using the following syntax:

```
set(DMobj, 'PropertyName1', PropertyValue1, 'PropertyName2',
PropertyValue2, ...)
```

Note For more examples of creating and using DataMatrix objects, see "Working with DataMatrix Objects" in the Bioinformatics Toolbox User's Guide.

See Also Bioinformatics Toolbox function: DataMatrix (object constructor) Bioinformatics Toolbox methods of a DataMatrix object: colnames, disp, dmarrayfun, dmbsxfun, double, eq, ge, get, gt, horzcat, isequal, isequalwithequalnans, ldivide, le, lt, max, mean, median, min, minus, ndims, ne, numel, plot, plus, power, rdivide, rownames, set, single, sortcols, sortrows, std, sum, times, var, vertcat

geneont object

Purpose	Data structure containing Gene Ontology (GO) information		
Description	A geneont object is a data structure containing Gene Ontology information. Gene Ontology terms can be explored and traversed through "is_a" and "part_of" relationships.		
Method	Following are methods of a geneont object:		
Summary	getancestors (geneont)	Find terms that are ancestors of specified Gene Ontology (GO) term	
	getdescendants (geneont)	Find terms that are descendants of specified Gene Ontology (GO) term	
	getmatrix (geneont)	Convert geneont object into relationship matrix	
	getrelatives (geneont)	Find terms that are relatives of specified Gene Ontology (GO) term	

Property Summary

Properties of a geneont Object

Property	Description	
default_namespace	Read-only string containing the namespace to which terms are assigned.	
format_version	Read-only string containing the version of the encoding of the OBO flat format file.	
date	Read-only string containing the date the OBO file was last updated.	
Terms	Read-only column vector with handles to term objects of a geneont object. For properties of term objects, see Properties of Terms Objects on page 5-35.	

Properties of Terms Objects

Property	Description	
id	Numeric value that corresponds to the GO ID of the GO term.	
	Tip You can use the num2goid function to convert id to a GO ID string.	
name	String representing the name of the GO term.	
ontology	String limited to 'molecular function', 'biological process', or 'cellular component'.	
definition	String that defines the GO term.	
synonym	Numeric array containing GO IDs of GO terms that are synonyms of this GO term.	
is_a	Numeric array containing GO IDs of GO terms that have an "is_a" relationship with this GO term.	
part_of	Numeric array containing GO IDs that of GO terms that have a "part_of" relationship with this GO term.	
obsolete	Boolean value that indicates if the GO term is obsolete (1) or not obsolete (0).	

See Also

Bioinformatics Toolbox functions: geneont (object constructor), goannotread, num2goid

Bioinformatics Toolbox methods of geneont object: getancestors, getdescendants, getmatrix, getrelatives

phytree object

Purpose	Data structure containing phylogenetic tree			
Description	A phytree object is a data structure containing a phylogenetic tree. Phylogenetic trees are binary rooted trees, which means that each branch is the parent of two other branches, two leaves, or one branch and one leaf. A phytree object can be ultrametric or nonultrametric.			
Method	Following are methods of a phytree object:			
Summary	get (phytree)	Retrieve information about phylogenetic tree object		
	getbyname (phytree)	Branches and leaves from phytree object		
	getcanonical (phytree)	Calculate canonical form of phylogenetic tree		
	getmatrix (phytree)	Convert phytree object into relationship matrix		
	getnewickstr (phytree)	Create Newick-formatted string		
	pdist (phytree)	Calculate pairwise patristic distances in phytree object		
	plot (phytree)	Draw phylogenetic tree		
	prune (phytree)	Remove branch nodes from phylogenetic tree		
	reorder (phytree)	Reorder leaves of phylogenetic tree		
	reroot (phytree)	Change root of phylogenetic tree		
	select (phytree)	Select tree branches and leaves in phytree object		
	subtree (phytree)	Extract phylogenetic subtree		

view (phytree)

weights (phytree)

View phylogenetic tree

Calculate weights for phylogenetic tree

Property Summary

Note You cannot modify these properties directly. You can access these properties using the get method.

Property	Description
NumLeaves	Number of leaves
NumBranches	Number of branches
NumNodes	Number of nodes (NumLeaves + NumBranches)
Pointers	Branch to leaf/branch connectivity list
Distances	Edge length for every leaf/branch
LeafNames	Names of the leaves
BranchNames	Names of the branches
NodeNames	Names of all the nodes

See AlsoBioinformatics Toolbox functions: phytree (object constructor),
phytreeread, phytreetool, phytreewrite, seqlinkage,
seqneighjoin, seqpdistBioinformatics Toolbox methods of phytree object: get, getbyname,

getcanonical, getmatrix, getnewickstr, pdist, plot, prune, reroot, select, subtree, view, weights

Index

A

aa2int function reference 2-2 aa2nt function reference 2-6 aacount function reference 2-13 affygerma function reference 2-19 affvinvarsetnorm function reference 2-30 affyprobeaffinities function reference 2-38 affyprobesegread function reference 2-45 affvread function reference 2-50 affyrma function reference 2-69 affysnpannotread function reference 2-76 affysnpintensitysplit function reference 2-80 affysnpquartets function reference 2-85 agferead function reference 2-88 allshortestpaths method reference 4-2 aminolookup function reference 2-90 atomiccomp function reference 2-95

В

basecount function reference 2-97 baselookup function reference 2-101 biograph constructor reference 2-106 biograph object reference 5-2 blastformat function reference 2-115 blastlocal function reference 2-121 blastncbi function reference 2-134 blastread function reference 2-149 blastreadlocal function reference 2-155 blosum function reference 2-163

С

celintensityread function reference 2-166 cghcbs function reference 2-172 2-186 chromosomeplot function reference 2-203 classperf function reference 2-219 cleave function reference 2-233 cleavelookup function reference 2-239 clustergram function reference 2-243 clustergram object reference 5-13 codonbias function reference 2-268 codoncount function reference 2-275

colnames (DataMatrix) method reference 4-5 conncomp method reference 4-8 cpgisland function reference 2-280 crossvalind function reference 2-284 cytobandread function reference 2-287

D

DataMatrix constructor reference 2-290 DataMatrix object constructing 2-290 methods 5-26 properties 5-24 reference 5-24 dayhoff function reference 2-298 dimercount function reference 2-299 disp (DataMatrix) method reference 4-11 dmarrayfun (DataMatrix) method reference 4-12 dmbsxfun (DataMatrix) method reference 4-17 dna2rna function reference 2-303

dnds function reference 2-304 dndsml function reference 2-312 dolayout method reference 4-19 double (DataMatrix) method reference 4-22

E

emblread function reference 2-318 eq (DataMatrix) method reference 4-24 evalrasmolscript function reference 2-322 exprprofrange function reference 2-324 exprprofvar function reference 2-325

F

fastaread function reference 2-326 fastawrite function reference 2-329 featuresmap reference 2-333 featuresparse reference 2-343

Index

functions aa2int 2-2 aa2nt 2-6 aacount 2-13 affygcrma 2-19 affyinvarsetnorm 2-30 affyprobeaffinities 2-38 affyprobeseqread 2-45 affyread 2-50 affyrma 2-69 affysnpannotread 2-76 affysnpintensitysplit 2-80 affysnpquartets 2-85 agferead 2-88 aminolookup 2-90 atomiccomp 2-95 basecount 2-97 baselookup 2-101 biograph constructor 2-106 blastformat 2-115 blastlocal 2-121 blastncbi 2-134 blastread 2-149 blastreadlocal 2-155 blosum 2-163 celintensityread 2-166 cghcbs 2-172 2-186 chromosomeplot 2-203 classperf 2-219 cleave 2-233 cleavelookup 2-239 clustergram 2-243 codonbias 2-268 codoncount 2-275 cpgisland 2-280 crossvalind 2-284 cytobandread 2-287 DataMatrix constructor 2-290 dayhoff 2-298 dimercount 2-299 dna2rna 2-303 dnds 2-304 dndsml 2-312 emblread 2-318 evalrasmolscript 2-322 exprprofrange 2-324

G

galread function reference 2-349 germa function reference 2-350 gcrmabackadj function reference 2-359 ge (DataMatrix) method reference 4-26 genbankread function reference 2-368 geneentropyfilter function reference 2-370 genelowvalfilter function reference 2-372 geneont function reference 2-375 geneont object reference 5-34 generangefilter function reference 2-378 geneticcode function reference 2-381 genevarfilter function reference 2-384 genpeptread function reference 2-386 geoseriesread function reference 2-389 geosoftread function reference 2-392 get (biograph) method reference 4-28 get (clustergram) method reference 4-34 get (DataMatrix) method reference 4-45 get (phytree) method reference 4-48

getancestors method biograph object 4-50 geneont object 4-53 getblast function reference 2-395 getbyname method reference 4-58 getcanonical method reference 4-60 getdescendants method biograph object 4-62 geneont object 4-65 getedgesbynodeid method reference 4-70 getembl function reference 2-403 getgenbank function reference 2-406 getgenpept function reference 2-411 getgeodata function reference 2-416 gethmmalignment function reference 2-418 gethmmprof function reference 2-422 gethmmtree function reference 2-428 getmatrix (biograph) method reference 4-72 getmatrix (geneont) method reference 4-73 getmatrix (phytree) method reference 4-74 getnewickstr method reference 4-75 getnodesbyid method reference 4-77 getpdb function reference 2-431

getrelatives method biograph object 4-78 geneont object 4-79 goannotread function reference 2-438 gonnet function reference 2-442 gprread function reference 2-443 graphallshortestpaths function reference 2-445 graphconncomp function reference 2-452 graphisdag function reference 2-459 graphisomorphism function reference 2-465 graphisspantree function reference 2-472 graphmaxflow function reference 2-474 graphminspantree function reference 2-482 graphpred2path function reference 2-488 graphshortestpath function reference 2-492 graphtopoorder function reference 2-504 graphtraverse function reference 2-508 gt (DataMatrix) method reference 4-85

Η

hmmprofalign function reference 2-517 hmmprofestimate function reference 2-520 hmmprofgenerate function reference 2-523 hmmprofmerge function reference 2-525 hmmprofstruct function reference 2-527 horzcat (DataMatrix) method reference 4-87

ilmnbslookup function reference 2-539 ilmnbsread function reference 2-549 imageneread function reference 2-555 int2aa function reference 2-558 int2nt function reference 2-561 isdag method reference 4-89 isequal (DataMatrix) method reference 4-90 isequalwithequalnans (DataMatrix) method reference 4-92 isoelectric function reference 2-564 isomorphism method reference 4-94 isspantree method reference 4-96

J

jcampread function reference 2-567 joinseq function reference 2-570

Κ

knnclassify function reference 2-571 knnimpute function reference 2-579

L

ldivide (DataMatrix) method reference 4-97 le (DataMatrix) method reference 4-99 lt (DataMatrix) method reference 4-101

Μ

maboxplot function reference 2-583 mafdr function reference 2-587 magetfield function reference 2-595 maimage function reference 2-596 mainvarsetnorm function reference 2-598 mairplot function reference 2-606 maloglog function reference 2-618 malowess function reference 2-620 manorm function reference 2-622 mapcaplot function reference 2-625 mattest function reference 2-628 mavolcanoplot function reference 2-637 max (DataMatrix) method reference 4-103 maxflow method reference 4-106 mean (DataMatrix) method reference 4-110 median (DataMatrix) method reference 4-112

methods allshortestpaths 4-2 colnames (DataMatrix) 4-5 conncomp 4-8 disp (DataMatrix) 4-11 dmarrayfun (DataMatrix) 4-12 dmbsxfun (DataMatrix) 4-17 dolayout 4-19 double (DataMatrix) 4-22 eq (DataMatrix) 4-24 ge (DataMatrix) 4-26 get (biograph) 4-28 get (clustergram) 4-34 get (DataMatrix) 4-45 get (phytree) 4-48 getancestors (biograph) 4-50 getancestors (geneont) 4-53 getbyname 4-58 getcanonical 4-60 getdescendants (biograph) 4-62 getdescendants (geneont) 4-65 getedgesbynodeid 4-70 getmatrix (biograph) 4-72 getmatrix (geneont) 4-73 getmatrix (phytree) 4-74 getnewickstr 4-75 getnodesbyid 4-77 getrelatives (biograph) 4-78 getrelatives (geneont) 4-79 gt (DataMatrix) 4-85 horzcat (DataMatrix) 4-87 isdag 4-89 isequal (DataMatrix) 4-90 isequalwithequalnans (DataMatrix) 4-92 isomorphism 4-94 isspantree 4-96 ldivide (DataMatrix) 4-97 le (DataMatrix) 4-99 lt (DataMatrix) 4-101 max (DataMatrix) 4-103 maxflow 4-106 mean (DataMatrix) 4-110 median (DataMatrix) 4-112 min (DataMatrix) 4-114 minspantree 4-117 minus (DataMatrix) 4-120

min (DataMatrix) method reference 4-114 minspantree method reference 4-117 minus (DataMatrix) method reference 4-120 molviewer function reference 2-647 molweight function reference 2-646 msalign function reference 2-655 msbackadj function reference 2-669 msdotplot function reference 2-674 msheatmap function reference 2-679 mslowess function reference 2-689 msnorm function reference 2-693 mspalign function reference 2-697 mspeaks function reference 2-706 msppresample function reference 2-719 msresample function reference 2-727 mssgolay function reference 2-732 msviewer function reference 2-734 multialign function reference 2-737 multialignread function reference 2-746 multialignviewer function reference 2-748 multialignwrite function reference 2-749 mzcdf2peaks function reference 2-753 mzcdfinfo function reference 2-757 1 0

Index-7

0

objects biograph 5-2 clustergram 5-13 DataMatrix 5-24 geneont 5-34 phytree 5-36 oligoprop function reference 2-808 optimalleaforder function reference 2-817

P

palindromes function reference 2-821 pam function reference 2-823 pdbdistplot function reference 2-825 pdbread function reference 2-827 pdbsuperpose function reference 2-834 pdbtransform function reference 2-844 pdbwrite function reference 2-848 pdist method reference 4-127 pfamhmmread function reference 2-851 phytree constructor reference 2-856 phytree object reference 5-36 phytreeread function reference 2-860 phytreetool function reference 2-861

phytreewrite function reference 2-863 plot (clustergram) method reference 4-129 plot (DataMatrix) method reference 4-130 plot method reference 4-132 plus (DataMatrix) method reference 4-134 power (DataMatrix) method reference 4-136 probelibraryinfo function reference 2-865 probesetlink function reference 2-867 probesetlookup function reference 2-870 probesetplot function reference 2-872 probesetvalues function reference 2-877 profalign function reference 2-883 proteinplot function reference 2-886 proteinpropplot function reference 2-889 prune method reference 4-138

Q

quantilenorm function reference 2-895

R

ramachandran function reference 2-896 randfeatures function reference 2-911 randseq function reference 2-914 rankfeatures function reference 2-917 rdivide (DataMatrix) method reference 4-140 rebasecuts function reference 2-922 redbluecmap function reference 2-924 redgreencmap function reference 2-927 reorder method reference 4-142 reroot method reference 4-146 restrict function reference 2-930 revgeneticcode function reference 2-933 rmabackadj function reference 2-938 rmasummary function reference 2-943 rna2dna function reference 2-949 rnaconvert function reference 2-950 rnafold function reference 2-952 rnaplot function reference 2-956 rownames (DataMatrix) method reference 4-150

S

samplealign function reference 2-972 scfread function reference 2-991 select method reference 4-153 seq2regexp function reference 2-994 segcomplement function reference 2-998 segconsensus function reference 2-999 seqdisp function reference 2-1001 seqdotplot function reference 2-1003 seginsertgaps function reference 2-1005 seqlinkage function reference 2-1008 seglogo function reference 2-1010 segmatch function reference 2-1017 seqneighjoin function reference 2-1018 segpdist function reference 2-1021 segprofile function reference 2-1032 segrcomplement function reference 2-1035 segreverse function reference 2-1036 seqshoworfs function reference 2-1037 seqshowwords function reference 2-1043

segtool function reference 2-1046 seqwordcount function reference 2-1048 set (biograph) method reference 4-156 set (clustergram) method reference 4-163 set (DataMatrix) method reference 4-173 shortestpath method reference 4-177 showalignment function reference 2-1050 showhmprof function reference 2-1056 single (DataMatrix) method reference 4-182 sortcols (DataMatrix) method reference 4-184 sortrows (DataMatrix) method reference 4-186 sptread function reference 2-1058 std (DataMatrix) method reference 4-188 subtree method reference 4-190 sum (DataMatrix) method reference 4-191 support vector machines symclassify function 2-1060 symsmoset function 2-1067 symtrain function 2-1071 symclassify function reference 2-1060 symsmoset function reference 2-1067

symtrain function reference 2-1071 swalign function reference 2-1087

T

times (DataMatrix) method reference 4-193 topoorder method reference 4-195 traceplot function reference 2-1094 traverse method reference 4-196

V

var (DataMatrix) method reference 4-199 vertcat (DataMatrix) method reference 4-202 view (biograph) method reference 4-204 view (clustergram) method reference 4-206 view (phytree) method reference 4-207

W

weights method reference 4-208

Z

zonebackadj function reference 2-1095